wolfssl/src/ssl.c

26589 lines
702 KiB
C

/* ssl.c
*
* Copyright (C) 2006-2017 wolfSSL Inc.
*
* This file is part of wolfSSL.
*
* wolfSSL is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* wolfSSL is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1335, USA
*/
#ifdef HAVE_CONFIG_H
#include <config.h>
#endif
#include <wolfssl/wolfcrypt/settings.h>
#ifndef WOLFCRYPT_ONLY
#ifdef HAVE_ERRNO_H
#include <errno.h>
#endif
#include <wolfssl/internal.h>
#include <wolfssl/error-ssl.h>
#include <wolfssl/wolfcrypt/coding.h>
#ifdef NO_INLINE
#include <wolfssl/wolfcrypt/misc.h>
#else
#define WOLFSSL_MISC_INCLUDED
#include <wolfcrypt/src/misc.c>
#endif
#ifndef WOLFSSL_ALLOW_NO_SUITES
#if defined(NO_DH) && !defined(HAVE_ECC) && !defined(WOLFSSL_STATIC_RSA) \
&& !defined(WOLFSSL_STATIC_DH) && !defined(WOLFSSL_STATIC_PSK)
#error "No cipher suites defined because DH disabled, ECC disabled, and no static suites defined. Please see top of README"
#endif
#endif
#if defined(OPENSSL_EXTRA) || defined(HAVE_WEBSERVER) || \
defined(WOLFSSL_KEY_GEN)
#include <wolfssl/openssl/evp.h>
/* openssl headers end, wolfssl internal headers next */
#include <wolfssl/wolfcrypt/wc_encrypt.h>
#endif
#ifdef OPENSSL_EXTRA
/* openssl headers begin */
#include <wolfssl/openssl/hmac.h>
#include <wolfssl/openssl/crypto.h>
#include <wolfssl/openssl/des.h>
#include <wolfssl/openssl/bn.h>
#include <wolfssl/openssl/dh.h>
#include <wolfssl/openssl/rsa.h>
#include <wolfssl/openssl/pem.h>
#include <wolfssl/openssl/ec.h>
#include <wolfssl/openssl/ec25519.h>
#include <wolfssl/openssl/ed25519.h>
#include <wolfssl/openssl/ecdsa.h>
#include <wolfssl/openssl/ecdh.h>
/* openssl headers end, wolfssl internal headers next */
#include <wolfssl/wolfcrypt/hmac.h>
#include <wolfssl/wolfcrypt/random.h>
#include <wolfssl/wolfcrypt/des3.h>
#include <wolfssl/wolfcrypt/md4.h>
#include <wolfssl/wolfcrypt/md5.h>
#include <wolfssl/wolfcrypt/arc4.h>
#include <wolfssl/wolfcrypt/idea.h>
#include <wolfssl/wolfcrypt/curve25519.h>
#include <wolfssl/wolfcrypt/ed25519.h>
#ifdef HAVE_STUNNEL
#include <wolfssl/openssl/ocsp.h>
#endif /* WITH_STUNNEL */
#ifdef WOLFSSL_SHA512
#include <wolfssl/wolfcrypt/sha512.h>
#endif
#if defined(WOLFCRYPT_HAVE_SRP) && !defined(NO_SHA256) \
&& !defined(WC_NO_RNG)
#include <wolfssl/wolfcrypt/srp.h>
#include <wolfssl/wolfcrypt/random.h>
#endif
#endif
#ifdef NO_ASN
#include <wolfssl/wolfcrypt/dh.h>
#endif
#ifndef WOLFSSL_LEANPSK
char* mystrnstr(const char* s1, const char* s2, unsigned int n)
{
unsigned int s2_len = (unsigned int)XSTRLEN(s2);
if (s2_len == 0)
return (char*)s1;
while (n >= s2_len && s1[0]) {
if (s1[0] == s2[0])
if (XMEMCMP(s1, s2, s2_len) == 0)
return (char*)s1;
s1++;
n--;
}
return NULL;
}
#endif
#ifdef WOLFSSL_SESSION_EXPORT
#ifdef WOLFSSL_DTLS
int wolfSSL_dtls_import(WOLFSSL* ssl, unsigned char* buf, unsigned int sz)
{
WOLFSSL_ENTER("wolfSSL_session_import");
if (ssl == NULL || buf == NULL) {
return BAD_FUNC_ARG;
}
/* sanity checks on buffer and protocol are done in internal function */
return wolfSSL_dtls_import_internal(ssl, buf, sz);
}
/* Sets the function to call for serializing the session. This function is
* called right after the handshake is completed. */
int wolfSSL_CTX_dtls_set_export(WOLFSSL_CTX* ctx, wc_dtls_export func)
{
WOLFSSL_ENTER("wolfSSL_CTX_dtls_set_export");
/* purposefully allow func to be NULL */
if (ctx == NULL) {
return BAD_FUNC_ARG;
}
ctx->dtls_export = func;
return WOLFSSL_SUCCESS;
}
/* Sets the function in WOLFSSL struct to call for serializing the session. This
* function is called right after the handshake is completed. */
int wolfSSL_dtls_set_export(WOLFSSL* ssl, wc_dtls_export func)
{
WOLFSSL_ENTER("wolfSSL_dtls_set_export");
/* purposefully allow func to be NULL */
if (ssl == NULL) {
return BAD_FUNC_ARG;
}
ssl->dtls_export = func;
return WOLFSSL_SUCCESS;
}
/* This function allows for directly serializing a session rather than using
* callbacks. It has less overhead by removing a temporary buffer and gives
* control over when the session gets serialized. When using callbacks the
* session is always serialized immediatly after the handshake is finished.
*
* buf is the argument to contain the serialized session
* sz is the size of the buffer passed in
* ssl is the WOLFSSL struct to serialize
* returns the size of serialized session on success, 0 on no action, and
* negative value on error */
int wolfSSL_dtls_export(WOLFSSL* ssl, unsigned char* buf, unsigned int* sz)
{
WOLFSSL_ENTER("wolfSSL_dtls_export");
if (ssl == NULL || sz == NULL) {
return BAD_FUNC_ARG;
}
if (buf == NULL) {
*sz = MAX_EXPORT_BUFFER;
return 0;
}
/* if not DTLS do nothing */
if (!ssl->options.dtls) {
WOLFSSL_MSG("Currently only DTLS export is supported");
return 0;
}
/* copy over keys, options, and dtls state struct */
return wolfSSL_dtls_export_internal(ssl, buf, *sz);
}
/* returns 0 on success */
int wolfSSL_send_session(WOLFSSL* ssl)
{
int ret;
byte* buf;
word16 bufSz = MAX_EXPORT_BUFFER;
WOLFSSL_ENTER("wolfSSL_send_session");
if (ssl == NULL) {
return BAD_FUNC_ARG;
}
buf = (byte*)XMALLOC(bufSz, ssl->heap, DYNAMIC_TYPE_TMP_BUFFER);
if (buf == NULL) {
return MEMORY_E;
}
/* if not DTLS do nothing */
if (!ssl->options.dtls) {
XFREE(buf, ssl->heap, DYNAMIC_TYPE_TMP_BUFFER);
WOLFSSL_MSG("Currently only DTLS export is supported");
return 0;
}
/* copy over keys, options, and dtls state struct */
ret = wolfSSL_dtls_export_internal(ssl, buf, bufSz);
if (ret < 0) {
XFREE(buf, ssl->heap, DYNAMIC_TYPE_TMP_BUFFER);
return ret;
}
/* if no error ret has size of buffer */
ret = ssl->dtls_export(ssl, buf, ret, NULL);
if (ret != WOLFSSL_SUCCESS) {
XFREE(buf, ssl->heap, DYNAMIC_TYPE_TMP_BUFFER);
return ret;
}
XFREE(buf, ssl->heap, DYNAMIC_TYPE_TMP_BUFFER);
return 0;
}
#endif /* WOLFSSL_DTLS */
#endif /* WOLFSSL_SESSION_EXPORT */
/* prevent multiple mutex initializations */
static volatile int initRefCount = 0;
static wolfSSL_Mutex count_mutex; /* init ref count mutex */
/* Create a new WOLFSSL_CTX struct and return the pointer to created struct.
WOLFSSL_METHOD pointer passed in is given to ctx to manage.
This function frees the passed in WOLFSSL_METHOD struct on failure and on
success is freed when ctx is freed.
*/
WOLFSSL_CTX* wolfSSL_CTX_new_ex(WOLFSSL_METHOD* method, void* heap)
{
WOLFSSL_CTX* ctx = NULL;
WOLFSSL_ENTER("WOLFSSL_CTX_new_ex");
if (initRefCount == 0) {
/* user no longer forced to call Init themselves */
int ret = wolfSSL_Init();
if (ret != WOLFSSL_SUCCESS) {
WOLFSSL_MSG("wolfSSL_Init failed");
WOLFSSL_LEAVE("WOLFSSL_CTX_new", 0);
if (method != NULL) {
XFREE(method, heap, DYNAMIC_TYPE_METHOD);
}
return NULL;
}
}
if (method == NULL)
return ctx;
ctx = (WOLFSSL_CTX*) XMALLOC(sizeof(WOLFSSL_CTX), heap, DYNAMIC_TYPE_CTX);
if (ctx) {
if (InitSSL_Ctx(ctx, method, heap) < 0) {
WOLFSSL_MSG("Init CTX failed");
wolfSSL_CTX_free(ctx);
ctx = NULL;
}
#if defined(OPENSSL_EXTRA) && defined(WOLFCRYPT_HAVE_SRP) \
&& !defined(NO_SHA256) && !defined(WC_NO_RNG)
else {
ctx->srp = (Srp*) XMALLOC(sizeof(Srp), heap, DYNAMIC_TYPE_SRP);
if (ctx->srp == NULL){
WOLFSSL_MSG("Init CTX failed");
wolfSSL_CTX_free(ctx);
return NULL;
}
XMEMSET(ctx->srp, 0, sizeof(Srp));
}
#endif
}
else {
WOLFSSL_MSG("Alloc CTX failed, method freed");
XFREE(method, heap, DYNAMIC_TYPE_METHOD);
}
WOLFSSL_LEAVE("WOLFSSL_CTX_new", 0);
return ctx;
}
WOLFSSL_CTX* wolfSSL_CTX_new(WOLFSSL_METHOD* method)
{
#ifdef WOLFSSL_HEAP_TEST
/* if testing the heap hint then set top level CTX to have test value */
return wolfSSL_CTX_new_ex(method, (void*)WOLFSSL_HEAP_TEST);
#else
return wolfSSL_CTX_new_ex(method, NULL);
#endif
}
void wolfSSL_CTX_free(WOLFSSL_CTX* ctx)
{
WOLFSSL_ENTER("SSL_CTX_free");
if (ctx) {
#if defined(OPENSSL_EXTRA) && defined(WOLFCRYPT_HAVE_SRP) \
&& !defined(NO_SHA256) && !defined(WC_NO_RNG)
if (ctx->srp != NULL){
if (ctx->srp_password != NULL){
XFREE(ctx->srp_password, ctx->heap, DYNAMIC_TYPE_SRP);
}
wc_SrpTerm(ctx->srp);
XFREE(ctx->srp, ctx->heap, DYNAMIC_TYPE_SRP);
}
#endif
FreeSSL_Ctx(ctx);
}
WOLFSSL_LEAVE("SSL_CTX_free", 0);
}
#ifdef SINGLE_THREADED
/* no locking in single threaded mode, allow a CTX level rng to be shared with
* WOLFSSL objects, WOLFSSL_SUCCESS on ok */
int wolfSSL_CTX_new_rng(WOLFSSL_CTX* ctx)
{
WC_RNG* rng;
int ret;
if (ctx == NULL) {
return BAD_FUNC_ARG;
}
rng = XMALLOC(sizeof(WC_RNG), ctx->heap, DYNAMIC_TYPE_RNG);
if (rng == NULL) {
return MEMORY_E;
}
#ifndef HAVE_FIPS
ret = wc_InitRng_ex(rng, ctx->heap, ctx->devId);
#else
ret = wc_InitRng(rng);
#endif
if (ret != 0) {
XFREE(rng, ctx->heap, DYNAMIC_TYPE_RNG);
return ret;
}
ctx->rng = rng;
return WOLFSSL_SUCCESS;
}
#endif
WOLFSSL* wolfSSL_new(WOLFSSL_CTX* ctx)
{
WOLFSSL* ssl = NULL;
int ret = 0;
(void)ret;
WOLFSSL_ENTER("SSL_new");
if (ctx == NULL)
return ssl;
ssl = (WOLFSSL*) XMALLOC(sizeof(WOLFSSL), ctx->heap, DYNAMIC_TYPE_SSL);
if (ssl)
if ( (ret = InitSSL(ssl, ctx, 0)) < 0) {
FreeSSL(ssl, ctx->heap);
ssl = 0;
}
WOLFSSL_LEAVE("SSL_new", ret);
return ssl;
}
void wolfSSL_free(WOLFSSL* ssl)
{
WOLFSSL_ENTER("SSL_free");
if (ssl)
FreeSSL(ssl, ssl->ctx->heap);
WOLFSSL_LEAVE("SSL_free", 0);
}
int wolfSSL_is_server(WOLFSSL* ssl)
{
if (ssl == NULL)
return BAD_FUNC_ARG;
return ssl->options.side == WOLFSSL_SERVER_END;
}
#ifdef HAVE_WRITE_DUP
/*
* Release resources around WriteDup object
*
* ssl WOLFSSL object
*
* no return, destruction so make best attempt
*/
void FreeWriteDup(WOLFSSL* ssl)
{
int doFree = 0;
WOLFSSL_ENTER("FreeWriteDup");
if (ssl->dupWrite) {
if (wc_LockMutex(&ssl->dupWrite->dupMutex) == 0) {
ssl->dupWrite->dupCount--;
if (ssl->dupWrite->dupCount == 0) {
doFree = 1;
} else {
WOLFSSL_MSG("WriteDup count not zero, no full free");
}
wc_UnLockMutex(&ssl->dupWrite->dupMutex);
}
}
if (doFree) {
WOLFSSL_MSG("Doing WriteDup full free, count to zero");
wc_FreeMutex(&ssl->dupWrite->dupMutex);
XFREE(ssl->dupWrite, ssl->heap, DYNAMIC_TYPE_WRITEDUP);
}
}
/*
* duplicate existing ssl members into dup needed for writing
*
* dup write only WOLFSSL
* ssl exisiting WOLFSSL
*
* 0 on success
*/
static int DupSSL(WOLFSSL* dup, WOLFSSL* ssl)
{
/* shared dupWrite setup */
ssl->dupWrite = (WriteDup*)XMALLOC(sizeof(WriteDup), ssl->heap,
DYNAMIC_TYPE_WRITEDUP);
if (ssl->dupWrite == NULL) {
return MEMORY_E;
}
XMEMSET(ssl->dupWrite, 0, sizeof(WriteDup));
if (wc_InitMutex(&ssl->dupWrite->dupMutex) != 0) {
XFREE(ssl->dupWrite, ssl->heap, DYNAMIC_TYPE_WRITEDUP);
ssl->dupWrite = NULL;
return BAD_MUTEX_E;
}
ssl->dupWrite->dupCount = 2; /* both sides have a count to start */
dup->dupWrite = ssl->dupWrite; /* each side uses */
/* copy write parts over to dup writer */
XMEMCPY(&dup->specs, &ssl->specs, sizeof(CipherSpecs));
XMEMCPY(&dup->options, &ssl->options, sizeof(Options));
XMEMCPY(&dup->keys, &ssl->keys, sizeof(Keys));
XMEMCPY(&dup->encrypt, &ssl->encrypt, sizeof(Ciphers));
/* dup side now owns encrypt/write ciphers */
XMEMSET(&ssl->encrypt, 0, sizeof(Ciphers));
dup->IOCB_WriteCtx = ssl->IOCB_WriteCtx;
dup->wfd = ssl->wfd;
dup->wflags = ssl->wflags;
dup->hmac = ssl->hmac;
#ifdef HAVE_TRUNCATED_HMAC
dup->truncated_hmac = ssl->truncated_hmac;
#endif
/* unique side dup setup */
dup->dupSide = WRITE_DUP_SIDE;
ssl->dupSide = READ_DUP_SIDE;
return 0;
}
/*
* duplicate a WOLFSSL object post handshake for writing only
* turn exisitng object into read only. Allows concurrent access from two
* different threads.
*
* ssl exisiting WOLFSSL object
*
* return dup'd WOLFSSL object on success
*/
WOLFSSL* wolfSSL_write_dup(WOLFSSL* ssl)
{
WOLFSSL* dup = NULL;
int ret = 0;
(void)ret;
WOLFSSL_ENTER("wolfSSL_write_dup");
if (ssl == NULL) {
return ssl;
}
if (ssl->options.handShakeDone == 0) {
WOLFSSL_MSG("wolfSSL_write_dup called before handshake complete");
return NULL;
}
if (ssl->dupWrite) {
WOLFSSL_MSG("wolfSSL_write_dup already called once");
return NULL;
}
dup = (WOLFSSL*) XMALLOC(sizeof(WOLFSSL), ssl->ctx->heap, DYNAMIC_TYPE_SSL);
if (dup) {
if ( (ret = InitSSL(dup, ssl->ctx, 1)) < 0) {
FreeSSL(dup, ssl->ctx->heap);
dup = NULL;
} else if ( (ret = DupSSL(dup, ssl) < 0)) {
FreeSSL(dup, ssl->ctx->heap);
dup = NULL;
}
}
WOLFSSL_LEAVE("wolfSSL_write_dup", ret);
return dup;
}
/*
* Notify write dup side of fatal error or close notify
*
* ssl WOLFSSL object
* err Notify err
*
* 0 on success
*/
int NotifyWriteSide(WOLFSSL* ssl, int err)
{
int ret;
WOLFSSL_ENTER("NotifyWriteSide");
ret = wc_LockMutex(&ssl->dupWrite->dupMutex);
if (ret == 0) {
ssl->dupWrite->dupErr = err;
ret = wc_UnLockMutex(&ssl->dupWrite->dupMutex);
}
return ret;
}
#endif /* HAVE_WRITE_DUP */
#ifdef HAVE_POLY1305
/* set if to use old poly 1 for yes 0 to use new poly */
int wolfSSL_use_old_poly(WOLFSSL* ssl, int value)
{
WOLFSSL_ENTER("SSL_use_old_poly");
WOLFSSL_MSG("Warning SSL connection auto detects old/new and this function"
"is depriciated");
ssl->options.oldPoly = (word16)value;
WOLFSSL_LEAVE("SSL_use_old_poly", 0);
return 0;
}
#endif
int wolfSSL_set_fd(WOLFSSL* ssl, int fd)
{
int ret;
WOLFSSL_ENTER("SSL_set_fd");
if (ssl == NULL) {
return BAD_FUNC_ARG;
}
ret = wolfSSL_set_read_fd(ssl, fd);
if (ret == WOLFSSL_SUCCESS) {
ret = wolfSSL_set_write_fd(ssl, fd);
}
return ret;
}
int wolfSSL_set_read_fd(WOLFSSL* ssl, int fd)
{
WOLFSSL_ENTER("SSL_set_read_fd");
if (ssl == NULL) {
return BAD_FUNC_ARG;
}
ssl->rfd = fd; /* not used directly to allow IO callbacks */
ssl->IOCB_ReadCtx = &ssl->rfd;
#ifdef WOLFSSL_DTLS
if (ssl->options.dtls) {
ssl->IOCB_ReadCtx = &ssl->buffers.dtlsCtx;
ssl->buffers.dtlsCtx.rfd = fd;
}
#endif
WOLFSSL_LEAVE("SSL_set_read_fd", WOLFSSL_SUCCESS);
return WOLFSSL_SUCCESS;
}
int wolfSSL_set_write_fd(WOLFSSL* ssl, int fd)
{
WOLFSSL_ENTER("SSL_set_write_fd");
if (ssl == NULL) {
return BAD_FUNC_ARG;
}
ssl->wfd = fd; /* not used directly to allow IO callbacks */
ssl->IOCB_WriteCtx = &ssl->wfd;
#ifdef WOLFSSL_DTLS
if (ssl->options.dtls) {
ssl->IOCB_WriteCtx = &ssl->buffers.dtlsCtx;
ssl->buffers.dtlsCtx.wfd = fd;
}
#endif
WOLFSSL_LEAVE("SSL_set_write_fd", WOLFSSL_SUCCESS);
return WOLFSSL_SUCCESS;
}
/**
* Get the name of cipher at priority level passed in.
*/
char* wolfSSL_get_cipher_list(int priority)
{
const char* const* ciphers = GetCipherNames();
if (priority >= GetCipherNamesSize() || priority < 0) {
return 0;
}
return (char*)ciphers[priority];
}
/**
* Get the name of cipher at priority level passed in.
*/
char* wolfSSL_get_cipher_list_ex(WOLFSSL* ssl, int priority)
{
if (ssl == NULL) {
return NULL;
}
else {
const char* cipher;
if ((cipher = wolfSSL_get_cipher_name_internal(ssl)) != NULL) {
if (priority == 0) {
return (char*)cipher;
}
else {
return NULL;
}
}
else {
return wolfSSL_get_cipher_list(priority);
}
}
}
int wolfSSL_get_ciphers(char* buf, int len)
{
const char* const* ciphers = GetCipherNames();
int totalInc = 0;
int step = 0;
char delim = ':';
int size = GetCipherNamesSize();
int i;
if (buf == NULL || len <= 0)
return BAD_FUNC_ARG;
/* Add each member to the buffer delimited by a : */
for (i = 0; i < size; i++) {
step = (int)(XSTRLEN(ciphers[i]) + 1); /* delimiter */
totalInc += step;
/* Check to make sure buf is large enough and will not overflow */
if (totalInc < len) {
XSTRNCPY(buf, ciphers[i], XSTRLEN(ciphers[i]));
buf += XSTRLEN(ciphers[i]);
if (i < size - 1)
*buf++ = delim;
else
*buf++ = '\0';
}
else
return BUFFER_E;
}
return WOLFSSL_SUCCESS;
}
const char* wolfSSL_get_shared_ciphers(WOLFSSL* ssl, char* buf, int len)
{
const char* cipher;
if (ssl == NULL)
return NULL;
cipher = wolfSSL_get_cipher_name_from_suite(ssl->options.cipherSuite,
ssl->options.cipherSuite0);
len = min(len, (int)(XSTRLEN(cipher) + 1));
XMEMCPY(buf, cipher, len);
return buf;
}
int wolfSSL_get_fd(const WOLFSSL* ssl)
{
WOLFSSL_ENTER("SSL_get_fd");
WOLFSSL_LEAVE("SSL_get_fd", ssl->rfd);
return ssl->rfd;
}
int wolfSSL_get_using_nonblock(WOLFSSL* ssl)
{
WOLFSSL_ENTER("wolfSSL_get_using_nonblock");
WOLFSSL_LEAVE("wolfSSL_get_using_nonblock", ssl->options.usingNonblock);
return ssl->options.usingNonblock;
}
int wolfSSL_dtls(WOLFSSL* ssl)
{
return ssl->options.dtls;
}
#ifndef WOLFSSL_LEANPSK
void wolfSSL_set_using_nonblock(WOLFSSL* ssl, int nonblock)
{
WOLFSSL_ENTER("wolfSSL_set_using_nonblock");
ssl->options.usingNonblock = (nonblock != 0);
}
int wolfSSL_dtls_set_peer(WOLFSSL* ssl, void* peer, unsigned int peerSz)
{
#ifdef WOLFSSL_DTLS
void* sa = (void*)XMALLOC(peerSz, ssl->heap, DYNAMIC_TYPE_SOCKADDR);
if (sa != NULL) {
if (ssl->buffers.dtlsCtx.peer.sa != NULL)
XFREE(ssl->buffers.dtlsCtx.peer.sa,ssl->heap,DYNAMIC_TYPE_SOCKADDR);
XMEMCPY(sa, peer, peerSz);
ssl->buffers.dtlsCtx.peer.sa = sa;
ssl->buffers.dtlsCtx.peer.sz = peerSz;
return WOLFSSL_SUCCESS;
}
return WOLFSSL_FAILURE;
#else
(void)ssl;
(void)peer;
(void)peerSz;
return WOLFSSL_NOT_IMPLEMENTED;
#endif
}
int wolfSSL_dtls_get_peer(WOLFSSL* ssl, void* peer, unsigned int* peerSz)
{
#ifdef WOLFSSL_DTLS
if (ssl == NULL) {
return WOLFSSL_FAILURE;
}
if (peer != NULL && peerSz != NULL
&& *peerSz >= ssl->buffers.dtlsCtx.peer.sz
&& ssl->buffers.dtlsCtx.peer.sa != NULL) {
*peerSz = ssl->buffers.dtlsCtx.peer.sz;
XMEMCPY(peer, ssl->buffers.dtlsCtx.peer.sa, *peerSz);
return WOLFSSL_SUCCESS;
}
return WOLFSSL_FAILURE;
#else
(void)ssl;
(void)peer;
(void)peerSz;
return WOLFSSL_NOT_IMPLEMENTED;
#endif
}
#if defined(WOLFSSL_SCTP) && defined(WOLFSSL_DTLS)
int wolfSSL_CTX_dtls_set_sctp(WOLFSSL_CTX* ctx)
{
WOLFSSL_ENTER("wolfSSL_CTX_dtls_set_sctp()");
if (ctx == NULL)
return BAD_FUNC_ARG;
ctx->dtlsSctp = 1;
return WOLFSSL_SUCCESS;
}
int wolfSSL_dtls_set_sctp(WOLFSSL* ssl)
{
WOLFSSL_ENTER("wolfSSL_dtls_set_sctp()");
if (ssl == NULL)
return BAD_FUNC_ARG;
ssl->options.dtlsSctp = 1;
return WOLFSSL_SUCCESS;
}
int wolfSSL_CTX_dtls_set_mtu(WOLFSSL_CTX* ctx, word16 newMtu)
{
if (ctx == NULL || newMtu > MAX_RECORD_SIZE)
return BAD_FUNC_ARG;
ctx->dtlsMtuSz = newMtu;
return WOLFSSL_SUCCESS;
}
int wolfSSL_dtls_set_mtu(WOLFSSL* ssl, word16 newMtu)
{
if (ssl == NULL)
return BAD_FUNC_ARG;
if (newMtu > MAX_RECORD_SIZE) {
ssl->error = BAD_FUNC_ARG;
return WOLFSSL_FAILURE;
}
ssl->dtlsMtuSz = newMtu;
return WOLFSSL_SUCCESS;
}
#endif /* WOLFSSL_DTLS && WOLFSSL_SCTP */
#ifdef WOLFSSL_DTLS_DROP_STATS
int wolfSSL_dtls_get_drop_stats(WOLFSSL* ssl,
word32* macDropCount, word32* replayDropCount)
{
int ret;
WOLFSSL_ENTER("wolfSSL_dtls_get_drop_stats()");
if (ssl == NULL)
ret = BAD_FUNC_ARG;
else {
ret = WOLFSSL_SUCCESS;
if (macDropCount != NULL)
*macDropCount = ssl->macDropCount;
if (replayDropCount != NULL)
*replayDropCount = ssl->replayDropCount;
}
WOLFSSL_LEAVE("wolfSSL_dtls_get_drop_stats()", ret);
return ret;
}
#endif /* WOLFSSL_DTLS_DROP_STATS */
#if defined(WOLFSSL_MULTICAST)
int wolfSSL_CTX_mcast_set_member_id(WOLFSSL_CTX* ctx, word16 id)
{
int ret = 0;
WOLFSSL_ENTER("wolfSSL_CTX_mcast_set_member_id()");
if (ctx == NULL || id > 255)
ret = BAD_FUNC_ARG;
if (ret == 0) {
ctx->haveEMS = 0;
ctx->haveMcast = 1;
ctx->mcastID = id;
#ifndef WOLFSSL_USER_IO
ctx->CBIORecv = EmbedReceiveFromMcast;
#endif /* WOLFSSL_USER_IO */
}
if (ret == 0)
ret = WOLFSSL_SUCCESS;
WOLFSSL_LEAVE("wolfSSL_CTX_mcast_set_member_id()", ret);
return ret;
}
int wolfSSL_mcast_get_max_peers(void)
{
return WOLFSSL_MULTICAST_PEERS;
}
#ifdef WOLFSSL_DTLS
static INLINE word32 UpdateHighwaterMark(word32 cur, word32 first,
word32 second, word32 max)
{
word32 newCur = 0;
if (cur < first)
newCur = first;
else if (cur < second)
newCur = second;
else if (cur < max)
newCur = max;
return newCur;
}
#endif /* WOLFSSL_DTLS */
int wolfSSL_set_secret(WOLFSSL* ssl, word16 epoch,
const byte* preMasterSecret, word32 preMasterSz,
const byte* clientRandom, const byte* serverRandom,
const byte* suite)
{
int ret = 0;
WOLFSSL_ENTER("wolfSSL_set_secret()");
if (ssl == NULL || preMasterSecret == NULL ||
preMasterSz == 0 || preMasterSz > ENCRYPT_LEN ||
clientRandom == NULL || serverRandom == NULL || suite == NULL) {
ret = BAD_FUNC_ARG;
}
if (ret == 0) {
XMEMCPY(ssl->arrays->preMasterSecret, preMasterSecret, preMasterSz);
ssl->arrays->preMasterSz = preMasterSz;
XMEMCPY(ssl->arrays->clientRandom, clientRandom, RAN_LEN);
XMEMCPY(ssl->arrays->serverRandom, serverRandom, RAN_LEN);
ssl->options.cipherSuite0 = suite[0];
ssl->options.cipherSuite = suite[1];
ret = SetCipherSpecs(ssl);
}
if (ret == 0)
ret = MakeTlsMasterSecret(ssl);
if (ret == 0) {
ssl->keys.encryptionOn = 1;
ret = SetKeysSide(ssl, ENCRYPT_AND_DECRYPT_SIDE);
}
if (ret == 0) {
if (ssl->options.dtls) {
#ifdef WOLFSSL_DTLS
WOLFSSL_DTLS_PEERSEQ* peerSeq;
int i;
ssl->keys.dtls_epoch = epoch;
for (i = 0, peerSeq = ssl->keys.peerSeq;
i < WOLFSSL_DTLS_PEERSEQ_SZ;
i++, peerSeq++) {
peerSeq->nextEpoch = epoch;
peerSeq->prevSeq_lo = peerSeq->nextSeq_lo;
peerSeq->prevSeq_hi = peerSeq->nextSeq_hi;
peerSeq->nextSeq_lo = 0;
peerSeq->nextSeq_hi = 0;
XMEMCPY(peerSeq->prevWindow, peerSeq->window, DTLS_SEQ_SZ);
XMEMSET(peerSeq->window, 0, DTLS_SEQ_SZ);
peerSeq->highwaterMark = UpdateHighwaterMark(0,
ssl->ctx->mcastFirstSeq,
ssl->ctx->mcastSecondSeq,
ssl->ctx->mcastMaxSeq);
}
#else
(void)epoch;
#endif
}
FreeHandshakeResources(ssl);
ret = WOLFSSL_SUCCESS;
}
else {
if (ssl)
ssl->error = ret;
ret = WOLFSSL_FATAL_ERROR;
}
WOLFSSL_LEAVE("wolfSSL_set_secret()", ret);
return ret;
}
#ifdef WOLFSSL_DTLS
int wolfSSL_mcast_peer_add(WOLFSSL* ssl, word16 peerId, int remove)
{
WOLFSSL_DTLS_PEERSEQ* p = NULL;
int ret = WOLFSSL_SUCCESS;
int i;
WOLFSSL_ENTER("wolfSSL_mcast_peer_add()");
if (ssl == NULL || peerId > 255)
return BAD_FUNC_ARG;
if (!remove) {
/* Make sure it isn't already present, while keeping the first
* open spot. */
for (i = 0; i < WOLFSSL_DTLS_PEERSEQ_SZ; i++) {
if (ssl->keys.peerSeq[i].peerId == INVALID_PEER_ID)
p = &ssl->keys.peerSeq[i];
if (ssl->keys.peerSeq[i].peerId == peerId) {
WOLFSSL_MSG("Peer ID already in multicast peer list.");
p = NULL;
}
}
if (p != NULL) {
XMEMSET(p, 0, sizeof(WOLFSSL_DTLS_PEERSEQ));
p->peerId = peerId;
p->highwaterMark = UpdateHighwaterMark(0,
ssl->ctx->mcastFirstSeq,
ssl->ctx->mcastSecondSeq,
ssl->ctx->mcastMaxSeq);
}
else {
WOLFSSL_MSG("No room in peer list.");
ret = -1;
}
}
else {
for (i = 0; i < WOLFSSL_DTLS_PEERSEQ_SZ; i++) {
if (ssl->keys.peerSeq[i].peerId == peerId)
p = &ssl->keys.peerSeq[i];
}
if (p != NULL) {
p->peerId = INVALID_PEER_ID;
}
else {
WOLFSSL_MSG("Peer not found in list.");
}
}
WOLFSSL_LEAVE("wolfSSL_mcast_peer_add()", ret);
return ret;
}
/* If peerId is in the list of peers and its last sequence number is non-zero,
* return 1, otherwise return 0. */
int wolfSSL_mcast_peer_known(WOLFSSL* ssl, unsigned short peerId)
{
int known = 0;
int i;
WOLFSSL_ENTER("wolfSSL_mcast_peer_known()");
if (ssl == NULL || peerId > 255) {
return BAD_FUNC_ARG;
}
for (i = 0; i < WOLFSSL_DTLS_PEERSEQ_SZ; i++) {
if (ssl->keys.peerSeq[i].peerId == peerId) {
if (ssl->keys.peerSeq[i].nextSeq_hi ||
ssl->keys.peerSeq[i].nextSeq_lo) {
known = 1;
}
break;
}
}
WOLFSSL_LEAVE("wolfSSL_mcast_peer_known()", known);
return known;
}
int wolfSSL_CTX_mcast_set_highwater_cb(WOLFSSL_CTX* ctx, word32 maxSeq,
word32 first, word32 second,
CallbackMcastHighwater cb)
{
if (ctx == NULL || (second && first > second) ||
first > maxSeq || second > maxSeq || cb == NULL) {
return BAD_FUNC_ARG;
}
ctx->mcastHwCb = cb;
ctx->mcastFirstSeq = first;
ctx->mcastSecondSeq = second;
ctx->mcastMaxSeq = maxSeq;
return WOLFSSL_SUCCESS;
}
int wolfSSL_mcast_set_highwater_ctx(WOLFSSL* ssl, void* ctx)
{
if (ssl == NULL || ctx == NULL)
return BAD_FUNC_ARG;
ssl->mcastHwCbCtx = ctx;
return WOLFSSL_SUCCESS;
}
#endif /* WOLFSSL_DTLS */
#endif /* WOLFSSL_MULTICAST */
#endif /* WOLFSSL_LEANPSK */
/* return underlying connect or accept, WOLFSSL_SUCCESS on ok */
int wolfSSL_negotiate(WOLFSSL* ssl)
{
int err = WOLFSSL_FATAL_ERROR;
WOLFSSL_ENTER("wolfSSL_negotiate");
#ifndef NO_WOLFSSL_SERVER
if (ssl->options.side == WOLFSSL_SERVER_END) {
#ifdef WOLFSSL_TLS13
if (IsAtLeastTLSv1_3(ssl->version))
err = wolfSSL_accept_TLSv13(ssl);
else
#endif
err = wolfSSL_accept(ssl);
}
#endif
#ifndef NO_WOLFSSL_CLIENT
if (ssl->options.side == WOLFSSL_CLIENT_END) {
#ifdef WOLFSSL_TLS13
if (IsAtLeastTLSv1_3(ssl->version))
err = wolfSSL_connect_TLSv13(ssl);
else
#endif
err = wolfSSL_connect(ssl);
}
#endif
WOLFSSL_LEAVE("wolfSSL_negotiate", err);
return err;
}
WC_RNG* wolfSSL_GetRNG(WOLFSSL* ssl)
{
if (ssl) {
return ssl->rng;
}
return NULL;
}
#ifndef WOLFSSL_LEANPSK
/* object size based on build */
int wolfSSL_GetObjectSize(void)
{
#ifdef SHOW_SIZES
printf("sizeof suites = %lu\n", sizeof(Suites));
printf("sizeof ciphers(2) = %lu\n", sizeof(Ciphers));
#ifndef NO_RC4
printf("\tsizeof arc4 = %lu\n", sizeof(Arc4));
#endif
printf("\tsizeof aes = %lu\n", sizeof(Aes));
#ifndef NO_DES3
printf("\tsizeof des3 = %lu\n", sizeof(Des3));
#endif
#ifndef NO_RABBIT
printf("\tsizeof rabbit = %lu\n", sizeof(Rabbit));
#endif
#ifdef HAVE_CHACHA
printf("\tsizeof chacha = %lu\n", sizeof(ChaCha));
#endif
printf("sizeof cipher specs = %lu\n", sizeof(CipherSpecs));
printf("sizeof keys = %lu\n", sizeof(Keys));
printf("sizeof Hashes(2) = %lu\n", sizeof(Hashes));
#ifndef NO_MD5
printf("\tsizeof MD5 = %lu\n", sizeof(wc_Md5));
#endif
#ifndef NO_SHA
printf("\tsizeof SHA = %lu\n", sizeof(wc_Sha));
#endif
#ifdef WOLFSSL_SHA224
printf("\tsizeof SHA224 = %lu\n", sizeof(wc_Sha224));
#endif
#ifndef NO_SHA256
printf("\tsizeof SHA256 = %lu\n", sizeof(wc_Sha256));
#endif
#ifdef WOLFSSL_SHA384
printf("\tsizeof SHA384 = %lu\n", sizeof(wc_Sha384));
#endif
#ifdef WOLFSSL_SHA384
printf("\tsizeof SHA512 = %lu\n", sizeof(wc_Sha512));
#endif
printf("sizeof Buffers = %lu\n", sizeof(Buffers));
printf("sizeof Options = %lu\n", sizeof(Options));
printf("sizeof Arrays = %lu\n", sizeof(Arrays));
#ifndef NO_RSA
printf("sizeof RsaKey = %lu\n", sizeof(RsaKey));
#endif
#ifdef HAVE_ECC
printf("sizeof ecc_key = %lu\n", sizeof(ecc_key));
#endif
printf("sizeof WOLFSSL_CIPHER = %lu\n", sizeof(WOLFSSL_CIPHER));
printf("sizeof WOLFSSL_SESSION = %lu\n", sizeof(WOLFSSL_SESSION));
printf("sizeof WOLFSSL = %lu\n", sizeof(WOLFSSL));
printf("sizeof WOLFSSL_CTX = %lu\n", sizeof(WOLFSSL_CTX));
#endif
return sizeof(WOLFSSL);
}
int wolfSSL_CTX_GetObjectSize(void)
{
return sizeof(WOLFSSL_CTX);
}
int wolfSSL_METHOD_GetObjectSize(void)
{
return sizeof(WOLFSSL_METHOD);
}
#endif
#ifdef WOLFSSL_STATIC_MEMORY
int wolfSSL_CTX_load_static_memory(WOLFSSL_CTX** ctx, wolfSSL_method_func method,
unsigned char* buf, unsigned int sz,
int flag, int max)
{
WOLFSSL_HEAP* heap;
WOLFSSL_HEAP_HINT* hint;
word32 idx = 0;
if (ctx == NULL || buf == NULL) {
return BAD_FUNC_ARG;
}
if (*ctx == NULL && method == NULL) {
return BAD_FUNC_ARG;
}
if (*ctx == NULL || (*ctx)->heap == NULL) {
if (sizeof(WOLFSSL_HEAP) + sizeof(WOLFSSL_HEAP_HINT) > sz - idx) {
return BUFFER_E; /* not enough memory for structures */
}
heap = (WOLFSSL_HEAP*)buf;
idx += sizeof(WOLFSSL_HEAP);
if (wolfSSL_init_memory_heap(heap) != 0) {
return WOLFSSL_FAILURE;
}
hint = (WOLFSSL_HEAP_HINT*)(buf + idx);
idx += sizeof(WOLFSSL_HEAP_HINT);
XMEMSET(hint, 0, sizeof(WOLFSSL_HEAP_HINT));
hint->memory = heap;
if (*ctx && (*ctx)->heap == NULL) {
(*ctx)->heap = (void*)hint;
}
}
else {
#ifdef WOLFSSL_HEAP_TEST
/* do not load in memory if test has been set */
if ((*ctx)->heap == (void*)WOLFSSL_HEAP_TEST) {
return WOLFSSL_SUCCESS;
}
#endif
hint = (WOLFSSL_HEAP_HINT*)((*ctx)->heap);
heap = hint->memory;
}
if (wolfSSL_load_static_memory(buf + idx, sz - idx, flag, heap) != 1) {
WOLFSSL_MSG("Error partitioning memory");
return WOLFSSL_FAILURE;
}
/* create ctx if needed */
if (*ctx == NULL) {
*ctx = wolfSSL_CTX_new_ex(method(hint), hint);
if (*ctx == NULL) {
WOLFSSL_MSG("Error creating ctx");
return WOLFSSL_FAILURE;
}
}
/* determine what max applies too */
if (flag & WOLFMEM_IO_POOL || flag & WOLFMEM_IO_POOL_FIXED) {
heap->maxIO = max;
}
else { /* general memory used in handshakes */
heap->maxHa = max;
}
heap->flag |= flag;
(void)max;
(void)method;
return WOLFSSL_SUCCESS;
}
int wolfSSL_is_static_memory(WOLFSSL* ssl, WOLFSSL_MEM_CONN_STATS* mem_stats)
{
if (ssl == NULL) {
return BAD_FUNC_ARG;
}
WOLFSSL_ENTER("wolfSSL_is_static_memory");
/* fill out statistics if wanted and WOLFMEM_TRACK_STATS flag */
if (mem_stats != NULL && ssl->heap != NULL) {
WOLFSSL_HEAP_HINT* hint = ((WOLFSSL_HEAP_HINT*)(ssl->heap));
WOLFSSL_HEAP* heap = hint->memory;
if (heap->flag & WOLFMEM_TRACK_STATS && hint->stats != NULL) {
XMEMCPY(mem_stats, hint->stats, sizeof(WOLFSSL_MEM_CONN_STATS));
}
}
return (ssl->heap) ? 1 : 0;
}
int wolfSSL_CTX_is_static_memory(WOLFSSL_CTX* ctx, WOLFSSL_MEM_STATS* mem_stats)
{
if (ctx == NULL) {
return BAD_FUNC_ARG;
}
WOLFSSL_ENTER("wolfSSL_CTX_is_static_memory");
/* fill out statistics if wanted */
if (mem_stats != NULL && ctx->heap != NULL) {
WOLFSSL_HEAP* heap = ((WOLFSSL_HEAP_HINT*)(ctx->heap))->memory;
if (wolfSSL_GetMemStats(heap, mem_stats) != 1) {
return MEMORY_E;
}
}
return (ctx->heap) ? 1 : 0;
}
#endif /* WOLFSSL_STATIC_MEMORY */
/* return max record layer size plaintext input size */
int wolfSSL_GetMaxOutputSize(WOLFSSL* ssl)
{
int maxSize = OUTPUT_RECORD_SIZE;
WOLFSSL_ENTER("wolfSSL_GetMaxOutputSize");
if (ssl == NULL)
return BAD_FUNC_ARG;
if (ssl->options.handShakeState != HANDSHAKE_DONE) {
WOLFSSL_MSG("Handshake not complete yet");
return BAD_FUNC_ARG;
}
#ifdef HAVE_MAX_FRAGMENT
maxSize = min(maxSize, ssl->max_fragment);
#endif
#ifdef WOLFSSL_DTLS
if (ssl->options.dtls) {
maxSize = min(maxSize, MAX_UDP_SIZE);
}
#endif
return maxSize;
}
/* return record layer size of plaintext input size */
int wolfSSL_GetOutputSize(WOLFSSL* ssl, int inSz)
{
int maxSize;
WOLFSSL_ENTER("wolfSSL_GetOutputSize");
if (inSz < 0)
return BAD_FUNC_ARG;
maxSize = wolfSSL_GetMaxOutputSize(ssl);
if (maxSize < 0)
return maxSize; /* error */
if (inSz > maxSize)
return INPUT_SIZE_E;
return BuildMessage(ssl, NULL, 0, NULL, inSz, application_data, 0, 1, 0);
}
#ifdef HAVE_ECC
int wolfSSL_CTX_SetMinEccKey_Sz(WOLFSSL_CTX* ctx, short keySz)
{
if (ctx == NULL || keySz < 0 || keySz % 8 != 0) {
WOLFSSL_MSG("Key size must be divisable by 8 or ctx was null");
return BAD_FUNC_ARG;
}
ctx->minEccKeySz = keySz / 8;
#ifndef NO_CERTS
ctx->cm->minEccKeySz = keySz / 8;
#endif
return WOLFSSL_SUCCESS;
}
int wolfSSL_SetMinEccKey_Sz(WOLFSSL* ssl, short keySz)
{
if (ssl == NULL || keySz < 0 || keySz % 8 != 0) {
WOLFSSL_MSG("Key size must be divisable by 8 or ssl was null");
return BAD_FUNC_ARG;
}
ssl->options.minEccKeySz = keySz / 8;
return WOLFSSL_SUCCESS;
}
#endif /* !NO_RSA */
#ifndef NO_RSA
int wolfSSL_CTX_SetMinRsaKey_Sz(WOLFSSL_CTX* ctx, short keySz)
{
if (ctx == NULL || keySz < 0 || keySz % 8 != 0) {
WOLFSSL_MSG("Key size must be divisable by 8 or ctx was null");
return BAD_FUNC_ARG;
}
ctx->minRsaKeySz = keySz / 8;
ctx->cm->minRsaKeySz = keySz / 8;
return WOLFSSL_SUCCESS;
}
int wolfSSL_SetMinRsaKey_Sz(WOLFSSL* ssl, short keySz)
{
if (ssl == NULL || keySz < 0 || keySz % 8 != 0) {
WOLFSSL_MSG("Key size must be divisable by 8 or ssl was null");
return BAD_FUNC_ARG;
}
ssl->options.minRsaKeySz = keySz / 8;
return WOLFSSL_SUCCESS;
}
#endif /* !NO_RSA */
#ifndef NO_DH
/* server Diffie-Hellman parameters, WOLFSSL_SUCCESS on ok */
int wolfSSL_SetTmpDH(WOLFSSL* ssl, const unsigned char* p, int pSz,
const unsigned char* g, int gSz)
{
word16 havePSK = 0;
word16 haveRSA = 1;
int keySz = 0;
WOLFSSL_ENTER("wolfSSL_SetTmpDH");
if (ssl == NULL || p == NULL || g == NULL) return BAD_FUNC_ARG;
if (pSz < ssl->options.minDhKeySz)
return DH_KEY_SIZE_E;
if (ssl->options.side != WOLFSSL_SERVER_END)
return SIDE_ERROR;
if (ssl->buffers.serverDH_P.buffer && ssl->buffers.weOwnDH) {
XFREE(ssl->buffers.serverDH_P.buffer, ssl->heap, DYNAMIC_TYPE_PUBLIC_KEY);
ssl->buffers.serverDH_P.buffer = NULL;
}
if (ssl->buffers.serverDH_G.buffer && ssl->buffers.weOwnDH) {
XFREE(ssl->buffers.serverDH_G.buffer, ssl->heap, DYNAMIC_TYPE_PUBLIC_KEY);
ssl->buffers.serverDH_G.buffer = NULL;
}
ssl->buffers.weOwnDH = 1; /* SSL owns now */
ssl->buffers.serverDH_P.buffer = (byte*)XMALLOC(pSz, ssl->heap,
DYNAMIC_TYPE_PUBLIC_KEY);
if (ssl->buffers.serverDH_P.buffer == NULL)
return MEMORY_E;
ssl->buffers.serverDH_G.buffer = (byte*)XMALLOC(gSz, ssl->heap,
DYNAMIC_TYPE_PUBLIC_KEY);
if (ssl->buffers.serverDH_G.buffer == NULL) {
XFREE(ssl->buffers.serverDH_P.buffer, ssl->heap, DYNAMIC_TYPE_PUBLIC_KEY);
ssl->buffers.serverDH_P.buffer = NULL;
return MEMORY_E;
}
ssl->buffers.serverDH_P.length = pSz;
ssl->buffers.serverDH_G.length = gSz;
XMEMCPY(ssl->buffers.serverDH_P.buffer, p, pSz);
XMEMCPY(ssl->buffers.serverDH_G.buffer, g, gSz);
ssl->options.haveDH = 1;
#ifndef NO_PSK
havePSK = ssl->options.havePSK;
#endif
#ifdef NO_RSA
haveRSA = 0;
#endif
#ifndef NO_CERTS
keySz = ssl->buffers.keySz;
#endif
InitSuites(ssl->suites, ssl->version, keySz, haveRSA, havePSK,
ssl->options.haveDH, ssl->options.haveNTRU,
ssl->options.haveECDSAsig, ssl->options.haveECC,
ssl->options.haveStaticECC, ssl->options.side);
WOLFSSL_LEAVE("wolfSSL_SetTmpDH", 0);
return WOLFSSL_SUCCESS;
}
/* server ctx Diffie-Hellman parameters, WOLFSSL_SUCCESS on ok */
int wolfSSL_CTX_SetTmpDH(WOLFSSL_CTX* ctx, const unsigned char* p, int pSz,
const unsigned char* g, int gSz)
{
WOLFSSL_ENTER("wolfSSL_CTX_SetTmpDH");
if (ctx == NULL || p == NULL || g == NULL) return BAD_FUNC_ARG;
if (pSz < ctx->minDhKeySz)
return DH_KEY_SIZE_E;
XFREE(ctx->serverDH_P.buffer, ctx->heap, DYNAMIC_TYPE_PUBLIC_KEY);
XFREE(ctx->serverDH_G.buffer, ctx->heap, DYNAMIC_TYPE_PUBLIC_KEY);
ctx->serverDH_P.buffer = (byte*)XMALLOC(pSz, ctx->heap, DYNAMIC_TYPE_PUBLIC_KEY);
if (ctx->serverDH_P.buffer == NULL)
return MEMORY_E;
ctx->serverDH_G.buffer = (byte*)XMALLOC(gSz, ctx->heap, DYNAMIC_TYPE_PUBLIC_KEY);
if (ctx->serverDH_G.buffer == NULL) {
XFREE(ctx->serverDH_P.buffer, ctx->heap, DYNAMIC_TYPE_PUBLIC_KEY);
return MEMORY_E;
}
ctx->serverDH_P.length = pSz;
ctx->serverDH_G.length = gSz;
XMEMCPY(ctx->serverDH_P.buffer, p, pSz);
XMEMCPY(ctx->serverDH_G.buffer, g, gSz);
ctx->haveDH = 1;
WOLFSSL_LEAVE("wolfSSL_CTX_SetTmpDH", 0);
return WOLFSSL_SUCCESS;
}
int wolfSSL_CTX_SetMinDhKey_Sz(WOLFSSL_CTX* ctx, word16 keySz)
{
if (ctx == NULL || keySz > 16000 || keySz % 8 != 0)
return BAD_FUNC_ARG;
ctx->minDhKeySz = keySz / 8;
return WOLFSSL_SUCCESS;
}
int wolfSSL_SetMinDhKey_Sz(WOLFSSL* ssl, word16 keySz)
{
if (ssl == NULL || keySz > 16000 || keySz % 8 != 0)
return BAD_FUNC_ARG;
ssl->options.minDhKeySz = keySz / 8;
return WOLFSSL_SUCCESS;
}
int wolfSSL_GetDhKey_Sz(WOLFSSL* ssl)
{
if (ssl == NULL)
return BAD_FUNC_ARG;
return (ssl->options.dhKeySz * 8);
}
#endif /* !NO_DH */
int wolfSSL_write(WOLFSSL* ssl, const void* data, int sz)
{
int ret;
WOLFSSL_ENTER("SSL_write()");
if (ssl == NULL || data == NULL || sz < 0)
return BAD_FUNC_ARG;
#ifdef WOLFSSL_EARLY_DATA
if (ssl->earlyData && (ret = wolfSSL_negotiate(ssl)) < 0) {
ssl->error = ret;
return WOLFSSL_FATAL_ERROR;
}
ssl->earlyData = 0;
#endif
#ifdef HAVE_WRITE_DUP
{ /* local variable scope */
int dupErr = 0; /* local copy */
ret = 0;
if (ssl->dupWrite && ssl->dupSide == READ_DUP_SIDE) {
WOLFSSL_MSG("Read dup side cannot write");
return WRITE_DUP_WRITE_E;
}
if (ssl->dupWrite) {
if (wc_LockMutex(&ssl->dupWrite->dupMutex) != 0) {
return BAD_MUTEX_E;
}
dupErr = ssl->dupWrite->dupErr;
ret = wc_UnLockMutex(&ssl->dupWrite->dupMutex);
}
if (ret != 0) {
ssl->error = ret; /* high priority fatal error */
return WOLFSSL_FATAL_ERROR;
}
if (dupErr != 0) {
WOLFSSL_MSG("Write dup error from other side");
ssl->error = dupErr;
return WOLFSSL_FATAL_ERROR;
}
}
#endif
#ifdef HAVE_ERRNO_H
errno = 0;
#endif
ret = SendData(ssl, data, sz);
WOLFSSL_LEAVE("SSL_write()", ret);
if (ret < 0)
return WOLFSSL_FATAL_ERROR;
else
return ret;
}
static int wolfSSL_read_internal(WOLFSSL* ssl, void* data, int sz, int peek)
{
int ret;
WOLFSSL_ENTER("wolfSSL_read_internal()");
if (ssl == NULL || data == NULL || sz < 0)
return BAD_FUNC_ARG;
#ifdef HAVE_WRITE_DUP
if (ssl->dupWrite && ssl->dupSide == WRITE_DUP_SIDE) {
WOLFSSL_MSG("Write dup side cannot read");
return WRITE_DUP_READ_E;
}
#endif
#ifdef HAVE_ERRNO_H
errno = 0;
#endif
#ifdef WOLFSSL_DTLS
if (ssl->options.dtls) {
ssl->dtls_expected_rx = max(sz + 100, MAX_MTU);
#ifdef WOLFSSL_SCTP
if (ssl->options.dtlsSctp)
ssl->dtls_expected_rx = max(ssl->dtls_expected_rx, ssl->dtlsMtuSz);
#endif
}
#endif
sz = min(sz, OUTPUT_RECORD_SIZE);
#ifdef HAVE_MAX_FRAGMENT
sz = min(sz, ssl->max_fragment);
#endif
ret = ReceiveData(ssl, (byte*)data, sz, peek);
#ifdef HAVE_WRITE_DUP
if (ssl->dupWrite) {
if (ssl->error != 0 && ssl->error != WANT_READ &&
ssl->error != WC_PENDING_E) {
int notifyErr;
WOLFSSL_MSG("Notifying write side of fatal read error");
notifyErr = NotifyWriteSide(ssl, ssl->error);
if (notifyErr < 0) {
ret = ssl->error = notifyErr;
}
}
}
#endif
WOLFSSL_LEAVE("wolfSSL_read_internal()", ret);
if (ret < 0)
return WOLFSSL_FATAL_ERROR;
else
return ret;
}
int wolfSSL_peek(WOLFSSL* ssl, void* data, int sz)
{
WOLFSSL_ENTER("wolfSSL_peek()");
return wolfSSL_read_internal(ssl, data, sz, TRUE);
}
int wolfSSL_read(WOLFSSL* ssl, void* data, int sz)
{
WOLFSSL_ENTER("wolfSSL_read()");
return wolfSSL_read_internal(ssl, data, sz, FALSE);
}
#ifdef WOLFSSL_MULTICAST
int wolfSSL_mcast_read(WOLFSSL* ssl, word16* id, void* data, int sz)
{
int ret = 0;
WOLFSSL_ENTER("wolfSSL_mcast_read()");
if (ssl == NULL)
return BAD_FUNC_ARG;
ret = wolfSSL_read_internal(ssl, data, sz, FALSE);
if (ssl->options.dtls && ssl->options.haveMcast && id != NULL)
*id = ssl->keys.curPeerId;
return ret;
}
#endif /* WOLFSSL_MULTICAST */
/* helpers to set the device id, WOLFSSL_SUCCESS on ok */
int wolfSSL_SetDevId(WOLFSSL* ssl, int devId)
{
if (ssl == NULL)
return BAD_FUNC_ARG;
ssl->devId = devId;
return WOLFSSL_SUCCESS;
}
int wolfSSL_CTX_SetDevId(WOLFSSL_CTX* ctx, int devId)
{
if (ctx == NULL)
return BAD_FUNC_ARG;
ctx->devId = devId;
return WOLFSSL_SUCCESS;
}
/* helpers to get device id and heap */
int wolfSSL_CTX_GetDevId(WOLFSSL_CTX* ctx, WOLFSSL* ssl)
{
int devId = INVALID_DEVID;
if (ctx != NULL)
devId = ctx->devId;
else if (ssl != NULL)
devId = ssl->devId;
return devId;
}
void* wolfSSL_CTX_GetHeap(WOLFSSL_CTX* ctx, WOLFSSL* ssl)
{
void* heap = NULL;
if (ctx != NULL)
heap = ctx->heap;
else if (ssl != NULL)
heap = ssl->heap;
return heap;
}
#ifdef HAVE_SNI
int wolfSSL_UseSNI(WOLFSSL* ssl, byte type, const void* data, word16 size)
{
if (ssl == NULL)
return BAD_FUNC_ARG;
return TLSX_UseSNI(&ssl->extensions, type, data, size, ssl->heap);
}
int wolfSSL_CTX_UseSNI(WOLFSSL_CTX* ctx, byte type, const void* data,
word16 size)
{
if (ctx == NULL)
return BAD_FUNC_ARG;
return TLSX_UseSNI(&ctx->extensions, type, data, size, ctx->heap);
}
#ifndef NO_WOLFSSL_SERVER
void wolfSSL_SNI_SetOptions(WOLFSSL* ssl, byte type, byte options)
{
if (ssl && ssl->extensions)
TLSX_SNI_SetOptions(ssl->extensions, type, options);
}
void wolfSSL_CTX_SNI_SetOptions(WOLFSSL_CTX* ctx, byte type, byte options)
{
if (ctx && ctx->extensions)
TLSX_SNI_SetOptions(ctx->extensions, type, options);
}
byte wolfSSL_SNI_Status(WOLFSSL* ssl, byte type)
{
return TLSX_SNI_Status(ssl ? ssl->extensions : NULL, type);
}
word16 wolfSSL_SNI_GetRequest(WOLFSSL* ssl, byte type, void** data)
{
if (data)
*data = NULL;
if (ssl && ssl->extensions)
return TLSX_SNI_GetRequest(ssl->extensions, type, data);
return 0;
}
int wolfSSL_SNI_GetFromBuffer(const byte* clientHello, word32 helloSz,
byte type, byte* sni, word32* inOutSz)
{
if (clientHello && helloSz > 0 && sni && inOutSz && *inOutSz > 0)
return TLSX_SNI_GetFromBuffer(clientHello, helloSz, type, sni, inOutSz);
return BAD_FUNC_ARG;
}
#endif /* NO_WOLFSSL_SERVER */
#endif /* HAVE_SNI */
#ifdef HAVE_MAX_FRAGMENT
#ifndef NO_WOLFSSL_CLIENT
int wolfSSL_UseMaxFragment(WOLFSSL* ssl, byte mfl)
{
if (ssl == NULL)
return BAD_FUNC_ARG;
return TLSX_UseMaxFragment(&ssl->extensions, mfl, ssl->heap);
}
int wolfSSL_CTX_UseMaxFragment(WOLFSSL_CTX* ctx, byte mfl)
{
if (ctx == NULL)
return BAD_FUNC_ARG;
return TLSX_UseMaxFragment(&ctx->extensions, mfl, ctx->heap);
}
#endif /* NO_WOLFSSL_CLIENT */
#endif /* HAVE_MAX_FRAGMENT */
#ifdef HAVE_TRUNCATED_HMAC
#ifndef NO_WOLFSSL_CLIENT
int wolfSSL_UseTruncatedHMAC(WOLFSSL* ssl)
{
if (ssl == NULL)
return BAD_FUNC_ARG;
return TLSX_UseTruncatedHMAC(&ssl->extensions, ssl->heap);
}
int wolfSSL_CTX_UseTruncatedHMAC(WOLFSSL_CTX* ctx)
{
if (ctx == NULL)
return BAD_FUNC_ARG;
return TLSX_UseTruncatedHMAC(&ctx->extensions, ctx->heap);
}
#endif /* NO_WOLFSSL_CLIENT */
#endif /* HAVE_TRUNCATED_HMAC */
#ifdef HAVE_CERTIFICATE_STATUS_REQUEST
int wolfSSL_UseOCSPStapling(WOLFSSL* ssl, byte status_type, byte options)
{
if (ssl == NULL || ssl->options.side != WOLFSSL_CLIENT_END)
return BAD_FUNC_ARG;
return TLSX_UseCertificateStatusRequest(&ssl->extensions, status_type,
options, ssl->heap, ssl->devId);
}
int wolfSSL_CTX_UseOCSPStapling(WOLFSSL_CTX* ctx, byte status_type,
byte options)
{
if (ctx == NULL || ctx->method->side != WOLFSSL_CLIENT_END)
return BAD_FUNC_ARG;
return TLSX_UseCertificateStatusRequest(&ctx->extensions, status_type,
options, ctx->heap, ctx->devId);
}
#endif /* HAVE_CERTIFICATE_STATUS_REQUEST */
#ifdef HAVE_CERTIFICATE_STATUS_REQUEST_V2
int wolfSSL_UseOCSPStaplingV2(WOLFSSL* ssl, byte status_type, byte options)
{
if (ssl == NULL || ssl->options.side != WOLFSSL_CLIENT_END)
return BAD_FUNC_ARG;
return TLSX_UseCertificateStatusRequestV2(&ssl->extensions, status_type,
options, ssl->heap, ssl->devId);
}
int wolfSSL_CTX_UseOCSPStaplingV2(WOLFSSL_CTX* ctx,
byte status_type, byte options)
{
if (ctx == NULL || ctx->method->side != WOLFSSL_CLIENT_END)
return BAD_FUNC_ARG;
return TLSX_UseCertificateStatusRequestV2(&ctx->extensions, status_type,
options, ctx->heap, ctx->devId);
}
#endif /* HAVE_CERTIFICATE_STATUS_REQUEST_V2 */
/* Elliptic Curves */
#ifdef HAVE_SUPPORTED_CURVES
#ifndef NO_WOLFSSL_CLIENT
int wolfSSL_UseSupportedCurve(WOLFSSL* ssl, word16 name)
{
if (ssl == NULL)
return BAD_FUNC_ARG;
switch (name) {
case WOLFSSL_ECC_SECP160K1:
case WOLFSSL_ECC_SECP160R1:
case WOLFSSL_ECC_SECP160R2:
case WOLFSSL_ECC_SECP192K1:
case WOLFSSL_ECC_SECP192R1:
case WOLFSSL_ECC_SECP224K1:
case WOLFSSL_ECC_SECP224R1:
case WOLFSSL_ECC_SECP256K1:
case WOLFSSL_ECC_SECP256R1:
case WOLFSSL_ECC_SECP384R1:
case WOLFSSL_ECC_SECP521R1:
case WOLFSSL_ECC_BRAINPOOLP256R1:
case WOLFSSL_ECC_BRAINPOOLP384R1:
case WOLFSSL_ECC_BRAINPOOLP512R1:
case WOLFSSL_ECC_X25519:
break;
#ifdef WOLFSSL_TLS13
case WOLFSSL_FFDHE_2048:
case WOLFSSL_FFDHE_3072:
case WOLFSSL_FFDHE_4096:
case WOLFSSL_FFDHE_6144:
case WOLFSSL_FFDHE_8192:
if (!IsAtLeastTLSv1_3(ssl->version))
return WOLFSSL_SUCCESS;
break;
#endif
default:
return BAD_FUNC_ARG;
}
ssl->options.userCurves = 1;
return TLSX_UseSupportedCurve(&ssl->extensions, name, ssl->heap);
}
int wolfSSL_CTX_UseSupportedCurve(WOLFSSL_CTX* ctx, word16 name)
{
if (ctx == NULL)
return BAD_FUNC_ARG;
switch (name) {
case WOLFSSL_ECC_SECP160K1:
case WOLFSSL_ECC_SECP160R1:
case WOLFSSL_ECC_SECP160R2:
case WOLFSSL_ECC_SECP192K1:
case WOLFSSL_ECC_SECP192R1:
case WOLFSSL_ECC_SECP224K1:
case WOLFSSL_ECC_SECP224R1:
case WOLFSSL_ECC_SECP256K1:
case WOLFSSL_ECC_SECP256R1:
case WOLFSSL_ECC_SECP384R1:
case WOLFSSL_ECC_SECP521R1:
case WOLFSSL_ECC_BRAINPOOLP256R1:
case WOLFSSL_ECC_BRAINPOOLP384R1:
case WOLFSSL_ECC_BRAINPOOLP512R1:
case WOLFSSL_ECC_X25519:
break;
#ifdef WOLFSSL_TLS13
case WOLFSSL_FFDHE_2048:
case WOLFSSL_FFDHE_3072:
case WOLFSSL_FFDHE_4096:
case WOLFSSL_FFDHE_6144:
case WOLFSSL_FFDHE_8192:
break;
#endif
default:
return BAD_FUNC_ARG;
}
ctx->userCurves = 1;
return TLSX_UseSupportedCurve(&ctx->extensions, name, ctx->heap);
}
#endif /* NO_WOLFSSL_CLIENT */
#endif /* HAVE_SUPPORTED_CURVES */
/* QSH quantum safe handshake */
#ifdef HAVE_QSH
/* returns 1 if QSH has been used 0 otherwise */
int wolfSSL_isQSH(WOLFSSL* ssl)
{
/* if no ssl struct than QSH was not used */
if (ssl == NULL)
return 0;
return ssl->isQSH;
}
int wolfSSL_UseSupportedQSH(WOLFSSL* ssl, word16 name)
{
if (ssl == NULL)
return BAD_FUNC_ARG;
switch (name) {
#ifdef HAVE_NTRU
case WOLFSSL_NTRU_EESS439:
case WOLFSSL_NTRU_EESS593:
case WOLFSSL_NTRU_EESS743:
break;
#endif
default:
return BAD_FUNC_ARG;
}
ssl->user_set_QSHSchemes = 1;
return TLSX_UseQSHScheme(&ssl->extensions, name, NULL, 0, ssl->heap);
}
#ifndef NO_WOLFSSL_CLIENT
/* user control over sending client public key in hello
when flag = 1 will send keys if flag is 0 or function is not called
then will not send keys in the hello extension
return 0 on success
*/
int wolfSSL_UseClientQSHKeys(WOLFSSL* ssl, unsigned char flag)
{
if (ssl == NULL)
return BAD_FUNC_ARG;
ssl->sendQSHKeys = flag;
return 0;
}
#endif /* NO_WOLFSSL_CLIENT */
#endif /* HAVE_QSH */
/* Application-Layer Protocol Negotiation */
#ifdef HAVE_ALPN
int wolfSSL_UseALPN(WOLFSSL* ssl, char *protocol_name_list,
word32 protocol_name_listSz, byte options)
{
char *list, *ptr, *token[10];
word16 len;
int idx = 0;
int ret = WOLFSSL_FAILURE;
WOLFSSL_ENTER("wolfSSL_UseALPN");
if (ssl == NULL || protocol_name_list == NULL)
return BAD_FUNC_ARG;
if (protocol_name_listSz > (WOLFSSL_MAX_ALPN_NUMBER *
WOLFSSL_MAX_ALPN_PROTO_NAME_LEN +
WOLFSSL_MAX_ALPN_NUMBER)) {
WOLFSSL_MSG("Invalid arguments, protocol name list too long");
return BAD_FUNC_ARG;
}
if (!(options & WOLFSSL_ALPN_CONTINUE_ON_MISMATCH) &&
!(options & WOLFSSL_ALPN_FAILED_ON_MISMATCH)) {
WOLFSSL_MSG("Invalid arguments, options not supported");
return BAD_FUNC_ARG;
}
list = (char *)XMALLOC(protocol_name_listSz+1, ssl->heap,
DYNAMIC_TYPE_ALPN);
if (list == NULL) {
WOLFSSL_MSG("Memory failure");
return MEMORY_ERROR;
}
XMEMSET(list, 0, protocol_name_listSz+1);
XSTRNCPY(list, protocol_name_list, protocol_name_listSz);
/* read all protocol name from the list */
token[idx] = XSTRTOK(list, ",", &ptr);
while (token[idx] != NULL)
token[++idx] = XSTRTOK(NULL, ",", &ptr);
/* add protocol name list in the TLS extension in reverse order */
while ((idx--) > 0) {
len = (word16)XSTRLEN(token[idx]);
ret = TLSX_UseALPN(&ssl->extensions, token[idx], len, options,
ssl->heap);
if (ret != WOLFSSL_SUCCESS) {
WOLFSSL_MSG("TLSX_UseALPN failure");
break;
}
}
XFREE(list, ssl->heap, DYNAMIC_TYPE_ALPN);
return ret;
}
int wolfSSL_ALPN_GetProtocol(WOLFSSL* ssl, char **protocol_name, word16 *size)
{
return TLSX_ALPN_GetRequest(ssl ? ssl->extensions : NULL,
(void **)protocol_name, size);
}
int wolfSSL_ALPN_GetPeerProtocol(WOLFSSL* ssl, char **list, word16 *listSz)
{
if (list == NULL || listSz == NULL)
return BAD_FUNC_ARG;
if (ssl->alpn_client_list == NULL)
return BUFFER_ERROR;
*listSz = (word16)XSTRLEN(ssl->alpn_client_list);
if (*listSz == 0)
return BUFFER_ERROR;
*list = (char *)XMALLOC((*listSz)+1, ssl->heap, DYNAMIC_TYPE_TLSX);
if (*list == NULL)
return MEMORY_ERROR;
XSTRNCPY(*list, ssl->alpn_client_list, (*listSz)+1);
(*list)[*listSz] = 0;
return WOLFSSL_SUCCESS;
}
/* used to free memory allocated by wolfSSL_ALPN_GetPeerProtocol */
int wolfSSL_ALPN_FreePeerProtocol(WOLFSSL* ssl, char **list)
{
if (ssl == NULL) {
return BAD_FUNC_ARG;
}
XFREE(*list, ssl->heap, DYNAMIC_TYPE_TLSX);
*list = NULL;
return WOLFSSL_SUCCESS;
}
#endif /* HAVE_ALPN */
/* Secure Renegotiation */
#ifdef HAVE_SECURE_RENEGOTIATION
/* user is forcing ability to use secure renegotiation, we discourage it */
int wolfSSL_UseSecureRenegotiation(WOLFSSL* ssl)
{
int ret = BAD_FUNC_ARG;
if (ssl)
ret = TLSX_UseSecureRenegotiation(&ssl->extensions, ssl->heap);
if (ret == WOLFSSL_SUCCESS) {
TLSX* extension = TLSX_Find(ssl->extensions, TLSX_RENEGOTIATION_INFO);
if (extension)
ssl->secure_renegotiation = (SecureRenegotiation*)extension->data;
}
return ret;
}
/* do a secure renegotiation handshake, user forced, we discourage */
int wolfSSL_Rehandshake(WOLFSSL* ssl)
{
int ret;
if (ssl == NULL)
return BAD_FUNC_ARG;
if (ssl->secure_renegotiation == NULL) {
WOLFSSL_MSG("Secure Renegotiation not forced on by user");
return SECURE_RENEGOTIATION_E;
}
if (ssl->secure_renegotiation->enabled == 0) {
WOLFSSL_MSG("Secure Renegotiation not enabled at extension level");
return SECURE_RENEGOTIATION_E;
}
if (ssl->options.handShakeState != HANDSHAKE_DONE) {
WOLFSSL_MSG("Can't renegotiate until previous handshake complete");
return SECURE_RENEGOTIATION_E;
}
#ifndef NO_FORCE_SCR_SAME_SUITE
/* force same suite */
if (ssl->suites) {
ssl->suites->suiteSz = SUITE_LEN;
ssl->suites->suites[0] = ssl->options.cipherSuite0;
ssl->suites->suites[1] = ssl->options.cipherSuite;
}
#endif
/* reset handshake states */
ssl->options.serverState = NULL_STATE;
ssl->options.clientState = NULL_STATE;
ssl->options.connectState = CONNECT_BEGIN;
ssl->options.acceptState = ACCEPT_BEGIN;
ssl->options.handShakeState = NULL_STATE;
ssl->options.processReply = 0; /* TODO, move states in internal.h */
XMEMSET(&ssl->msgsReceived, 0, sizeof(ssl->msgsReceived));
ssl->secure_renegotiation->cache_status = SCR_CACHE_NEEDED;
ret = InitHandshakeHashes(ssl);
if (ret !=0)
return ret;
ret = wolfSSL_negotiate(ssl);
return ret;
}
#endif /* HAVE_SECURE_RENEGOTIATION */
/* Session Ticket */
#if !defined(NO_WOLFSSL_SERVER) && defined(HAVE_SESSION_TICKET)
/* WOLFSSL_SUCCESS on ok */
int wolfSSL_CTX_set_TicketEncCb(WOLFSSL_CTX* ctx, SessionTicketEncCb cb)
{
if (ctx == NULL)
return BAD_FUNC_ARG;
ctx->ticketEncCb = cb;
return WOLFSSL_SUCCESS;
}
/* set hint interval, WOLFSSL_SUCCESS on ok */
int wolfSSL_CTX_set_TicketHint(WOLFSSL_CTX* ctx, int hint)
{
if (ctx == NULL)
return BAD_FUNC_ARG;
ctx->ticketHint = hint;
return WOLFSSL_SUCCESS;
}
/* set user context, WOLFSSL_SUCCESS on ok */
int wolfSSL_CTX_set_TicketEncCtx(WOLFSSL_CTX* ctx, void* userCtx)
{
if (ctx == NULL)
return BAD_FUNC_ARG;
ctx->ticketEncCtx = userCtx;
return WOLFSSL_SUCCESS;
}
#endif /* !defined(NO_WOLFSSL_CLIENT) && defined(HAVE_SESSION_TICKET) */
/* Session Ticket */
#if !defined(NO_WOLFSSL_CLIENT) && defined(HAVE_SESSION_TICKET)
int wolfSSL_UseSessionTicket(WOLFSSL* ssl)
{
if (ssl == NULL)
return BAD_FUNC_ARG;
return TLSX_UseSessionTicket(&ssl->extensions, NULL, ssl->heap);
}
int wolfSSL_CTX_UseSessionTicket(WOLFSSL_CTX* ctx)
{
if (ctx == NULL)
return BAD_FUNC_ARG;
return TLSX_UseSessionTicket(&ctx->extensions, NULL, ctx->heap);
}
WOLFSSL_API int wolfSSL_get_SessionTicket(WOLFSSL* ssl,
byte* buf, word32* bufSz)
{
if (ssl == NULL || buf == NULL || bufSz == NULL || *bufSz == 0)
return BAD_FUNC_ARG;
if (ssl->session.ticketLen <= *bufSz) {
XMEMCPY(buf, ssl->session.ticket, ssl->session.ticketLen);
*bufSz = ssl->session.ticketLen;
}
else
*bufSz = 0;
return WOLFSSL_SUCCESS;
}
WOLFSSL_API int wolfSSL_set_SessionTicket(WOLFSSL* ssl, const byte* buf,
word32 bufSz)
{
if (ssl == NULL || (buf == NULL && bufSz > 0))
return BAD_FUNC_ARG;
if (bufSz > 0) {
/* Ticket will fit into static ticket */
if(bufSz <= SESSION_TICKET_LEN) {
if (ssl->session.isDynamic) {
XFREE(ssl->session.ticket, ssl->heap, DYNAMIC_TYPE_SESSION_TICK);
ssl->session.isDynamic = 0;
ssl->session.ticket = ssl->session.staticTicket;
}
} else { /* Ticket requires dynamic ticket storage */
if (ssl->session.ticketLen < bufSz) { /* is dyn buffer big enough */
if(ssl->session.isDynamic)
XFREE(ssl->session.ticket, ssl->heap,
DYNAMIC_TYPE_SESSION_TICK);
ssl->session.ticket = (byte*)XMALLOC(bufSz, ssl->heap,
DYNAMIC_TYPE_SESSION_TICK);
if(!ssl->session.ticket) {
ssl->session.ticket = ssl->session.staticTicket;
ssl->session.isDynamic = 0;
return MEMORY_ERROR;
}
ssl->session.isDynamic = 1;
}
}
XMEMCPY(ssl->session.ticket, buf, bufSz);
}
ssl->session.ticketLen = (word16)bufSz;
return WOLFSSL_SUCCESS;
}
WOLFSSL_API int wolfSSL_set_SessionTicket_cb(WOLFSSL* ssl,
CallbackSessionTicket cb, void* ctx)
{
if (ssl == NULL)
return BAD_FUNC_ARG;
ssl->session_ticket_cb = cb;
ssl->session_ticket_ctx = ctx;
return WOLFSSL_SUCCESS;
}
#endif
#ifdef HAVE_EXTENDED_MASTER
#ifndef NO_WOLFSSL_CLIENT
int wolfSSL_CTX_DisableExtendedMasterSecret(WOLFSSL_CTX* ctx)
{
if (ctx == NULL)
return BAD_FUNC_ARG;
ctx->haveEMS = 0;
return WOLFSSL_SUCCESS;
}
int wolfSSL_DisableExtendedMasterSecret(WOLFSSL* ssl)
{
if (ssl == NULL)
return BAD_FUNC_ARG;
ssl->options.haveEMS = 0;
return WOLFSSL_SUCCESS;
}
#endif
#endif
#ifndef WOLFSSL_LEANPSK
int wolfSSL_send(WOLFSSL* ssl, const void* data, int sz, int flags)
{
int ret;
int oldFlags;
WOLFSSL_ENTER("wolfSSL_send()");
if (ssl == NULL || data == NULL || sz < 0)
return BAD_FUNC_ARG;
oldFlags = ssl->wflags;
ssl->wflags = flags;
ret = wolfSSL_write(ssl, data, sz);
ssl->wflags = oldFlags;
WOLFSSL_LEAVE("wolfSSL_send()", ret);
return ret;
}
int wolfSSL_recv(WOLFSSL* ssl, void* data, int sz, int flags)
{
int ret;
int oldFlags;
WOLFSSL_ENTER("wolfSSL_recv()");
if (ssl == NULL || data == NULL || sz < 0)
return BAD_FUNC_ARG;
oldFlags = ssl->rflags;
ssl->rflags = flags;
ret = wolfSSL_read(ssl, data, sz);
ssl->rflags = oldFlags;
WOLFSSL_LEAVE("wolfSSL_recv()", ret);
return ret;
}
#endif
/* WOLFSSL_SUCCESS on ok */
int wolfSSL_shutdown(WOLFSSL* ssl)
{
int ret = WOLFSSL_FATAL_ERROR;
byte tmp;
WOLFSSL_ENTER("SSL_shutdown()");
if (ssl == NULL)
return WOLFSSL_FATAL_ERROR;
if (ssl->options.quietShutdown) {
WOLFSSL_MSG("quiet shutdown, no close notify sent");
ret = WOLFSSL_SUCCESS;
}
else {
/* try to send close notify, not an error if can't */
if (!ssl->options.isClosed && !ssl->options.connReset &&
!ssl->options.sentNotify) {
ssl->error = SendAlert(ssl, alert_warning, close_notify);
if (ssl->error < 0) {
WOLFSSL_ERROR(ssl->error);
return WOLFSSL_FATAL_ERROR;
}
ssl->options.sentNotify = 1; /* don't send close_notify twice */
if (ssl->options.closeNotify)
ret = WOLFSSL_SUCCESS;
else {
ret = WOLFSSL_SHUTDOWN_NOT_DONE;
WOLFSSL_LEAVE("SSL_shutdown()", ret);
return ret;
}
}
/* call wolfSSL_shutdown again for bidirectional shutdown */
if (ssl->options.sentNotify && !ssl->options.closeNotify) {
ret = wolfSSL_read(ssl, &tmp, 0);
if (ret < 0) {
WOLFSSL_ERROR(ssl->error);
ret = WOLFSSL_FATAL_ERROR;
} else if (ssl->options.closeNotify) {
ssl->error = WOLFSSL_ERROR_SYSCALL; /* simulate OpenSSL behavior */
ret = WOLFSSL_SUCCESS;
}
}
}
#ifdef OPENSSL_EXTRA
/* reset WOLFSSL structure state for possible re-use */
if (ret == WOLFSSL_SUCCESS) {
if (wolfSSL_clear(ssl) != WOLFSSL_SUCCESS) {
WOLFSSL_MSG("could not clear WOLFSSL");
ret = WOLFSSL_FATAL_ERROR;
}
}
#endif
WOLFSSL_LEAVE("SSL_shutdown()", ret);
return ret;
}
/* get current error state value */
int wolfSSL_state(WOLFSSL* ssl)
{
if (ssl == NULL) {
return BAD_FUNC_ARG;
}
return ssl->error;
}
int wolfSSL_get_error(WOLFSSL* ssl, int ret)
{
WOLFSSL_ENTER("SSL_get_error");
if (ret > 0)
return WOLFSSL_ERROR_NONE;
if (ssl == NULL)
return BAD_FUNC_ARG;
WOLFSSL_LEAVE("SSL_get_error", ssl->error);
/* make sure converted types are handled in SetErrorString() too */
if (ssl->error == WANT_READ)
return WOLFSSL_ERROR_WANT_READ; /* convert to OpenSSL type */
else if (ssl->error == WANT_WRITE)
return WOLFSSL_ERROR_WANT_WRITE; /* convert to OpenSSL type */
else if (ssl->error == ZERO_RETURN)
return WOLFSSL_ERROR_ZERO_RETURN; /* convert to OpenSSL type */
return ssl->error;
}
/* retrive alert history, WOLFSSL_SUCCESS on ok */
int wolfSSL_get_alert_history(WOLFSSL* ssl, WOLFSSL_ALERT_HISTORY *h)
{
if (ssl && h) {
*h = ssl->alert_history;
}
return WOLFSSL_SUCCESS;
}
/* return TRUE if current error is want read */
int wolfSSL_want_read(WOLFSSL* ssl)
{
WOLFSSL_ENTER("SSL_want_read");
if (ssl->error == WANT_READ)
return 1;
return 0;
}
/* return TRUE if current error is want write */
int wolfSSL_want_write(WOLFSSL* ssl)
{
WOLFSSL_ENTER("SSL_want_write");
if (ssl->error == WANT_WRITE)
return 1;
return 0;
}
char* wolfSSL_ERR_error_string(unsigned long errNumber, char* data)
{
static const char* msg = "Please supply a buffer for error string";
WOLFSSL_ENTER("ERR_error_string");
if (data) {
SetErrorString((int)errNumber, data);
return data;
}
return (char*)msg;
}
void wolfSSL_ERR_error_string_n(unsigned long e, char* buf, unsigned long len)
{
WOLFSSL_ENTER("wolfSSL_ERR_error_string_n");
if (len >= WOLFSSL_MAX_ERROR_SZ)
wolfSSL_ERR_error_string(e, buf);
else {
char tmp[WOLFSSL_MAX_ERROR_SZ];
WOLFSSL_MSG("Error buffer too short, truncating");
if (len) {
wolfSSL_ERR_error_string(e, tmp);
XMEMCPY(buf, tmp, len-1);
buf[len-1] = '\0';
}
}
}
/* don't free temporary arrays at end of handshake */
void wolfSSL_KeepArrays(WOLFSSL* ssl)
{
if (ssl)
ssl->options.saveArrays = 1;
}
/* user doesn't need temporary arrays anymore, Free */
void wolfSSL_FreeArrays(WOLFSSL* ssl)
{
if (ssl && ssl->options.handShakeState == HANDSHAKE_DONE) {
ssl->options.saveArrays = 0;
FreeArrays(ssl, 1);
}
}
/* Set option to indicate that the resources are not to be freed after
* handshake.
*
* ssl The SSL/TLS object.
* returns BAD_FUNC_ARG when ssl is NULL and 0 on success.
*/
int wolfSSL_KeepHandshakeResources(WOLFSSL* ssl)
{
if (ssl == NULL)
return BAD_FUNC_ARG;
ssl->options.keepResources = 1;
return 0;
}
/* Free the handshake resources after handshake.
*
* ssl The SSL/TLS object.
* returns BAD_FUNC_ARG when ssl is NULL and 0 on success.
*/
int wolfSSL_FreeHandshakeResources(WOLFSSL* ssl)
{
if (ssl == NULL)
return BAD_FUNC_ARG;
FreeHandshakeResources(ssl);
return 0;
}
/* Use the client's order of preference when matching cipher suites.
*
* ssl The SSL/TLS context object.
* returns BAD_FUNC_ARG when ssl is NULL and 0 on success.
*/
int wolfSSL_CTX_UseClientSuites(WOLFSSL_CTX* ctx)
{
if (ctx == NULL)
return BAD_FUNC_ARG;
ctx->useClientOrder = 1;
return 0;
}
/* Use the client's order of preference when matching cipher suites.
*
* ssl The SSL/TLS object.
* returns BAD_FUNC_ARG when ssl is NULL and 0 on success.
*/
int wolfSSL_UseClientSuites(WOLFSSL* ssl)
{
if (ssl == NULL)
return BAD_FUNC_ARG;
ssl->options.useClientOrder = 1;
return 0;
}
const byte* wolfSSL_GetMacSecret(WOLFSSL* ssl, int verify)
{
if (ssl == NULL)
return NULL;
if ( (ssl->options.side == WOLFSSL_CLIENT_END && !verify) ||
(ssl->options.side == WOLFSSL_SERVER_END && verify) )
return ssl->keys.client_write_MAC_secret;
else
return ssl->keys.server_write_MAC_secret;
}
#ifdef ATOMIC_USER
void wolfSSL_CTX_SetMacEncryptCb(WOLFSSL_CTX* ctx, CallbackMacEncrypt cb)
{
if (ctx)
ctx->MacEncryptCb = cb;
}
void wolfSSL_SetMacEncryptCtx(WOLFSSL* ssl, void *ctx)
{
if (ssl)
ssl->MacEncryptCtx = ctx;
}
void* wolfSSL_GetMacEncryptCtx(WOLFSSL* ssl)
{
if (ssl)
return ssl->MacEncryptCtx;
return NULL;
}
void wolfSSL_CTX_SetDecryptVerifyCb(WOLFSSL_CTX* ctx, CallbackDecryptVerify cb)
{
if (ctx)
ctx->DecryptVerifyCb = cb;
}
void wolfSSL_SetDecryptVerifyCtx(WOLFSSL* ssl, void *ctx)
{
if (ssl)
ssl->DecryptVerifyCtx = ctx;
}
void* wolfSSL_GetDecryptVerifyCtx(WOLFSSL* ssl)
{
if (ssl)
return ssl->DecryptVerifyCtx;
return NULL;
}
const byte* wolfSSL_GetClientWriteKey(WOLFSSL* ssl)
{
if (ssl)
return ssl->keys.client_write_key;
return NULL;
}
const byte* wolfSSL_GetClientWriteIV(WOLFSSL* ssl)
{
if (ssl)
return ssl->keys.client_write_IV;
return NULL;
}
const byte* wolfSSL_GetServerWriteKey(WOLFSSL* ssl)
{
if (ssl)
return ssl->keys.server_write_key;
return NULL;
}
const byte* wolfSSL_GetServerWriteIV(WOLFSSL* ssl)
{
if (ssl)
return ssl->keys.server_write_IV;
return NULL;
}
int wolfSSL_GetKeySize(WOLFSSL* ssl)
{
if (ssl)
return ssl->specs.key_size;
return BAD_FUNC_ARG;
}
int wolfSSL_GetIVSize(WOLFSSL* ssl)
{
if (ssl)
return ssl->specs.iv_size;
return BAD_FUNC_ARG;
}
int wolfSSL_GetBulkCipher(WOLFSSL* ssl)
{
if (ssl)
return ssl->specs.bulk_cipher_algorithm;
return BAD_FUNC_ARG;
}
int wolfSSL_GetCipherType(WOLFSSL* ssl)
{
if (ssl == NULL)
return BAD_FUNC_ARG;
if (ssl->specs.cipher_type == block)
return WOLFSSL_BLOCK_TYPE;
if (ssl->specs.cipher_type == stream)
return WOLFSSL_STREAM_TYPE;
if (ssl->specs.cipher_type == aead)
return WOLFSSL_AEAD_TYPE;
return -1;
}
int wolfSSL_GetCipherBlockSize(WOLFSSL* ssl)
{
if (ssl == NULL)
return BAD_FUNC_ARG;
return ssl->specs.block_size;
}
int wolfSSL_GetAeadMacSize(WOLFSSL* ssl)
{
if (ssl == NULL)
return BAD_FUNC_ARG;
return ssl->specs.aead_mac_size;
}
int wolfSSL_IsTLSv1_1(WOLFSSL* ssl)
{
if (ssl == NULL)
return BAD_FUNC_ARG;
if (ssl->options.tls1_1)
return 1;
return 0;
}
int wolfSSL_GetSide(WOLFSSL* ssl)
{
if (ssl)
return ssl->options.side;
return BAD_FUNC_ARG;
}
int wolfSSL_GetHmacSize(WOLFSSL* ssl)
{
/* AEAD ciphers don't have HMAC keys */
if (ssl)
return (ssl->specs.cipher_type != aead) ? ssl->specs.hash_size : 0;
return BAD_FUNC_ARG;
}
#endif /* ATOMIC_USER */
#ifndef NO_CERTS
int AllocDer(DerBuffer** pDer, word32 length, int type, void* heap)
{
int ret = BAD_FUNC_ARG;
if (pDer) {
int dynType = 0;
DerBuffer* der;
/* Determine dynamic type */
switch (type) {
case CA_TYPE: dynType = DYNAMIC_TYPE_CA; break;
case CERT_TYPE: dynType = DYNAMIC_TYPE_CERT; break;
case CRL_TYPE: dynType = DYNAMIC_TYPE_CRL; break;
case DSA_TYPE: dynType = DYNAMIC_TYPE_DSA; break;
case ECC_TYPE: dynType = DYNAMIC_TYPE_ECC; break;
case RSA_TYPE: dynType = DYNAMIC_TYPE_RSA; break;
default: dynType = DYNAMIC_TYPE_KEY; break;
}
/* Setup new buffer */
*pDer = (DerBuffer*)XMALLOC(sizeof(DerBuffer) + length, heap, dynType);
if (*pDer == NULL) {
return MEMORY_ERROR;
}
XMEMSET(*pDer, 0, sizeof(DerBuffer) + length);
der = *pDer;
der->type = type;
der->dynType = dynType; /* Cache this for FreeDer */
der->heap = heap;
der->buffer = (byte*)der + sizeof(DerBuffer);
der->length = length;
ret = 0; /* Success */
}
return ret;
}
void FreeDer(DerBuffer** pDer)
{
if (pDer && *pDer)
{
DerBuffer* der = (DerBuffer*)*pDer;
/* ForceZero private keys */
if (der->type == PRIVATEKEY_TYPE) {
ForceZero(der->buffer, der->length);
}
der->buffer = NULL;
der->length = 0;
XFREE(der, der->heap, der->dynType);
*pDer = NULL;
}
}
WOLFSSL_CERT_MANAGER* wolfSSL_CTX_GetCertManager(WOLFSSL_CTX* ctx)
{
WOLFSSL_CERT_MANAGER* cm = NULL;
if (ctx)
cm = ctx->cm;
return cm;
}
WOLFSSL_CERT_MANAGER* wolfSSL_CertManagerNew_ex(void* heap)
{
WOLFSSL_CERT_MANAGER* cm = NULL;
WOLFSSL_ENTER("wolfSSL_CertManagerNew");
cm = (WOLFSSL_CERT_MANAGER*) XMALLOC(sizeof(WOLFSSL_CERT_MANAGER), heap,
DYNAMIC_TYPE_CERT_MANAGER);
if (cm) {
XMEMSET(cm, 0, sizeof(WOLFSSL_CERT_MANAGER));
if (wc_InitMutex(&cm->caLock) != 0) {
WOLFSSL_MSG("Bad mutex init");
wolfSSL_CertManagerFree(cm);
return NULL;
}
#ifdef WOLFSSL_TRUST_PEER_CERT
if (wc_InitMutex(&cm->tpLock) != 0) {
WOLFSSL_MSG("Bad mutex init");
wolfSSL_CertManagerFree(cm);
return NULL;
}
#endif
/* set default minimum key size allowed */
#ifndef NO_RSA
cm->minRsaKeySz = MIN_RSAKEY_SZ;
#endif
#ifdef HAVE_ECC
cm->minEccKeySz = MIN_ECCKEY_SZ;
#endif
cm->heap = heap;
}
return cm;
}
WOLFSSL_CERT_MANAGER* wolfSSL_CertManagerNew(void)
{
return wolfSSL_CertManagerNew_ex(NULL);
}
void wolfSSL_CertManagerFree(WOLFSSL_CERT_MANAGER* cm)
{
WOLFSSL_ENTER("wolfSSL_CertManagerFree");
if (cm) {
#ifdef HAVE_CRL
if (cm->crl)
FreeCRL(cm->crl, 1);
#endif
#ifdef HAVE_OCSP
if (cm->ocsp)
FreeOCSP(cm->ocsp, 1);
XFREE(cm->ocspOverrideURL, cm->heap, DYNAMIC_TYPE_URL);
#if defined(HAVE_CERTIFICATE_STATUS_REQUEST) \
|| defined(HAVE_CERTIFICATE_STATUS_REQUEST_V2) \
|| defined(WOLFSSL_HAPROXY)
if (cm->ocsp_stapling)
FreeOCSP(cm->ocsp_stapling, 1);
#endif
#endif
FreeSignerTable(cm->caTable, CA_TABLE_SIZE, cm->heap);
wc_FreeMutex(&cm->caLock);
#ifdef WOLFSSL_TRUST_PEER_CERT
FreeTrustedPeerTable(cm->tpTable, TP_TABLE_SIZE, cm->heap);
wc_FreeMutex(&cm->tpLock);
#endif
XFREE(cm, cm->heap, DYNAMIC_TYPE_CERT_MANAGER);
}
}
/* Unload the CA signer list */
int wolfSSL_CertManagerUnloadCAs(WOLFSSL_CERT_MANAGER* cm)
{
WOLFSSL_ENTER("wolfSSL_CertManagerUnloadCAs");
if (cm == NULL)
return BAD_FUNC_ARG;
if (wc_LockMutex(&cm->caLock) != 0)
return BAD_MUTEX_E;
FreeSignerTable(cm->caTable, CA_TABLE_SIZE, NULL);
wc_UnLockMutex(&cm->caLock);
return WOLFSSL_SUCCESS;
}
#ifdef WOLFSSL_TRUST_PEER_CERT
int wolfSSL_CertManagerUnload_trust_peers(WOLFSSL_CERT_MANAGER* cm)
{
WOLFSSL_ENTER("wolfSSL_CertManagerUnload_trust_peers");
if (cm == NULL)
return BAD_FUNC_ARG;
if (wc_LockMutex(&cm->tpLock) != 0)
return BAD_MUTEX_E;
FreeTrustedPeerTable(cm->tpTable, TP_TABLE_SIZE, NULL);
wc_UnLockMutex(&cm->tpLock);
return WOLFSSL_SUCCESS;
}
#endif /* WOLFSSL_TRUST_PEER_CERT */
/* Return bytes written to buff or < 0 for error */
int wolfSSL_CertPemToDer(const unsigned char* pem, int pemSz,
unsigned char* buff, int buffSz, int type)
{
int eccKey = 0;
int ret;
DerBuffer* der = NULL;
#ifdef WOLFSSL_SMALL_STACK
EncryptedInfo* info = NULL;
#else
EncryptedInfo info[1];
#endif
WOLFSSL_ENTER("wolfSSL_CertPemToDer");
if (pem == NULL || buff == NULL || buffSz <= 0) {
WOLFSSL_MSG("Bad pem der args");
return BAD_FUNC_ARG;
}
if (type != CERT_TYPE && type != CA_TYPE && type != CERTREQ_TYPE) {
WOLFSSL_MSG("Bad cert type");
return BAD_FUNC_ARG;
}
#ifdef WOLFSSL_SMALL_STACK
info = (EncryptedInfo*)XMALLOC(sizeof(EncryptedInfo), NULL,
DYNAMIC_TYPE_ENCRYPTEDINFO);
if (info == NULL)
return MEMORY_E;
#endif
info->set = 0;
info->ctx = NULL;
info->consumed = 0;
ret = PemToDer(pem, pemSz, type, &der, NULL, info, &eccKey);
#ifdef WOLFSSL_SMALL_STACK
XFREE(info, NULL, DYNAMIC_TYPE_ENCRYPTEDINFO);
#endif
if (ret < 0) {
WOLFSSL_MSG("Bad Pem To Der");
}
else {
if (der->length <= (word32)buffSz) {
XMEMCPY(buff, der->buffer, der->length);
ret = der->length;
}
else {
WOLFSSL_MSG("Bad der length");
ret = BAD_FUNC_ARG;
}
}
FreeDer(&der);
return ret;
}
#endif /* NO_CERTS */
#if defined(OPENSSL_EXTRA) || defined(HAVE_WEBSERVER)
static struct cipher{
unsigned char type;
const char *name;
} cipher_tbl[] = {
#ifndef NO_AES
{AES_128_CBC_TYPE, "AES-128-CBC"},
{AES_192_CBC_TYPE, "AES-192-CBC"},
{AES_256_CBC_TYPE, "AES-256-CBC"},
#if defined(OPENSSL_EXTRA)
{AES_128_CTR_TYPE, "AES-128-CTR"},
{AES_192_CTR_TYPE, "AES-192-CTR"},
{AES_256_CTR_TYPE, "AES-256-CTR"},
{AES_128_ECB_TYPE, "AES-128-ECB"},
{AES_192_ECB_TYPE, "AES-192-ECB"},
{AES_256_ECB_TYPE, "AES-256-ECB"},
#endif
#endif
#ifndef NO_DES3
{DES_CBC_TYPE, "DES-CBC"},
{DES_ECB_TYPE, "DES-ECB"},
{DES_EDE3_CBC_TYPE, "DES-EDE3-CBC"},
{DES_EDE3_ECB_TYPE, "DES-EDE3-ECB"},
#endif
#ifdef HAVE_IDEA
{IDEA_CBC_TYPE, "IDEA-CBC"},
#endif
{ 0, NULL}
};
const WOLFSSL_EVP_CIPHER *wolfSSL_EVP_get_cipherbyname(const char *name)
{
static const struct alias {
const char *name;
const char *alias;
} alias_tbl[] =
{
{"DES-CBC", "DES"},
{"DES-CBC", "des"},
{"DES-EDE3-CBC", "DES3"},
{"DES-EDE3-CBC", "des3"},
{"DES-EDE3-ECB", "des-ede3-ecb"},
{"IDEA-CBC", "IDEA"},
{"IDEA-CBC", "idea"},
{"AES-128-CBC", "AES128"},
{"AES-128-CBC", "aes128"},
{"AES-192-CBC", "AES192"},
{"AES-192-CBC", "aes192"},
{"AES-256-CBC", "AES256"},
{"AES-256-CBC", "aes256"},
{ NULL, NULL}
};
const struct cipher *ent;
const struct alias *al;
WOLFSSL_ENTER("EVP_get_cipherbyname");
for( al = alias_tbl; al->name != NULL; al++)
if(XSTRNCMP(name, al->alias, XSTRLEN(al->alias)+1) == 0) {
name = al->name;
break;
}
for( ent = cipher_tbl; ent->name != NULL; ent++)
if(XSTRNCMP(name, ent->name, XSTRLEN(ent->name)+1) == 0) {
return (WOLFSSL_EVP_CIPHER *)ent->name;
}
return NULL;
}
/*
* return an EVP_CIPHER structure when cipher NID is passed.
*
* id cipher NID
*
* retrun WOLFSSL_EVP_CIPHER
*/
const WOLFSSL_EVP_CIPHER *wolfSSL_EVP_get_cipherbynid(int id)
{
WOLFSSL_ENTER("EVP_get_cipherbynid");
switch(id) {
#if defined(OPENSSL_EXTRA)
#ifndef NO_AES
case NID_aes_128_cbc:
return wolfSSL_EVP_aes_128_cbc();
case NID_aes_192_cbc:
return wolfSSL_EVP_aes_192_cbc();
case NID_aes_256_cbc:
return wolfSSL_EVP_aes_256_cbc();
case NID_aes_128_ctr:
return wolfSSL_EVP_aes_128_ctr();
case NID_aes_192_ctr:
return wolfSSL_EVP_aes_192_ctr();
case NID_aes_256_ctr:
return wolfSSL_EVP_aes_256_ctr();
case NID_aes_128_ecb:
return wolfSSL_EVP_aes_128_ecb();
case NID_aes_192_ecb:
return wolfSSL_EVP_aes_192_ecb();
case NID_aes_256_ecb:
return wolfSSL_EVP_aes_256_ecb();
#endif
#ifndef NO_DES3
case NID_des_cbc:
return wolfSSL_EVP_des_cbc();
#ifdef WOLFSSL_DES_ECB
case NID_des_ecb:
return wolfSSL_EVP_des_ecb();
#endif
case NID_des_ede3_cbc:
return wolfSSL_EVP_des_ede3_cbc();
#ifdef WOLFSSL_DES_ECB
case NID_des_ede3_ecb:
return wolfSSL_EVP_des_ede3_ecb();
#endif
#endif /*NO_DES3*/
#ifdef HAVE_IDEA
case NID_idea_cbc:
return wolfSSL_EVP_idea_cbc();
#endif
#endif /*OPENSSL_EXTRA*/
default:
WOLFSSL_MSG("Bad cipher id value");
}
return NULL;
}
#ifndef NO_AES
static char *EVP_AES_128_CBC;
static char *EVP_AES_192_CBC;
static char *EVP_AES_256_CBC;
#if defined(OPENSSL_EXTRA)
static char *EVP_AES_128_CTR;
static char *EVP_AES_192_CTR;
static char *EVP_AES_256_CTR;
static char *EVP_AES_128_ECB;
static char *EVP_AES_192_ECB;
static char *EVP_AES_256_ECB;
#endif
static const int EVP_AES_SIZE = 11;
#endif
#ifndef NO_DES3
static char *EVP_DES_CBC;
static char *EVP_DES_ECB;
static const int EVP_DES_SIZE = 7;
static char *EVP_DES_EDE3_CBC;
static char *EVP_DES_EDE3_ECB;
static const int EVP_DES_EDE3_SIZE = 12;
#endif
#ifdef HAVE_IDEA
static char *EVP_IDEA_CBC;
#if defined(OPENSSL_EXTRA)
static const int EVP_IDEA_SIZE = 8;
#endif
#endif
void wolfSSL_EVP_init(void)
{
#ifndef NO_AES
EVP_AES_128_CBC = (char *)EVP_get_cipherbyname("AES-128-CBC");
EVP_AES_192_CBC = (char *)EVP_get_cipherbyname("AES-192-CBC");
EVP_AES_256_CBC = (char *)EVP_get_cipherbyname("AES-256-CBC");
#if defined(OPENSSL_EXTRA)
EVP_AES_128_CTR = (char *)EVP_get_cipherbyname("AES-128-CTR");
EVP_AES_192_CTR = (char *)EVP_get_cipherbyname("AES-192-CTR");
EVP_AES_256_CTR = (char *)EVP_get_cipherbyname("AES-256-CTR");
EVP_AES_128_ECB = (char *)EVP_get_cipherbyname("AES-128-ECB");
EVP_AES_192_ECB = (char *)EVP_get_cipherbyname("AES-192-ECB");
EVP_AES_256_ECB = (char *)EVP_get_cipherbyname("AES-256-ECB");
#endif
#endif
#ifndef NO_DES3
EVP_DES_CBC = (char *)EVP_get_cipherbyname("DES-CBC");
EVP_DES_ECB = (char *)EVP_get_cipherbyname("DES-ECB");
EVP_DES_EDE3_CBC = (char *)EVP_get_cipherbyname("DES-EDE3-CBC");
EVP_DES_EDE3_ECB = (char *)EVP_get_cipherbyname("DES-EDE3-ECB");
#endif
#ifdef HAVE_IDEA
EVP_IDEA_CBC = (char *)EVP_get_cipherbyname("IDEA-CBC");
#endif
}
/* our KeyPemToDer password callback, password in userData */
static INLINE int OurPasswordCb(char* passwd, int sz, int rw, void* userdata)
{
(void)rw;
if (userdata == NULL)
return 0;
XSTRNCPY(passwd, (char*)userdata, sz);
return min((word32)sz, (word32)XSTRLEN((char*)userdata));
}
#endif /* OPENSSL_EXTRA || HAVE_WEBSERVER */
#ifndef NO_CERTS
/* Return bytes written to buff or < 0 for error */
int wolfSSL_KeyPemToDer(const unsigned char* pem, int pemSz,
unsigned char* buff, int buffSz, const char* pass)
{
int eccKey = 0;
int ret;
DerBuffer* der = NULL;
#ifdef WOLFSSL_SMALL_STACK
EncryptedInfo* info = NULL;
#else
EncryptedInfo info[1];
#endif
WOLFSSL_ENTER("wolfSSL_KeyPemToDer");
if (pem == NULL || buff == NULL || buffSz <= 0) {
WOLFSSL_MSG("Bad pem der args");
return BAD_FUNC_ARG;
}
#ifdef WOLFSSL_SMALL_STACK
info = (EncryptedInfo*)XMALLOC(sizeof(EncryptedInfo), NULL,
DYNAMIC_TYPE_ENCRYPTEDINFO);
if (info == NULL)
return MEMORY_E;
#endif
info->set = 0;
info->ctx = NULL;
info->consumed = 0;
#if defined(OPENSSL_EXTRA) || defined(HAVE_WEBSERVER)
if (pass) {
info->ctx = wolfSSL_CTX_new(wolfSSLv23_client_method());
if (info->ctx == NULL) {
#ifdef WOLFSSL_SMALL_STACK
XFREE(info, NULL, DYNAMIC_TYPE_ENCRYPTEDINFO);
#endif
return MEMORY_E;
}
wolfSSL_CTX_set_default_passwd_cb(info->ctx, OurPasswordCb);
wolfSSL_CTX_set_default_passwd_cb_userdata(info->ctx, (void*)pass);
}
#else
(void)pass;
#endif
ret = PemToDer(pem, pemSz, PRIVATEKEY_TYPE, &der, NULL, info, &eccKey);
if (info->ctx)
wolfSSL_CTX_free(info->ctx);
#ifdef WOLFSSL_SMALL_STACK
XFREE(info, NULL, DYNAMIC_TYPE_ENCRYPTEDINFO);
#endif
if (ret < 0) {
WOLFSSL_MSG("Bad Pem To Der");
}
else {
if (der->length <= (word32)buffSz) {
XMEMCPY(buff, der->buffer, der->length);
ret = der->length;
}
else {
WOLFSSL_MSG("Bad der length");
ret = BAD_FUNC_ARG;
}
}
FreeDer(&der);
return ret;
}
#endif /* !NO_CERTS */
#if !defined(NO_FILESYSTEM) && !defined(NO_STDIO_FILESYSTEM)
void wolfSSL_ERR_print_errors_fp(FILE* fp, int err)
{
char data[WOLFSSL_MAX_ERROR_SZ + 1];
WOLFSSL_ENTER("wolfSSL_ERR_print_errors_fp");
SetErrorString(err, data);
fprintf(fp, "%s", data);
}
#if defined(OPENSSL_EXTRA) || defined(DEBUG_WOLFSSL_VERBOSE)
void wolfSSL_ERR_dump_errors_fp(FILE* fp)
{
wc_ERR_print_errors_fp(fp);
}
#endif
#endif
int wolfSSL_pending(WOLFSSL* ssl)
{
WOLFSSL_ENTER("SSL_pending");
return ssl->buffers.clearOutputBuffer.length;
}
#ifndef WOLFSSL_LEANPSK
/* turn on handshake group messages for context */
int wolfSSL_CTX_set_group_messages(WOLFSSL_CTX* ctx)
{
if (ctx == NULL)
return BAD_FUNC_ARG;
ctx->groupMessages = 1;
return WOLFSSL_SUCCESS;
}
#endif
#ifndef NO_WOLFSSL_CLIENT
/* connect enough to get peer cert chain */
int wolfSSL_connect_cert(WOLFSSL* ssl)
{
int ret;
if (ssl == NULL)
return WOLFSSL_FAILURE;
ssl->options.certOnly = 1;
ret = wolfSSL_connect(ssl);
ssl->options.certOnly = 0;
return ret;
}
#endif
#ifndef WOLFSSL_LEANPSK
/* turn on handshake group messages for ssl object */
int wolfSSL_set_group_messages(WOLFSSL* ssl)
{
if (ssl == NULL)
return BAD_FUNC_ARG;
ssl->options.groupMessages = 1;
return WOLFSSL_SUCCESS;
}
/* make minVersion the internal equivalent SSL version */
static int SetMinVersionHelper(byte* minVersion, int version)
{
#ifdef NO_TLS
(void)minVersion;
#endif
switch (version) {
#if defined(WOLFSSL_ALLOW_SSLV3) && !defined(NO_OLD_TLS)
case WOLFSSL_SSLV3:
*minVersion = SSLv3_MINOR;
break;
#endif
#ifndef NO_TLS
#ifndef NO_OLD_TLS
case WOLFSSL_TLSV1:
*minVersion = TLSv1_MINOR;
break;
case WOLFSSL_TLSV1_1:
*minVersion = TLSv1_1_MINOR;
break;
#endif
case WOLFSSL_TLSV1_2:
*minVersion = TLSv1_2_MINOR;
break;
#endif
default:
WOLFSSL_MSG("Bad function argument");
return BAD_FUNC_ARG;
}
return WOLFSSL_SUCCESS;
}
/* Set minimum downgrade version allowed, WOLFSSL_SUCCESS on ok */
int wolfSSL_CTX_SetMinVersion(WOLFSSL_CTX* ctx, int version)
{
WOLFSSL_ENTER("wolfSSL_CTX_SetMinVersion");
if (ctx == NULL) {
WOLFSSL_MSG("Bad function argument");
return BAD_FUNC_ARG;
}
return SetMinVersionHelper(&ctx->minDowngrade, version);
}
/* Set minimum downgrade version allowed, WOLFSSL_SUCCESS on ok */
int wolfSSL_SetMinVersion(WOLFSSL* ssl, int version)
{
WOLFSSL_ENTER("wolfSSL_SetMinVersion");
if (ssl == NULL) {
WOLFSSL_MSG("Bad function argument");
return BAD_FUNC_ARG;
}
return SetMinVersionHelper(&ssl->options.minDowngrade, version);
}
/* Function to get version as WOLFSSL_ enum value for wolfSSL_SetVersion */
int wolfSSL_GetVersion(WOLFSSL* ssl)
{
if (ssl == NULL)
return BAD_FUNC_ARG;
if (ssl->version.major == SSLv3_MAJOR) {
switch (ssl->version.minor) {
case SSLv3_MINOR :
return WOLFSSL_SSLV3;
case TLSv1_MINOR :
return WOLFSSL_TLSV1;
case TLSv1_1_MINOR :
return WOLFSSL_TLSV1_1;
case TLSv1_2_MINOR :
return WOLFSSL_TLSV1_2;
case TLSv1_3_MINOR :
return WOLFSSL_TLSV1_3;
default:
break;
}
}
return VERSION_ERROR;
}
int wolfSSL_SetVersion(WOLFSSL* ssl, int version)
{
word16 haveRSA = 1;
word16 havePSK = 0;
int keySz = 0;
WOLFSSL_ENTER("wolfSSL_SetVersion");
if (ssl == NULL) {
WOLFSSL_MSG("Bad function argument");
return BAD_FUNC_ARG;
}
switch (version) {
#if defined(WOLFSSL_ALLOW_SSLV3) && !defined(NO_OLD_TLS)
case WOLFSSL_SSLV3:
ssl->version = MakeSSLv3();
break;
#endif
#ifndef NO_TLS
#ifndef NO_OLD_TLS
#ifdef WOLFSSL_ALLOW_TLSV10
case WOLFSSL_TLSV1:
ssl->version = MakeTLSv1();
break;
#endif
case WOLFSSL_TLSV1_1:
ssl->version = MakeTLSv1_1();
break;
#endif
case WOLFSSL_TLSV1_2:
ssl->version = MakeTLSv1_2();
break;
#endif
#ifdef WOLFSSL_TLS13
case WOLFSSL_TLSV1_3:
ssl->version = MakeTLSv1_3();
break;
#endif
default:
WOLFSSL_MSG("Bad function argument");
return BAD_FUNC_ARG;
}
#ifdef NO_RSA
haveRSA = 0;
#endif
#ifndef NO_PSK
havePSK = ssl->options.havePSK;
#endif
#ifndef NO_CERTS
keySz = ssl->buffers.keySz;
#endif
InitSuites(ssl->suites, ssl->version, keySz, haveRSA, havePSK,
ssl->options.haveDH, ssl->options.haveNTRU,
ssl->options.haveECDSAsig, ssl->options.haveECC,
ssl->options.haveStaticECC, ssl->options.side);
return WOLFSSL_SUCCESS;
}
#endif /* !leanpsk */
#if !defined(NO_CERTS) || !defined(NO_SESSION_CACHE)
/* Make a work from the front of random hash */
static INLINE word32 MakeWordFromHash(const byte* hashID)
{
return (hashID[0] << 24) | (hashID[1] << 16) | (hashID[2] << 8) |
hashID[3];
}
#endif /* !NO_CERTS || !NO_SESSION_CACHE */
#ifndef NO_CERTS
/* hash is the SHA digest of name, just use first 32 bits as hash */
static INLINE word32 HashSigner(const byte* hash)
{
return MakeWordFromHash(hash) % CA_TABLE_SIZE;
}
/* does CA already exist on signer list */
int AlreadySigner(WOLFSSL_CERT_MANAGER* cm, byte* hash)
{
Signer* signers;
int ret = 0;
word32 row;
if (cm == NULL || hash == NULL) {
return ret;
}
row = HashSigner(hash);
if (wc_LockMutex(&cm->caLock) != 0) {
return ret;
}
signers = cm->caTable[row];
while (signers) {
byte* subjectHash;
#ifndef NO_SKID
subjectHash = signers->subjectKeyIdHash;
#else
subjectHash = signers->subjectNameHash;
#endif
if (XMEMCMP(hash, subjectHash, SIGNER_DIGEST_SIZE) == 0) {
ret = 1; /* success */
break;
}
signers = signers->next;
}
wc_UnLockMutex(&cm->caLock);
return ret;
}
#ifdef WOLFSSL_TRUST_PEER_CERT
/* hash is the SHA digest of name, just use first 32 bits as hash */
static INLINE word32 TrustedPeerHashSigner(const byte* hash)
{
return MakeWordFromHash(hash) % TP_TABLE_SIZE;
}
/* does trusted peer already exist on signer list */
int AlreadyTrustedPeer(WOLFSSL_CERT_MANAGER* cm, byte* hash)
{
TrustedPeerCert* tp;
int ret = 0;
word32 row = TrustedPeerHashSigner(hash);
if (wc_LockMutex(&cm->tpLock) != 0)
return ret;
tp = cm->tpTable[row];
while (tp) {
byte* subjectHash;
#ifndef NO_SKID
subjectHash = tp->subjectKeyIdHash;
#else
subjectHash = tp->subjectNameHash;
#endif
if (XMEMCMP(hash, subjectHash, SIGNER_DIGEST_SIZE) == 0) {
ret = 1;
break;
}
tp = tp->next;
}
wc_UnLockMutex(&cm->tpLock);
return ret;
}
/* return Trusted Peer if found, otherwise NULL
type is what to match on
*/
TrustedPeerCert* GetTrustedPeer(void* vp, byte* hash, int type)
{
WOLFSSL_CERT_MANAGER* cm = (WOLFSSL_CERT_MANAGER*)vp;
TrustedPeerCert* ret = NULL;
TrustedPeerCert* tp = NULL;
word32 row;
if (cm == NULL || hash == NULL)
return NULL;
row = TrustedPeerHashSigner(hash);
if (wc_LockMutex(&cm->tpLock) != 0)
return ret;
tp = cm->tpTable[row];
while (tp) {
byte* subjectHash;
switch (type) {
#ifndef NO_SKID
case WC_MATCH_SKID:
subjectHash = tp->subjectKeyIdHash;
break;
#endif
case WC_MATCH_NAME:
subjectHash = tp->subjectNameHash;
break;
default:
WOLFSSL_MSG("Unknown search type");
wc_UnLockMutex(&cm->tpLock);
return NULL;
}
if (XMEMCMP(hash, subjectHash, SIGNER_DIGEST_SIZE) == 0) {
ret = tp;
break;
}
tp = tp->next;
}
wc_UnLockMutex(&cm->tpLock);
return ret;
}
int MatchTrustedPeer(TrustedPeerCert* tp, DecodedCert* cert)
{
if (tp == NULL || cert == NULL)
return BAD_FUNC_ARG;
/* subject key id or subject hash has been compared when searching
tpTable for the cert from function GetTrustedPeer */
/* compare signatures */
if (tp->sigLen == cert->sigLength) {
if (XMEMCMP(tp->sig, cert->signature, cert->sigLength)) {
return WOLFSSL_FAILURE;
}
}
else {
return WOLFSSL_FAILURE;
}
return WOLFSSL_SUCCESS;
}
#endif /* WOLFSSL_TRUST_PEER_CERT */
/* return CA if found, otherwise NULL */
Signer* GetCA(void* vp, byte* hash)
{
WOLFSSL_CERT_MANAGER* cm = (WOLFSSL_CERT_MANAGER*)vp;
Signer* ret = NULL;
Signer* signers;
word32 row = HashSigner(hash);
if (cm == NULL)
return NULL;
if (wc_LockMutex(&cm->caLock) != 0)
return ret;
signers = cm->caTable[row];
while (signers) {
byte* subjectHash;
#ifndef NO_SKID
subjectHash = signers->subjectKeyIdHash;
#else
subjectHash = signers->subjectNameHash;
#endif
if (XMEMCMP(hash, subjectHash, SIGNER_DIGEST_SIZE) == 0) {
ret = signers;
break;
}
signers = signers->next;
}
wc_UnLockMutex(&cm->caLock);
return ret;
}
#ifndef NO_SKID
/* return CA if found, otherwise NULL. Walk through hash table. */
Signer* GetCAByName(void* vp, byte* hash)
{
WOLFSSL_CERT_MANAGER* cm = (WOLFSSL_CERT_MANAGER*)vp;
Signer* ret = NULL;
Signer* signers;
word32 row;
if (cm == NULL)
return NULL;
if (wc_LockMutex(&cm->caLock) != 0)
return ret;
for (row = 0; row < CA_TABLE_SIZE && ret == NULL; row++) {
signers = cm->caTable[row];
while (signers && ret == NULL) {
if (XMEMCMP(hash, signers->subjectNameHash,
SIGNER_DIGEST_SIZE) == 0) {
ret = signers;
}
signers = signers->next;
}
}
wc_UnLockMutex(&cm->caLock);
return ret;
}
#endif
#ifdef WOLFSSL_TRUST_PEER_CERT
/* add a trusted peer cert to linked list */
int AddTrustedPeer(WOLFSSL_CERT_MANAGER* cm, DerBuffer** pDer, int verify)
{
int ret, row;
TrustedPeerCert* peerCert;
DecodedCert* cert = NULL;
DerBuffer* der = *pDer;
byte* subjectHash = NULL;
WOLFSSL_MSG("Adding a Trusted Peer Cert");
cert = (DecodedCert*)XMALLOC(sizeof(DecodedCert), cm->heap,
DYNAMIC_TYPE_DCERT);
if (cert == NULL)
return MEMORY_E;
InitDecodedCert(cert, der->buffer, der->length, cm->heap);
if ((ret = ParseCert(cert, TRUSTED_PEER_TYPE, verify, cm)) != 0) {
XFREE(cert, NULL, DYNAMIC_TYPE_DCERT);
return ret;
}
WOLFSSL_MSG("\tParsed new trusted peer cert");
peerCert = (TrustedPeerCert*)XMALLOC(sizeof(TrustedPeerCert), cm->heap,
DYNAMIC_TYPE_CERT);
if (peerCert == NULL) {
FreeDecodedCert(cert);
XFREE(cert, cm->heap, DYNAMIC_TYPE_DCERT);
return MEMORY_E;
}
XMEMSET(peerCert, 0, sizeof(TrustedPeerCert));
#ifndef NO_SKID
if (cert->extAuthKeyIdSet) {
subjectHash = cert->extSubjKeyId;
}
else {
subjectHash = cert->subjectHash;
}
#else
subjectHash = cert->subjectHash;
#endif
#ifndef IGNORE_NAME_CONSTRAINTS
if (peerCert->permittedNames)
FreeNameSubtrees(peerCert->permittedNames, cm->heap);
if (peerCert->excludedNames)
FreeNameSubtrees(peerCert->excludedNames, cm->heap);
#endif
if (AlreadyTrustedPeer(cm, subjectHash)) {
WOLFSSL_MSG("\tAlready have this CA, not adding again");
(void)ret;
}
else {
/* add trusted peer signature */
peerCert->sigLen = cert->sigLength;
peerCert->sig = XMALLOC(cert->sigLength, cm->heap,
DYNAMIC_TYPE_SIGNATURE);
if (peerCert->sig == NULL) {
FreeDecodedCert(cert);
XFREE(cert, cm->heap, DYNAMIC_TYPE_DCERT);
FreeTrustedPeer(peerCert, cm->heap);
return MEMORY_E;
}
XMEMCPY(peerCert->sig, cert->signature, cert->sigLength);
/* add trusted peer name */
peerCert->nameLen = cert->subjectCNLen;
peerCert->name = cert->subjectCN;
#ifndef IGNORE_NAME_CONSTRAINTS
peerCert->permittedNames = cert->permittedNames;
peerCert->excludedNames = cert->excludedNames;
#endif
/* add SKID when available and hash of name */
#ifndef NO_SKID
XMEMCPY(peerCert->subjectKeyIdHash, cert->extSubjKeyId,
SIGNER_DIGEST_SIZE);
#endif
XMEMCPY(peerCert->subjectNameHash, cert->subjectHash,
SIGNER_DIGEST_SIZE);
peerCert->next = NULL; /* If Key Usage not set, all uses valid. */
cert->subjectCN = 0;
#ifndef IGNORE_NAME_CONSTRAINTS
cert->permittedNames = NULL;
cert->excludedNames = NULL;
#endif
#ifndef NO_SKID
if (cert->extAuthKeyIdSet) {
row = TrustedPeerHashSigner(peerCert->subjectKeyIdHash);
}
else {
row = TrustedPeerHashSigner(peerCert->subjectNameHash);
}
#else
row = TrustedPeerHashSigner(peerCert->subjectNameHash);
#endif
if (wc_LockMutex(&cm->tpLock) == 0) {
peerCert->next = cm->tpTable[row];
cm->tpTable[row] = peerCert; /* takes ownership */
wc_UnLockMutex(&cm->tpLock);
}
else {
WOLFSSL_MSG("\tTrusted Peer Cert Mutex Lock failed");
FreeDecodedCert(cert);
XFREE(cert, cm->heap, DYNAMIC_TYPE_DCERT);
FreeTrustedPeer(peerCert, cm->heap);
return BAD_MUTEX_E;
}
}
WOLFSSL_MSG("\tFreeing parsed trusted peer cert");
FreeDecodedCert(cert);
XFREE(cert, cm->heap, DYNAMIC_TYPE_DCERT);
WOLFSSL_MSG("\tFreeing der trusted peer cert");
FreeDer(&der);
WOLFSSL_MSG("\t\tOK Freeing der trusted peer cert");
WOLFSSL_LEAVE("AddTrustedPeer", ret);
return WOLFSSL_SUCCESS;
}
#endif /* WOLFSSL_TRUST_PEER_CERT */
/* owns der, internal now uses too */
/* type flag ids from user or from chain received during verify
don't allow chain ones to be added w/o isCA extension */
int AddCA(WOLFSSL_CERT_MANAGER* cm, DerBuffer** pDer, int type, int verify)
{
int ret;
Signer* signer = 0;
word32 row;
byte* subjectHash;
#ifdef WOLFSSL_SMALL_STACK
DecodedCert* cert = NULL;
#else
DecodedCert cert[1];
#endif
DerBuffer* der = *pDer;
WOLFSSL_MSG("Adding a CA");
#ifdef WOLFSSL_SMALL_STACK
cert = (DecodedCert*)XMALLOC(sizeof(DecodedCert), NULL,
DYNAMIC_TYPE_DCERT);
if (cert == NULL)
return MEMORY_E;
#endif
InitDecodedCert(cert, der->buffer, der->length, cm->heap);
ret = ParseCert(cert, CA_TYPE, verify, cm);
WOLFSSL_MSG("\tParsed new CA");
#ifndef NO_SKID
subjectHash = cert->extSubjKeyId;
#else
subjectHash = cert->subjectHash;
#endif
/* check CA key size */
if (verify) {
switch (cert->keyOID) {
#ifndef NO_RSA
case RSAk:
if (cm->minRsaKeySz < 0 ||
cert->pubKeySize < (word16)cm->minRsaKeySz) {
ret = RSA_KEY_SIZE_E;
WOLFSSL_MSG("\tCA RSA key size error");
}
break;
#endif /* !NO_RSA */
#ifdef HAVE_ECC
case ECDSAk:
if (cm->minEccKeySz < 0 ||
cert->pubKeySize < (word16)cm->minEccKeySz) {
ret = ECC_KEY_SIZE_E;
WOLFSSL_MSG("\tCA ECC key size error");
}
break;
#endif /* HAVE_ECC */
#ifdef HAVE_ED25519
case ED25519k:
if (cm->minEccKeySz < 0 ||
ED25519_KEY_SIZE < (word16)cm->minEccKeySz) {
ret = ECC_KEY_SIZE_E;
WOLFSSL_MSG("\tCA ECC key size error");
}
break;
#endif /* HAVE_ED25519 */
default:
WOLFSSL_MSG("\tNo key size check done on CA");
break; /* no size check if key type is not in switch */
}
}
if (ret == 0 && cert->isCA == 0 && type != WOLFSSL_USER_CA) {
WOLFSSL_MSG("\tCan't add as CA if not actually one");
ret = NOT_CA_ERROR;
}
#ifndef ALLOW_INVALID_CERTSIGN
else if (ret == 0 && cert->isCA == 1 && type != WOLFSSL_USER_CA &&
(cert->extKeyUsage & KEYUSE_KEY_CERT_SIGN) == 0) {
/* Intermediate CA certs are required to have the keyCertSign
* extension set. User loaded root certs are not. */
WOLFSSL_MSG("\tDoesn't have key usage certificate signing");
ret = NOT_CA_ERROR;
}
#endif
else if (ret == 0 && AlreadySigner(cm, subjectHash)) {
WOLFSSL_MSG("\tAlready have this CA, not adding again");
(void)ret;
}
else if (ret == 0) {
/* take over signer parts */
signer = MakeSigner(cm->heap);
if (!signer)
ret = MEMORY_ERROR;
else {
signer->keyOID = cert->keyOID;
if (cert->pubKeyStored) {
signer->publicKey = cert->publicKey;
signer->pubKeySize = cert->pubKeySize;
}
if (cert->subjectCNStored) {
signer->nameLen = cert->subjectCNLen;
signer->name = cert->subjectCN;
}
signer->pathLength = cert->pathLength;
signer->pathLengthSet = cert->pathLengthSet;
#ifndef IGNORE_NAME_CONSTRAINTS
signer->permittedNames = cert->permittedNames;
signer->excludedNames = cert->excludedNames;
#endif
#ifndef NO_SKID
XMEMCPY(signer->subjectKeyIdHash, cert->extSubjKeyId,
SIGNER_DIGEST_SIZE);
#endif
XMEMCPY(signer->subjectNameHash, cert->subjectHash,
SIGNER_DIGEST_SIZE);
signer->keyUsage = cert->extKeyUsageSet ? cert->extKeyUsage
: 0xFFFF;
signer->next = NULL; /* If Key Usage not set, all uses valid. */
cert->publicKey = 0; /* in case lock fails don't free here. */
cert->subjectCN = 0;
#ifndef IGNORE_NAME_CONSTRAINTS
cert->permittedNames = NULL;
cert->excludedNames = NULL;
#endif
#ifndef NO_SKID
row = HashSigner(signer->subjectKeyIdHash);
#else
row = HashSigner(signer->subjectNameHash);
#endif
if (wc_LockMutex(&cm->caLock) == 0) {
signer->next = cm->caTable[row];
cm->caTable[row] = signer; /* takes ownership */
wc_UnLockMutex(&cm->caLock);
if (cm->caCacheCallback)
cm->caCacheCallback(der->buffer, (int)der->length, type);
}
else {
WOLFSSL_MSG("\tCA Mutex Lock failed");
ret = BAD_MUTEX_E;
FreeSigner(signer, cm->heap);
}
}
}
WOLFSSL_MSG("\tFreeing Parsed CA");
FreeDecodedCert(cert);
#ifdef WOLFSSL_SMALL_STACK
XFREE(cert, NULL, DYNAMIC_TYPE_DCERT);
#endif
WOLFSSL_MSG("\tFreeing der CA");
FreeDer(pDer);
WOLFSSL_MSG("\t\tOK Freeing der CA");
WOLFSSL_LEAVE("AddCA", ret);
return ret == 0 ? WOLFSSL_SUCCESS : ret;
}
#endif /* !NO_CERTS */
#ifndef NO_SESSION_CACHE
/* basic config gives a cache with 33 sessions, adequate for clients and
embedded servers
MEDIUM_SESSION_CACHE allows 1055 sessions, adequate for servers that
aren't under heavy load, basically allows 200 new sessions per minute
BIG_SESSION_CACHE yields 20,027 sessions
HUGE_SESSION_CACHE yields 65,791 sessions, for servers under heavy load,
allows over 13,000 new sessions per minute or over 200 new sessions per
second
SMALL_SESSION_CACHE only stores 6 sessions, good for embedded clients
or systems where the default of nearly 3kB is too much RAM, this define
uses less than 500 bytes RAM
default SESSION_CACHE stores 33 sessions (no XXX_SESSION_CACHE defined)
*/
#ifdef HUGE_SESSION_CACHE
#define SESSIONS_PER_ROW 11
#define SESSION_ROWS 5981
#elif defined(BIG_SESSION_CACHE)
#define SESSIONS_PER_ROW 7
#define SESSION_ROWS 2861
#elif defined(MEDIUM_SESSION_CACHE)
#define SESSIONS_PER_ROW 5
#define SESSION_ROWS 211
#elif defined(SMALL_SESSION_CACHE)
#define SESSIONS_PER_ROW 2
#define SESSION_ROWS 3
#else
#define SESSIONS_PER_ROW 3
#define SESSION_ROWS 11
#endif
typedef struct SessionRow {
int nextIdx; /* where to place next one */
int totalCount; /* sessions ever on this row */
WOLFSSL_SESSION Sessions[SESSIONS_PER_ROW];
} SessionRow;
static SessionRow SessionCache[SESSION_ROWS];
#if defined(WOLFSSL_SESSION_STATS) && defined(WOLFSSL_PEAK_SESSIONS)
static word32 PeakSessions;
#endif
static wolfSSL_Mutex session_mutex; /* SessionCache mutex */
#ifndef NO_CLIENT_CACHE
typedef struct ClientSession {
word16 serverRow; /* SessionCache Row id */
word16 serverIdx; /* SessionCache Idx (column) */
} ClientSession;
typedef struct ClientRow {
int nextIdx; /* where to place next one */
int totalCount; /* sessions ever on this row */
ClientSession Clients[SESSIONS_PER_ROW];
} ClientRow;
static ClientRow ClientCache[SESSION_ROWS]; /* Client Cache */
/* uses session mutex */
#endif /* NO_CLIENT_CACHE */
#endif /* NO_SESSION_CACHE */
int wolfSSL_Init(void)
{
WOLFSSL_ENTER("wolfSSL_Init");
if (initRefCount == 0) {
/* Initialize crypto for use with TLS connection */
if (wolfCrypt_Init() != 0) {
WOLFSSL_MSG("Bad wolfCrypt Init");
return WC_INIT_E;
}
#ifndef NO_SESSION_CACHE
if (wc_InitMutex(&session_mutex) != 0) {
WOLFSSL_MSG("Bad Init Mutex session");
return BAD_MUTEX_E;
}
#endif
if (wc_InitMutex(&count_mutex) != 0) {
WOLFSSL_MSG("Bad Init Mutex count");
return BAD_MUTEX_E;
}
}
if (wc_LockMutex(&count_mutex) != 0) {
WOLFSSL_MSG("Bad Lock Mutex count");
return BAD_MUTEX_E;
}
initRefCount++;
wc_UnLockMutex(&count_mutex);
return WOLFSSL_SUCCESS;
}
#if (defined(OPENSSL_EXTRA) || defined(HAVE_WEBSERVER)) && !defined(NO_CERTS)
/* WOLFSSL_SUCCESS if ok, <= 0 else */
static int wolfssl_decrypt_buffer_key(DerBuffer* der, byte* password,
int passwordSz, EncryptedInfo* info)
{
int ret = WOLFSSL_BAD_FILE;
#ifdef WOLFSSL_SMALL_STACK
byte* key = NULL;
#else
byte key[AES_256_KEY_SIZE];
#endif
(void)passwordSz;
(void)key;
WOLFSSL_ENTER("wolfssl_decrypt_buffer_key");
if (der == NULL || password == NULL || info == NULL) {
WOLFSSL_MSG("bad arguments");
return WOLFSSL_FATAL_ERROR;
}
/* use file's salt for key derivation, hex decode first */
if (Base16_Decode(info->iv, info->ivSz, info->iv, &info->ivSz) != 0) {
WOLFSSL_MSG("base16 decode failed");
return WOLFSSL_FATAL_ERROR;
}
#ifndef NO_MD5
#ifdef WOLFSSL_SMALL_STACK
key = (byte*)XMALLOC(AES_256_KEY_SIZE, NULL, DYNAMIC_TYPE_SYMETRIC_KEY);
if (key == NULL) {
WOLFSSL_MSG("memory failure");
return WOLFSSL_FATAL_ERROR;
}
#endif /* WOLFSSL_SMALL_STACK */
if ((ret = wolfSSL_EVP_BytesToKey(info->name, "MD5", info->iv,
password, passwordSz, 1, key, NULL)) <= 0) {
WOLFSSL_MSG("bytes to key failure");
#ifdef WOLFSSL_SMALL_STACK
XFREE(key, NULL, DYNAMIC_TYPE_SYMETRIC_KEY);
#endif
return WOLFSSL_FATAL_ERROR;
}
#endif /* NO_MD5 */
#ifndef NO_DES3
if (XSTRNCMP(info->name, EVP_DES_CBC, EVP_DES_SIZE) == 0)
ret = wc_Des_CbcDecryptWithKey(der->buffer, der->buffer, der->length,
key, info->iv);
else if (XSTRNCMP(info->name, EVP_DES_EDE3_CBC, EVP_DES_EDE3_SIZE) == 0)
ret = wc_Des3_CbcDecryptWithKey(der->buffer, der->buffer, der->length,
key, info->iv);
#endif /* NO_DES3 */
#if !defined(NO_AES) && defined(HAVE_AES_CBC) && defined(HAVE_AES_DECRYPT)
if (XSTRNCMP(info->name, EVP_AES_128_CBC, EVP_AES_SIZE) == 0)
ret = wc_AesCbcDecryptWithKey(der->buffer, der->buffer, der->length,
key, AES_128_KEY_SIZE, info->iv);
else if (XSTRNCMP(info->name, EVP_AES_192_CBC, EVP_AES_SIZE) == 0)
ret = wc_AesCbcDecryptWithKey(der->buffer, der->buffer, der->length,
key, AES_192_KEY_SIZE, info->iv);
else if (XSTRNCMP(info->name, EVP_AES_256_CBC, EVP_AES_SIZE) == 0)
ret = wc_AesCbcDecryptWithKey(der->buffer, der->buffer, der->length,
key, AES_256_KEY_SIZE, info->iv);
#endif /* !NO_AES && HAVE_AES_CBC && HAVE_AES_DECRYPT */
#ifdef WOLFSSL_SMALL_STACK
XFREE(key, NULL, DYNAMIC_TYPE_SYMETRIC_KEY);
#endif
if (ret == MP_OKAY)
return WOLFSSL_SUCCESS;
else if (ret == WOLFSSL_BAD_FILE)
return WOLFSSL_BAD_FILE;
return WOLFSSL_FATAL_ERROR;
}
#endif /* defined(OPENSSL_EXTRA) || defined(HAVE_WEBSERVER) */
#if defined(WOLFSSL_KEY_GEN) && defined(OPENSSL_EXTRA)
static int wolfssl_encrypt_buffer_key(byte* der, word32 derSz, byte* password,
int passwordSz, EncryptedInfo* info)
{
int ret = WOLFSSL_BAD_FILE;
#ifdef WOLFSSL_SMALL_STACK
byte* key = NULL;
#else
byte key[AES_256_KEY_SIZE];
#endif
(void)derSz;
(void)passwordSz;
(void)key;
WOLFSSL_ENTER("wolfssl_encrypt_buffer_key");
if (der == NULL || password == NULL || info == NULL || info->ivSz == 0) {
WOLFSSL_MSG("bad arguments");
return WOLFSSL_FATAL_ERROR;
}
#ifndef NO_MD5
#ifdef WOLFSSL_SMALL_STACK
key = (byte*)XMALLOC(AES_256_KEY_SIZE, NULL, DYNAMIC_TYPE_SYMETRIC_KEY);
if (key == NULL) {
WOLFSSL_MSG("memory failure");
return WOLFSSL_FATAL_ERROR;
}
#endif /* WOLFSSL_SMALL_STACK */
if ((ret = wolfSSL_EVP_BytesToKey(info->name, "MD5", info->iv,
password, passwordSz, 1, key, NULL)) <= 0) {
WOLFSSL_MSG("bytes to key failure");
#ifdef WOLFSSL_SMALL_STACK
XFREE(key, NULL, DYNAMIC_TYPE_SYMETRIC_KEY);
#endif
return WOLFSSL_FATAL_ERROR;
}
#endif /* NO_MD5 */
if (ret > 0) {
ret = WOLFSSL_BAD_FILE; /* Reset error return */
#ifndef NO_DES3
if (XSTRNCMP(info->name, EVP_DES_CBC, EVP_DES_SIZE) == 0)
ret = wc_Des_CbcEncryptWithKey(der, der, derSz, key, info->iv);
else if (XSTRNCMP(info->name, EVP_DES_EDE3_CBC, EVP_DES_EDE3_SIZE) == 0)
ret = wc_Des3_CbcEncryptWithKey(der, der, derSz, key, info->iv);
#endif /* NO_DES3 */
#ifndef NO_AES
if (XSTRNCMP(info->name, EVP_AES_128_CBC, EVP_AES_SIZE) == 0)
ret = wc_AesCbcEncryptWithKey(der, der, derSz,
key, AES_128_KEY_SIZE, info->iv);
else if (XSTRNCMP(info->name, EVP_AES_192_CBC, EVP_AES_SIZE) == 0)
ret = wc_AesCbcEncryptWithKey(der, der, derSz,
key, AES_192_KEY_SIZE, info->iv);
else if (XSTRNCMP(info->name, EVP_AES_256_CBC, EVP_AES_SIZE) == 0)
ret = wc_AesCbcEncryptWithKey(der, der, derSz,
key, AES_256_KEY_SIZE, info->iv);
#endif /* NO_AES */
}
#ifdef WOLFSSL_SMALL_STACK
XFREE(key, NULL, DYNAMIC_TYPE_SYMETRIC_KEY);
#endif
if (ret == MP_OKAY)
return WOLFSSL_SUCCESS;
else if (ret == WOLFSSL_BAD_FILE)
return WOLFSSL_BAD_FILE;
return WOLFSSL_FATAL_ERROR;
}
#endif /* defined(WOLFSSL_KEY_GEN) */
#ifndef NO_CERTS
/* Remove PEM header/footer, convert to ASN1, store any encrypted data
info->consumed tracks of PEM bytes consumed in case multiple parts */
int PemToDer(const unsigned char* buff, long longSz, int type,
DerBuffer** pDer, void* heap, EncryptedInfo* info, int* eccKey)
{
const char* header = NULL;
const char* footer = NULL;
char* headerEnd;
char* footerEnd;
char* consumedEnd;
char* bufferEnd = (char*)(buff + longSz);
long neededSz;
int ret = 0;
int sz = (int)longSz;
int encrypted_key = 0;
DerBuffer* der;
WOLFSSL_ENTER("PemToDer");
switch (type) {
case CA_TYPE: /* same as below */
case TRUSTED_PEER_TYPE:
case CERT_TYPE: header=BEGIN_CERT; footer=END_CERT;
break;
case CRL_TYPE: header=BEGIN_X509_CRL; footer=END_X509_CRL;
break;
case DH_PARAM_TYPE: header=BEGIN_DH_PARAM; footer=END_DH_PARAM;
break;
case DSA_PARAM_TYPE: header=BEGIN_DSA_PARAM; footer=END_DSA_PARAM;
break;
case CERTREQ_TYPE: header=BEGIN_CERT_REQ; footer=END_CERT_REQ;
break;
case DSA_TYPE: header=BEGIN_DSA_PRIV; footer=END_DSA_PRIV;
break;
case ECC_TYPE: header=BEGIN_EC_PRIV; footer=END_EC_PRIV;
break;
case RSA_TYPE: header=BEGIN_RSA_PRIV; footer=END_RSA_PRIV;
break;
case ED25519_TYPE: header=BEGIN_EDDSA_PRIV; footer=END_EDDSA_PRIV;
break;
case PUBLICKEY_TYPE: header=BEGIN_PUB_KEY; footer=END_PUB_KEY;
break;
default: header=BEGIN_RSA_PRIV; footer=END_RSA_PRIV;
break;
}
/* find header */
for (;;) {
headerEnd = XSTRNSTR((char*)buff, header, sz);
if (headerEnd || type != PRIVATEKEY_TYPE) {
break;
} else if (header == BEGIN_RSA_PRIV) {
header = BEGIN_PRIV_KEY; footer = END_PRIV_KEY;
} else if (header == BEGIN_PRIV_KEY) {
header = BEGIN_ENC_PRIV_KEY; footer = END_ENC_PRIV_KEY;
} else if (header == BEGIN_ENC_PRIV_KEY) {
header = BEGIN_EC_PRIV; footer = END_EC_PRIV;
} else if (header == BEGIN_EC_PRIV) {
header = BEGIN_DSA_PRIV; footer = END_DSA_PRIV;
} else if (header == BEGIN_DSA_PRIV) {
header = BEGIN_EDDSA_PRIV; footer = END_EDDSA_PRIV;
} else
break;
}
if (!headerEnd) {
WOLFSSL_MSG("Couldn't find PEM header");
return SSL_NO_PEM_HEADER;
}
headerEnd += XSTRLEN(header);
if ((headerEnd + 1) >= bufferEnd)
return WOLFSSL_BAD_FILE;
/* eat end of line */
if (headerEnd[0] == '\n')
headerEnd++;
else if (headerEnd[1] == '\n')
headerEnd += 2;
else {
if (info)
info->consumed = (long)(headerEnd+2 - (char*)buff);
return WOLFSSL_BAD_FILE;
}
if (type == PRIVATEKEY_TYPE) {
if (eccKey)
*eccKey = header == BEGIN_EC_PRIV;
}
#if defined(OPENSSL_EXTRA) || defined(HAVE_WEBSERVER)
{
/* remove encrypted header if there */
const char* const encHeader = "Proc-Type";
word32 headerEndSz = (word32)(bufferEnd - headerEnd);
char* line = XSTRNSTR(headerEnd, encHeader, min(headerEndSz,
PEM_LINE_LEN));
if (line != NULL) {
word32 lineSz;
char* finish;
word32 finishSz;
char* start;
word32 startSz;
char* newline;
if (line >= bufferEnd) {
return WOLFSSL_BAD_FILE;
}
lineSz = (word32)(bufferEnd - line);
start = XSTRNSTR(line, "DES", min(lineSz, PEM_LINE_LEN));
if (start == NULL) {
start = XSTRNSTR(line, "AES", min(lineSz, PEM_LINE_LEN));
}
if (start == NULL) return WOLFSSL_BAD_FILE;
if (info == NULL) return WOLFSSL_BAD_FILE;
if (start >= bufferEnd) {
return WOLFSSL_BAD_FILE;
}
startSz = (word32)(bufferEnd - start);
finish = XSTRNSTR(start, ",", min(startSz, PEM_LINE_LEN));
if ((start != NULL) && (finish != NULL) && (start < finish)) {
if (finish >= bufferEnd) {
return WOLFSSL_BAD_FILE;
}
finishSz = (word32)(bufferEnd - finish);
newline = XSTRNSTR(finish, "\r", min(finishSz, PEM_LINE_LEN));
if (NAME_SZ < (finish - start)) /* buffer size of info->name*/
return BUFFER_E;
if (XMEMCPY(info->name, start, finish - start) == NULL)
return WOLFSSL_FATAL_ERROR;
info->name[finish - start] = 0;
if (finishSz < sizeof(info->iv) + 1)
return BUFFER_E;
if (XMEMCPY(info->iv, finish + 1, sizeof(info->iv)) == NULL)
return WOLFSSL_FATAL_ERROR;
if (newline == NULL)
newline = XSTRNSTR(finish, "\n", min(finishSz,
PEM_LINE_LEN));
if ((newline != NULL) && (newline > finish)) {
info->ivSz = (word32)(newline - (finish + 1));
info->set = 1;
}
else
return WOLFSSL_BAD_FILE;
}
else
return WOLFSSL_BAD_FILE;
/* eat blank line */
while (*newline == '\r' || *newline == '\n')
newline++;
headerEnd = newline;
encrypted_key = 1;
}
}
#endif /* OPENSSL_EXTRA || HAVE_WEBSERVER */
/* find footer */
footerEnd = XSTRNSTR((char*)buff, footer, sz);
if (!footerEnd) {
if (info)
info->consumed = longSz; /* No more certs if no footer */
return WOLFSSL_BAD_FILE;
}
consumedEnd = footerEnd + XSTRLEN(footer);
if (consumedEnd < bufferEnd) { /* handle no end of line on last line */
/* eat end of line */
if (consumedEnd[0] == '\n')
consumedEnd++;
else if ((consumedEnd + 1 < bufferEnd) && consumedEnd[1] == '\n')
consumedEnd += 2;
else {
if (info)
info->consumed = (long)(consumedEnd+2 - (char*)buff);
return WOLFSSL_BAD_FILE;
}
}
if (info)
info->consumed = (long)(consumedEnd - (char*)buff);
/* set up der buffer */
neededSz = (long)(footerEnd - headerEnd);
if (neededSz > sz || neededSz <= 0)
return WOLFSSL_BAD_FILE;
ret = AllocDer(pDer, (word32)neededSz, type, heap);
if (ret < 0) {
return ret;
}
der = *pDer;
if (Base64_Decode((byte*)headerEnd, (word32)neededSz,
der->buffer, &der->length) < 0)
return WOLFSSL_BAD_FILE;
if (header == BEGIN_PRIV_KEY && !encrypted_key) {
/* pkcs8 key, convert and adjust length */
if ((ret = ToTraditional(der->buffer, der->length)) < 0)
return ret;
der->length = ret;
return 0;
}
#if (defined(OPENSSL_EXTRA) || defined(HAVE_WEBSERVER)) && !defined(NO_PWDBASED)
if (encrypted_key || header == BEGIN_ENC_PRIV_KEY) {
int passwordSz;
#ifdef WOLFSSL_SMALL_STACK
char* password = NULL;
#else
char password[80];
#endif
if (!info || !info->ctx || !info->ctx->passwd_cb)
return WOLFSSL_BAD_FILE; /* no callback error */
#ifdef WOLFSSL_SMALL_STACK
password = (char*)XMALLOC(80, heap, DYNAMIC_TYPE_STRING);
if (password == NULL)
return MEMORY_E;
#endif
passwordSz = info->ctx->passwd_cb(password, sizeof(password), 0,
info->ctx->userdata);
/* convert and adjust length */
if (header == BEGIN_ENC_PRIV_KEY) {
ret = ToTraditionalEnc(der->buffer, der->length,
password, passwordSz);
#ifdef WOLFSSL_SMALL_STACK
XFREE(password, NULL, DYNAMIC_TYPE_STRING);
#endif
if (ret < 0) {
return ret;
}
der->length = ret;
}
/* decrypt the key */
else {
ret = wolfssl_decrypt_buffer_key(der, (byte*)password,
passwordSz, info);
#ifdef WOLFSSL_SMALL_STACK
XFREE(password, heap, DYNAMIC_TYPE_STRING);
#endif
if (ret != WOLFSSL_SUCCESS) {
return ret;
}
}
}
#endif /* OPENSSL_EXTRA || HAVE_WEBSERVER || NO_PWDBASED */
return 0;
}
/* process user cert chain to pass during the handshake */
static int ProcessUserChain(WOLFSSL_CTX* ctx, const unsigned char* buff,
long sz, int format, int type, WOLFSSL* ssl,
long* used, EncryptedInfo* info)
{
int ret = 0;
void* heap = wolfSSL_CTX_GetHeap(ctx, ssl);
#ifdef WOLFSSL_TLS13
int cnt = 0;
#endif
/* we may have a user cert chain, try to consume */
if (type == CERT_TYPE && info->consumed < sz) {
#ifdef WOLFSSL_SMALL_STACK
byte staticBuffer[1]; /* force heap usage */
#else
byte staticBuffer[FILE_BUFFER_SIZE]; /* tmp chain buffer */
#endif
byte* chainBuffer = staticBuffer;
int dynamicBuffer = 0;
word32 bufferSz = sizeof(staticBuffer);
long consumed = info->consumed;
word32 idx = 0;
int gotOne = 0;
if ( (sz - consumed) > (int)bufferSz) {
WOLFSSL_MSG("Growing Tmp Chain Buffer");
bufferSz = (word32)(sz - consumed);
/* will shrink to actual size */
chainBuffer = (byte*)XMALLOC(bufferSz, heap, DYNAMIC_TYPE_FILE);
if (chainBuffer == NULL) {
return MEMORY_E;
}
dynamicBuffer = 1;
}
WOLFSSL_MSG("Processing Cert Chain");
while (consumed < sz) {
int eccKey = 0;
DerBuffer* part = NULL;
word32 remain = (word32)(sz - consumed);
info->consumed = 0;
if (format == WOLFSSL_FILETYPE_PEM) {
ret = PemToDer(buff + consumed, remain, type, &part,
heap, info, &eccKey);
}
else {
int length = remain;
if (format == WOLFSSL_FILETYPE_ASN1) {
/* get length of der (read sequence) */
word32 inOutIdx = 0;
if (GetSequence(buff + consumed, &inOutIdx, &length, remain) < 0) {
ret = SSL_NO_PEM_HEADER;
}
length += inOutIdx; /* include leading squence */
}
info->consumed = length;
if (ret == 0) {
ret = AllocDer(&part, length, type, heap);
if (ret == 0) {
XMEMCPY(part->buffer, buff + consumed, length);
}
}
}
if (ret == 0) {
gotOne = 1;
#ifdef WOLFSSL_TLS13
cnt++;
#endif
if ((idx + part->length) > bufferSz) {
WOLFSSL_MSG(" Cert Chain bigger than buffer");
ret = BUFFER_E;
}
else {
c32to24(part->length, &chainBuffer[idx]);
idx += CERT_HEADER_SZ;
XMEMCPY(&chainBuffer[idx], part->buffer, part->length);
idx += part->length;
consumed += info->consumed;
if (used)
*used += info->consumed;
}
}
FreeDer(&part);
if (ret == SSL_NO_PEM_HEADER && gotOne) {
WOLFSSL_MSG("We got one good cert, so stuff at end ok");
break;
}
if (ret < 0) {
WOLFSSL_MSG(" Error in Cert in Chain");
if (dynamicBuffer)
XFREE(chainBuffer, heap, DYNAMIC_TYPE_FILE);
return ret;
}
WOLFSSL_MSG(" Consumed another Cert in Chain");
}
WOLFSSL_MSG("Finished Processing Cert Chain");
/* only retain actual size used */
ret = 0;
if (idx > 0) {
if (ssl) {
if (ssl->buffers.weOwnCertChain) {
FreeDer(&ssl->buffers.certChain);
}
ret = AllocDer(&ssl->buffers.certChain, idx, type, heap);
if (ret == 0) {
XMEMCPY(ssl->buffers.certChain->buffer, chainBuffer, idx);
ssl->buffers.weOwnCertChain = 1;
}
#ifdef WOLFSSL_TLS13
ssl->buffers.certChainCnt = cnt;
#endif
} else if (ctx) {
FreeDer(&ctx->certChain);
ret = AllocDer(&ctx->certChain, idx, type, heap);
if (ret == 0) {
XMEMCPY(ctx->certChain->buffer, chainBuffer, idx);
}
#ifdef WOLFSSL_TLS13
ctx->certChainCnt = cnt;
#endif
}
}
if (dynamicBuffer)
XFREE(chainBuffer, heap, DYNAMIC_TYPE_FILE);
}
return ret;
}
/* process the buffer buff, length sz, into ctx of format and type
used tracks bytes consumed, userChain specifies a user cert chain
to pass during the handshake */
int ProcessBuffer(WOLFSSL_CTX* ctx, const unsigned char* buff,
long sz, int format, int type, WOLFSSL* ssl,
long* used, int userChain)
{
DerBuffer* der = NULL; /* holds DER or RAW (for NTRU) */
int ret = 0;
int eccKey = 0;
int ed25519Key = 0;
int rsaKey = 0;
int resetSuites = 0;
void* heap = wolfSSL_CTX_GetHeap(ctx, ssl);
int devId = wolfSSL_CTX_GetDevId(ctx, ssl);
#ifdef WOLFSSL_SMALL_STACK
EncryptedInfo* info = NULL;
#else
EncryptedInfo info[1];
#endif
(void)rsaKey;
(void)devId;
if (used)
*used = sz; /* used bytes default to sz, PEM chain may shorten*/
/* check args */
if (format != WOLFSSL_FILETYPE_ASN1 && format != WOLFSSL_FILETYPE_PEM
&& format != WOLFSSL_FILETYPE_RAW)
return WOLFSSL_BAD_FILETYPE;
if (ctx == NULL && ssl == NULL)
return BAD_FUNC_ARG;
#ifdef WOLFSSL_SMALL_STACK
info = (EncryptedInfo*)XMALLOC(sizeof(EncryptedInfo), heap,
DYNAMIC_TYPE_ENCRYPTEDINFO);
if (info == NULL)
return MEMORY_E;
#endif
XMEMSET(info, 0, sizeof(EncryptedInfo));
info->set = 0;
info->ctx = ctx;
info->consumed = 0;
if (format == WOLFSSL_FILETYPE_PEM) {
ret = PemToDer(buff, sz, type, &der, heap, info, &eccKey);
}
else { /* ASN1 (DER) or RAW (NTRU) */
int length = (int)sz;
if (format == WOLFSSL_FILETYPE_ASN1) {
/* get length of der (read sequence) */
word32 inOutIdx = 0;
if (GetSequence(buff, &inOutIdx, &length, (word32)sz) < 0) {
ret = ASN_PARSE_E;
}
length += inOutIdx; /* include leading squence */
}
info->consumed = length;
if (ret == 0) {
ret = AllocDer(&der, (word32)length, type, heap);
if (ret == 0) {
XMEMCPY(der->buffer, buff, length);
}
}
}
if (used) {
*used = info->consumed;
}
/* process user chain */
if (ret >= 0) {
if (userChain) {
ret = ProcessUserChain(ctx, buff, sz, format, type, ssl, used, info);
}
}
/* check for error */
if (ret < 0) {
#ifdef WOLFSSL_SMALL_STACK
XFREE(info, heap, DYNAMIC_TYPE_ENCRYPTEDINFO);
#endif
FreeDer(&der);
return ret;
}
#if defined(OPENSSL_EXTRA) || defined(HAVE_WEBSERVER)
/* for WOLFSSL_FILETYPE_PEM, PemToDer manage the decryption if required */
if (info->set && (format != WOLFSSL_FILETYPE_PEM)) {
/* decrypt */
int passwordSz;
#ifdef WOLFSSL_SMALL_STACK
char* password = NULL;
#else
char password[80];
#endif
#ifdef WOLFSSL_SMALL_STACK
password = (char*)XMALLOC(80, heap, DYNAMIC_TYPE_STRING);
if (password == NULL)
ret = MEMORY_E;
else
#endif
if (!ctx || !ctx->passwd_cb) {
ret = NO_PASSWORD;
}
else {
passwordSz = ctx->passwd_cb(password, sizeof(password),
0, ctx->userdata);
/* decrypt the key */
ret = wolfssl_decrypt_buffer_key(der, (byte*)password,
passwordSz, info);
}
#ifdef WOLFSSL_SMALL_STACK
XFREE(password, heap, DYNAMIC_TYPE_STRING);
#endif
if (ret != WOLFSSL_SUCCESS) {
#ifdef WOLFSSL_SMALL_STACK
XFREE(info, heap, DYNAMIC_TYPE_ENCRYPTEDINFO);
#endif
FreeDer(&der);
return ret;
}
}
#endif /* OPENSSL_EXTRA || HAVE_WEBSERVER */
#ifdef WOLFSSL_SMALL_STACK
XFREE(info, heap, DYNAMIC_TYPE_ENCRYPTEDINFO);
#endif
/* Handle DER owner */
if (type == CA_TYPE) {
if (ctx == NULL) {
WOLFSSL_MSG("Need context for CA load");
FreeDer(&der);
return BAD_FUNC_ARG;
}
/* verify CA unless user set to no verify */
return AddCA(ctx->cm, &der, WOLFSSL_USER_CA, !ctx->verifyNone);
}
#ifdef WOLFSSL_TRUST_PEER_CERT
else if (type == TRUSTED_PEER_TYPE) {
if (ctx == NULL) {
WOLFSSL_MSG("Need context for trusted peer cert load");
FreeDer(&der);
return BAD_FUNC_ARG;
}
/* add trusted peer cert */
return AddTrustedPeer(ctx->cm, &der, !ctx->verifyNone);
}
#endif /* WOLFSSL_TRUST_PEER_CERT */
else if (type == CERT_TYPE) {
if (ssl) {
/* Make sure previous is free'd */
if (ssl->buffers.weOwnCert) {
FreeDer(&ssl->buffers.certificate);
#ifdef KEEP_OUR_CERT
FreeX509(ssl->ourCert);
if (ssl->ourCert) {
XFREE(ssl->ourCert, ssl->heap, DYNAMIC_TYPE_X509);
ssl->ourCert = NULL;
}
#endif
}
ssl->buffers.certificate = der;
#ifdef KEEP_OUR_CERT
ssl->keepCert = 1; /* hold cert for ssl lifetime */
#endif
ssl->buffers.weOwnCert = 1;
}
else if (ctx) {
FreeDer(&ctx->certificate); /* Make sure previous is free'd */
#ifdef KEEP_OUR_CERT
if (ctx->ourCert) {
if (ctx->ownOurCert) {
FreeX509(ctx->ourCert);
XFREE(ctx->ourCert, ctx->heap, DYNAMIC_TYPE_X509);
}
ctx->ourCert = NULL;
}
#endif
ctx->certificate = der;
}
}
else if (type == PRIVATEKEY_TYPE) {
if (ssl) {
/* Make sure previous is free'd */
if (ssl->buffers.weOwnKey) {
FreeDer(&ssl->buffers.key);
}
ssl->buffers.key = der;
ssl->buffers.weOwnKey = 1;
}
else if (ctx) {
FreeDer(&ctx->privateKey);
ctx->privateKey = der;
}
}
else {
FreeDer(&der);
return WOLFSSL_BAD_CERTTYPE;
}
if (type == PRIVATEKEY_TYPE && format != WOLFSSL_FILETYPE_RAW) {
#ifndef NO_RSA
if (!eccKey && !ed25519Key) {
/* make sure RSA key can be used */
word32 idx = 0;
#ifdef WOLFSSL_SMALL_STACK
RsaKey* key = NULL;
#else
RsaKey key[1];
#endif
#ifdef WOLFSSL_SMALL_STACK
key = (RsaKey*)XMALLOC(sizeof(RsaKey), heap, DYNAMIC_TYPE_RSA);
if (key == NULL)
return MEMORY_E;
#endif
ret = wc_InitRsaKey_ex(key, heap, devId);
if (ret == 0) {
if (wc_RsaPrivateKeyDecode(der->buffer, &idx, key, der->length)
!= 0) {
#ifdef HAVE_ECC
/* could have DER ECC (or pkcs8 ecc), no easy way to tell */
eccKey = 1; /* so try it out */
#else
WOLFSSL_MSG("RSA decode failed and ECC not enabled to try");
ret = WOLFSSL_BAD_FILE;
#endif
} else {
/* check that the size of the RSA key is enough */
int rsaSz = wc_RsaEncryptSize((RsaKey*)key);
if (ssl) {
if (rsaSz < ssl->options.minRsaKeySz) {
ret = RSA_KEY_SIZE_E;
WOLFSSL_MSG("Private Key size too small");
}
ssl->buffers.keyType = rsa_sa_algo;
#ifdef WC_RSA_PSS
ssl->buffers.keySz = rsaSz;
#endif
}
else if(ctx) {
if (rsaSz < ctx->minRsaKeySz) {
ret = RSA_KEY_SIZE_E;
WOLFSSL_MSG("Private Key size too small");
}
ctx->privateKeyType = rsa_sa_algo;
#ifdef WC_RSA_PSS
ctx->privateKeySz = rsaSz;
#endif
}
rsaKey = 1;
(void)rsaKey; /* for no ecc builds */
if (ssl && ssl->options.side == WOLFSSL_SERVER_END) {
ssl->options.haveStaticECC = 0;
resetSuites = 1;
}
}
wc_FreeRsaKey(key);
}
#ifdef WOLFSSL_SMALL_STACK
XFREE(key, heap, DYNAMIC_TYPE_RSA);
#endif
if (ret != 0)
return ret;
}
#endif
#ifdef HAVE_ECC
if (!rsaKey && !ed25519Key) {
/* make sure ECC key can be used */
word32 idx = 0;
ecc_key key;
if (wc_ecc_init_ex(&key, heap, devId) == 0) {
if (wc_EccPrivateKeyDecode(der->buffer, &idx, &key,
der->length) == 0) {
/* check for minimum ECC key size and then free */
if (ssl) {
if (wc_ecc_size(&key) < ssl->options.minEccKeySz) {
wc_ecc_free(&key);
WOLFSSL_MSG("ECC private key too small");
return ECC_KEY_SIZE_E;
}
}
else if (ctx) {
if (wc_ecc_size(&key) < ctx->minEccKeySz) {
wc_ecc_free(&key);
WOLFSSL_MSG("ECC private key too small");
return ECC_KEY_SIZE_E;
}
}
eccKey = 1;
if (ssl) {
ssl->options.haveStaticECC = 1;
ssl->buffers.keyType = ecc_dsa_sa_algo;
}
else if (ctx) {
ctx->haveStaticECC = 1;
ctx->privateKeyType = ecc_dsa_sa_algo;
}
if (ssl && ssl->options.side == WOLFSSL_SERVER_END) {
resetSuites = 1;
}
}
else
eccKey = 0;
wc_ecc_free(&key);
}
}
#endif /* HAVE_ECC */
#ifdef HAVE_ED25519
if (!rsaKey && !eccKey) {
/* make sure Ed25519 key can be used */
word32 idx = 0;
ed25519_key key;
ret = wc_ed25519_init(&key);
if (ret != 0) {
return ret;
}
if (wc_Ed25519PrivateKeyDecode(der->buffer, &idx, &key,
der->length) != 0) {
wc_ed25519_free(&key);
return WOLFSSL_BAD_FILE;
}
/* check for minimum key size and then free */
if (ssl) {
if (ED25519_KEY_SIZE < ssl->options.minEccKeySz) {
wc_ed25519_free(&key);
WOLFSSL_MSG("ED25519 private key too small");
return ECC_KEY_SIZE_E;
}
ssl->buffers.keyType = ed25519_sa_algo;
}
else if (ctx) {
if (ED25519_KEY_SIZE < ctx->minEccKeySz) {
wc_ed25519_free(&key);
WOLFSSL_MSG("ED25519 private key too small");
return ECC_KEY_SIZE_E;
}
ctx->privateKeyType = ed25519_sa_algo;
}
wc_ed25519_free(&key);
ed25519Key = 1;
if (ssl && ssl->options.side == WOLFSSL_SERVER_END) {
resetSuites = 1;
}
}
#endif
if (!rsaKey && !eccKey && !ed25519Key)
return WOLFSSL_BAD_FILE;
(void)ed25519Key;
(void)devId;
}
else if (type == CERT_TYPE) {
#ifdef WOLFSSL_SMALL_STACK
DecodedCert* cert = NULL;
#else
DecodedCert cert[1];
#endif
#ifdef WOLFSSL_SMALL_STACK
cert = (DecodedCert*)XMALLOC(sizeof(DecodedCert), heap,
DYNAMIC_TYPE_DCERT);
if (cert == NULL)
return MEMORY_E;
#endif
WOLFSSL_MSG("Checking cert signature type");
InitDecodedCert(cert, der->buffer, der->length, heap);
if (DecodeToKey(cert, 0) < 0) {
WOLFSSL_MSG("Decode to key failed");
FreeDecodedCert(cert);
#ifdef WOLFSSL_SMALL_STACK
XFREE(cert, heap, DYNAMIC_TYPE_DCERT);
#endif
return WOLFSSL_BAD_FILE;
}
if (ssl && ssl->options.side == WOLFSSL_SERVER_END) {
resetSuites = 1;
}
if (ssl && ssl->ctx->haveECDSAsig) {
WOLFSSL_MSG("SSL layer setting cert, CTX had ECDSA, turning off");
ssl->options.haveECDSAsig = 0; /* may turn back on next */
}
switch (cert->signatureOID) {
case CTC_SHAwECDSA:
case CTC_SHA256wECDSA:
case CTC_SHA384wECDSA:
case CTC_SHA512wECDSA:
WOLFSSL_MSG("ECDSA cert signature");
if (ssl)
ssl->options.haveECDSAsig = 1;
else if (ctx)
ctx->haveECDSAsig = 1;
break;
case CTC_ED25519:
WOLFSSL_MSG("ED25519 cert signature");
if (ssl)
ssl->options.haveECDSAsig = 1;
else if (ctx)
ctx->haveECDSAsig = 1;
break;
default:
WOLFSSL_MSG("Not ECDSA cert signature");
break;
}
#ifdef HAVE_ECC
if (ssl) {
ssl->pkCurveOID = cert->pkCurveOID;
#ifndef WC_STRICT_SIG
if (cert->keyOID == ECDSAk) {
ssl->options.haveECC = 1;
}
#ifdef HAVE_ED25519
else if (cert->keyOID == ED25519k) {
ssl->options.haveECC = 1;
}
#endif
#else
ssl->options.haveECC = ssl->options.haveECDSAsig;
#endif
}
else if (ctx) {
ctx->pkCurveOID = cert->pkCurveOID;
#ifndef WC_STRICT_SIG
if (cert->keyOID == ECDSAk) {
ctx->haveECC = 1;
}
#ifdef HAVE_ED25519
else if (cert->keyOID == ED25519k) {
ctx->haveECC = 1;
}
#endif
#else
ctx->haveECC = ctx->haveECDSAsig;
#endif
}
#endif
/* check key size of cert unless specified not to */
switch (cert->keyOID) {
#ifndef NO_RSA
case RSAk:
if (ssl && !ssl->options.verifyNone) {
if (ssl->options.minRsaKeySz < 0 ||
cert->pubKeySize < (word16)ssl->options.minRsaKeySz) {
ret = RSA_KEY_SIZE_E;
WOLFSSL_MSG("Certificate RSA key size too small");
}
}
else if (ctx && !ctx->verifyNone) {
if (ctx->minRsaKeySz < 0 ||
cert->pubKeySize < (word16)ctx->minRsaKeySz) {
ret = RSA_KEY_SIZE_E;
WOLFSSL_MSG("Certificate RSA key size too small");
}
}
break;
#endif /* !NO_RSA */
#ifdef HAVE_ECC
case ECDSAk:
if (ssl && !ssl->options.verifyNone) {
if (ssl->options.minEccKeySz < 0 ||
cert->pubKeySize < (word16)ssl->options.minEccKeySz) {
ret = ECC_KEY_SIZE_E;
WOLFSSL_MSG("Certificate ECC key size error");
}
}
else if (ctx && !ctx->verifyNone) {
if (ctx->minEccKeySz < 0 ||
cert->pubKeySize < (word16)ctx->minEccKeySz) {
ret = ECC_KEY_SIZE_E;
WOLFSSL_MSG("Certificate ECC key size error");
}
}
break;
#endif /* HAVE_ECC */
#ifdef HAVE_ED25519
case ED25519k:
if (ssl && !ssl->options.verifyNone) {
if (ssl->options.minEccKeySz < 0 ||
ED25519_KEY_SIZE < (word16)ssl->options.minEccKeySz) {
ret = ECC_KEY_SIZE_E;
WOLFSSL_MSG("Certificate Ed key size error");
}
}
else if (ctx && !ctx->verifyNone) {
if (ctx->minEccKeySz < 0 ||
ED25519_KEY_SIZE < (word16)ctx->minEccKeySz) {
ret = ECC_KEY_SIZE_E;
WOLFSSL_MSG("Certificate ECC key size error");
}
}
break;
#endif /* HAVE_ED25519 */
default:
WOLFSSL_MSG("No key size check done on certificate");
break; /* do no check if not a case for the key */
}
FreeDecodedCert(cert);
#ifdef WOLFSSL_SMALL_STACK
XFREE(cert, heap, DYNAMIC_TYPE_DCERT);
#endif
if (ret != 0) {
return ret;
}
}
if (ssl && resetSuites) {
word16 havePSK = 0;
word16 haveRSA = 0;
#ifndef NO_PSK
if (ssl->options.havePSK) {
havePSK = 1;
}
#endif
#ifndef NO_RSA
haveRSA = 1;
#endif
/* let's reset suites */
InitSuites(ssl->suites, ssl->version, ssl->buffers.keySz, haveRSA,
havePSK, ssl->options.haveDH, ssl->options.haveNTRU,
ssl->options.haveECDSAsig, ssl->options.haveECC,
ssl->options.haveStaticECC, ssl->options.side);
}
return WOLFSSL_SUCCESS;
}
/* CA PEM file for verification, may have multiple/chain certs to process */
static int ProcessChainBuffer(WOLFSSL_CTX* ctx, const unsigned char* buff,
long sz, int format, int type, WOLFSSL* ssl)
{
long used = 0;
int ret = 0;
int gotOne = 0;
WOLFSSL_MSG("Processing CA PEM file");
while (used < sz) {
long consumed = 0;
ret = ProcessBuffer(ctx, buff + used, sz - used, format, type, ssl,
&consumed, 0);
#ifdef WOLFSSL_WPAS
#ifdef HAVE_CRL
if (ret < 0) {
DerBuffer* der = NULL;
EncryptedInfo info;
WOLFSSL_MSG("Trying a CRL");
if (PemToDer(buff + used, sz - used, CRL_TYPE, &der, NULL, &info,
NULL) == 0) {
WOLFSSL_MSG(" Proccessed a CRL");
wolfSSL_CertManagerLoadCRLBuffer(ctx->cm, der->buffer,
der->length, WOLFSSL_FILETYPE_ASN1);
FreeDer(&der);
used += info.consumed;
continue;
}
}
#endif
#endif
if (ret < 0)
{
if(consumed > 0) { /* Made progress in file */
WOLFSSL_ERROR(ret);
WOLFSSL_MSG("CA Parse failed, with progress in file.");
WOLFSSL_MSG("Search for other certs in file");
} else {
WOLFSSL_MSG("CA Parse failed, no progress in file.");
WOLFSSL_MSG("Do not continue search for other certs in file");
break;
}
} else {
WOLFSSL_MSG(" Processed a CA");
gotOne = 1;
}
used += consumed;
}
if(gotOne)
{
WOLFSSL_MSG("Processed at least one valid CA. Other stuff OK");
return WOLFSSL_SUCCESS;
}
return ret;
}
static INLINE WOLFSSL_METHOD* cm_pick_method(void)
{
#ifndef NO_WOLFSSL_CLIENT
#if defined(WOLFSSL_ALLOW_SSLV3) && !defined(NO_OLD_TLS)
return wolfSSLv3_client_method();
#else
return wolfTLSv1_2_client_method();
#endif
#elif !defined(NO_WOLFSSL_SERVER)
#if defined(WOLFSSL_ALLOW_SSLV3) && !defined(NO_OLD_TLS)
return wolfSSLv3_server_method();
#else
return wolfTLSv1_2_server_method();
#endif
#else
return NULL;
#endif
}
/* like load verify locations, 1 for success, < 0 for error */
int wolfSSL_CertManagerLoadCABuffer(WOLFSSL_CERT_MANAGER* cm,
const unsigned char* in, long sz, int format)
{
int ret = WOLFSSL_FATAL_ERROR;
WOLFSSL_CTX* tmp;
WOLFSSL_ENTER("wolfSSL_CertManagerLoadCABuffer");
if (cm == NULL) {
WOLFSSL_MSG("No CertManager error");
return ret;
}
tmp = wolfSSL_CTX_new(cm_pick_method());
if (tmp == NULL) {
WOLFSSL_MSG("CTX new failed");
return ret;
}
/* for tmp use */
wolfSSL_CertManagerFree(tmp->cm);
tmp->cm = cm;
ret = wolfSSL_CTX_load_verify_buffer(tmp, in, sz, format);
/* don't loose our good one */
tmp->cm = NULL;
wolfSSL_CTX_free(tmp);
return ret;
}
#ifdef HAVE_CRL
int wolfSSL_CertManagerLoadCRLBuffer(WOLFSSL_CERT_MANAGER* cm,
const unsigned char* buff, long sz, int type)
{
WOLFSSL_ENTER("wolfSSL_CertManagerLoadCRLBuffer");
if (cm == NULL)
return BAD_FUNC_ARG;
if (cm->crl == NULL) {
if (wolfSSL_CertManagerEnableCRL(cm, 0) != WOLFSSL_SUCCESS) {
WOLFSSL_MSG("Enable CRL failed");
return WOLFSSL_FATAL_ERROR;
}
}
return BufferLoadCRL(cm->crl, buff, sz, type, 0);
}
int wolfSSL_CTX_LoadCRLBuffer(WOLFSSL_CTX* ctx, const unsigned char* buff,
long sz, int type)
{
WOLFSSL_ENTER("wolfSSL_CTX_LoadCRLBuffer");
if (ctx == NULL)
return BAD_FUNC_ARG;
return wolfSSL_CertManagerLoadCRLBuffer(ctx->cm, buff, sz, type);
}
int wolfSSL_LoadCRLBuffer(WOLFSSL* ssl, const unsigned char* buff,
long sz, int type)
{
WOLFSSL_ENTER("wolfSSL_LoadCRLBuffer");
if (ssl == NULL || ssl->ctx == NULL)
return BAD_FUNC_ARG;
return wolfSSL_CertManagerLoadCRLBuffer(ssl->ctx->cm, buff, sz, type);
}
#endif /* HAVE_CRL */
/* turn on CRL if off and compiled in, set options */
int wolfSSL_CertManagerEnableCRL(WOLFSSL_CERT_MANAGER* cm, int options)
{
int ret = WOLFSSL_SUCCESS;
(void)options;
WOLFSSL_ENTER("wolfSSL_CertManagerEnableCRL");
if (cm == NULL)
return BAD_FUNC_ARG;
#ifdef HAVE_CRL
if (cm->crl == NULL) {
cm->crl = (WOLFSSL_CRL*)XMALLOC(sizeof(WOLFSSL_CRL), cm->heap,
DYNAMIC_TYPE_CRL);
if (cm->crl == NULL)
return MEMORY_E;
if (InitCRL(cm->crl, cm) != 0) {
WOLFSSL_MSG("Init CRL failed");
FreeCRL(cm->crl, 1);
cm->crl = NULL;
return WOLFSSL_FAILURE;
}
#ifdef HAVE_CRL_IO
cm->crl->crlIOCb = EmbedCrlLookup;
#endif
}
cm->crlEnabled = 1;
if (options & WOLFSSL_CRL_CHECKALL)
cm->crlCheckAll = 1;
#else
ret = NOT_COMPILED_IN;
#endif
return ret;
}
int wolfSSL_CertManagerDisableCRL(WOLFSSL_CERT_MANAGER* cm)
{
WOLFSSL_ENTER("wolfSSL_CertManagerDisableCRL");
if (cm == NULL)
return BAD_FUNC_ARG;
cm->crlEnabled = 0;
return WOLFSSL_SUCCESS;
}
/* Verify the certificate, WOLFSSL_SUCCESS for ok, < 0 for error */
int wolfSSL_CertManagerVerifyBuffer(WOLFSSL_CERT_MANAGER* cm, const byte* buff,
long sz, int format)
{
int ret = 0;
DerBuffer* der = NULL;
#ifdef WOLFSSL_SMALL_STACK
DecodedCert* cert = NULL;
#else
DecodedCert cert[1];
#endif
WOLFSSL_ENTER("wolfSSL_CertManagerVerifyBuffer");
#ifdef WOLFSSL_SMALL_STACK
cert = (DecodedCert*)XMALLOC(sizeof(DecodedCert), cm->heap,
DYNAMIC_TYPE_DCERT);
if (cert == NULL)
return MEMORY_E;
#endif
if (format == WOLFSSL_FILETYPE_PEM) {
int eccKey = 0; /* not used */
#ifdef WOLFSSL_SMALL_STACK
EncryptedInfo* info = NULL;
#else
EncryptedInfo info[1];
#endif
#ifdef WOLFSSL_SMALL_STACK
info = (EncryptedInfo*)XMALLOC(sizeof(EncryptedInfo), cm->heap,
DYNAMIC_TYPE_ENCRYPTEDINFO);
if (info == NULL) {
XFREE(cert, cm->heap, DYNAMIC_TYPE_DCERT);
return MEMORY_E;
}
#endif
info->set = 0;
info->ctx = NULL;
info->consumed = 0;
ret = PemToDer(buff, sz, CERT_TYPE, &der, cm->heap, info, &eccKey);
if (ret != 0) {
FreeDer(&der);
#ifdef WOLFSSL_SMALL_STACK
XFREE(cert, cm->heap, DYNAMIC_TYPE_DCERT);
XFREE(info, cm->heap, DYNAMIC_TYPE_ENCRYPTEDINFO);
#endif
return ret;
}
InitDecodedCert(cert, der->buffer, der->length, cm->heap);
#ifdef WOLFSSL_SMALL_STACK
XFREE(info, cm->heap, DYNAMIC_TYPE_ENCRYPTEDINFO);
#endif
}
else
InitDecodedCert(cert, (byte*)buff, (word32)sz, cm->heap);
if (ret == 0)
ret = ParseCertRelative(cert, CERT_TYPE, 1, cm);
#ifdef HAVE_CRL
if (ret == 0 && cm->crlEnabled)
ret = CheckCertCRL(cm->crl, cert);
#endif
FreeDecodedCert(cert);
FreeDer(&der);
#ifdef WOLFSSL_SMALL_STACK
XFREE(cert, cm->heap, DYNAMIC_TYPE_DCERT);
#endif
return ret == 0 ? WOLFSSL_SUCCESS : ret;
}
/* turn on OCSP if off and compiled in, set options */
int wolfSSL_CertManagerEnableOCSP(WOLFSSL_CERT_MANAGER* cm, int options)
{
int ret = WOLFSSL_SUCCESS;
(void)options;
WOLFSSL_ENTER("wolfSSL_CertManagerEnableOCSP");
if (cm == NULL)
return BAD_FUNC_ARG;
#ifdef HAVE_OCSP
if (cm->ocsp == NULL) {
cm->ocsp = (WOLFSSL_OCSP*)XMALLOC(sizeof(WOLFSSL_OCSP), cm->heap,
DYNAMIC_TYPE_OCSP);
if (cm->ocsp == NULL)
return MEMORY_E;
if (InitOCSP(cm->ocsp, cm) != 0) {
WOLFSSL_MSG("Init OCSP failed");
FreeOCSP(cm->ocsp, 1);
cm->ocsp = NULL;
return WOLFSSL_FAILURE;
}
}
cm->ocspEnabled = 1;
if (options & WOLFSSL_OCSP_URL_OVERRIDE)
cm->ocspUseOverrideURL = 1;
if (options & WOLFSSL_OCSP_NO_NONCE)
cm->ocspSendNonce = 0;
else
cm->ocspSendNonce = 1;
if (options & WOLFSSL_OCSP_CHECKALL)
cm->ocspCheckAll = 1;
#ifndef WOLFSSL_USER_IO
cm->ocspIOCb = EmbedOcspLookup;
cm->ocspRespFreeCb = EmbedOcspRespFree;
cm->ocspIOCtx = cm->heap;
#endif /* WOLFSSL_USER_IO */
#else
ret = NOT_COMPILED_IN;
#endif
return ret;
}
int wolfSSL_CertManagerDisableOCSP(WOLFSSL_CERT_MANAGER* cm)
{
WOLFSSL_ENTER("wolfSSL_CertManagerDisableOCSP");
if (cm == NULL)
return BAD_FUNC_ARG;
cm->ocspEnabled = 0;
return WOLFSSL_SUCCESS;
}
/* turn on OCSP Stapling if off and compiled in, set options */
int wolfSSL_CertManagerEnableOCSPStapling(WOLFSSL_CERT_MANAGER* cm)
{
int ret = WOLFSSL_SUCCESS;
WOLFSSL_ENTER("wolfSSL_CertManagerEnableOCSPStapling");
if (cm == NULL)
return BAD_FUNC_ARG;
#if defined(HAVE_CERTIFICATE_STATUS_REQUEST) \
|| defined(HAVE_CERTIFICATE_STATUS_REQUEST_V2)
if (cm->ocsp_stapling == NULL) {
cm->ocsp_stapling = (WOLFSSL_OCSP*)XMALLOC(sizeof(WOLFSSL_OCSP),
cm->heap, DYNAMIC_TYPE_OCSP);
if (cm->ocsp_stapling == NULL)
return MEMORY_E;
if (InitOCSP(cm->ocsp_stapling, cm) != 0) {
WOLFSSL_MSG("Init OCSP failed");
FreeOCSP(cm->ocsp_stapling, 1);
cm->ocsp_stapling = NULL;
return WOLFSSL_FAILURE;
}
}
cm->ocspStaplingEnabled = 1;
#ifndef WOLFSSL_USER_IO
cm->ocspIOCb = EmbedOcspLookup;
cm->ocspRespFreeCb = EmbedOcspRespFree;
cm->ocspIOCtx = cm->heap;
#endif /* WOLFSSL_USER_IO */
#else
ret = NOT_COMPILED_IN;
#endif
return ret;
}
int wolfSSL_CertManagerDisableOCSPStapling(WOLFSSL_CERT_MANAGER* cm)
{
int ret = WOLFSSL_SUCCESS;
WOLFSSL_ENTER("wolfSSL_CertManagerDisableOCSPStapling");
if (cm == NULL)
return BAD_FUNC_ARG;
#if defined(HAVE_CERTIFICATE_STATUS_REQUEST) \
|| defined(HAVE_CERTIFICATE_STATUS_REQUEST_V2)
cm->ocspStaplingEnabled = 0;
#else
ret = NOT_COMPILED_IN;
#endif
return ret;
}
#ifdef HAVE_OCSP
/* check CRL if enabled, WOLFSSL_SUCCESS */
int wolfSSL_CertManagerCheckOCSP(WOLFSSL_CERT_MANAGER* cm, byte* der, int sz)
{
int ret;
#ifdef WOLFSSL_SMALL_STACK
DecodedCert* cert = NULL;
#else
DecodedCert cert[1];
#endif
WOLFSSL_ENTER("wolfSSL_CertManagerCheckOCSP");
if (cm == NULL)
return BAD_FUNC_ARG;
if (cm->ocspEnabled == 0)
return WOLFSSL_SUCCESS;
#ifdef WOLFSSL_SMALL_STACK
cert = (DecodedCert*)XMALLOC(sizeof(DecodedCert), NULL, DYNAMIC_TYPE_DCERT);
if (cert == NULL)
return MEMORY_E;
#endif
InitDecodedCert(cert, der, sz, NULL);
if ((ret = ParseCertRelative(cert, CERT_TYPE, VERIFY_OCSP, cm)) != 0) {
WOLFSSL_MSG("ParseCert failed");
}
else if ((ret = CheckCertOCSP(cm->ocsp, cert, NULL)) != 0) {
WOLFSSL_MSG("CheckCertOCSP failed");
}
FreeDecodedCert(cert);
#ifdef WOLFSSL_SMALL_STACK
XFREE(cert, NULL, DYNAMIC_TYPE_DCERT);
#endif
return ret == 0 ? WOLFSSL_SUCCESS : ret;
}
int wolfSSL_CertManagerSetOCSPOverrideURL(WOLFSSL_CERT_MANAGER* cm,
const char* url)
{
WOLFSSL_ENTER("wolfSSL_CertManagerSetOCSPOverrideURL");
if (cm == NULL)
return BAD_FUNC_ARG;
XFREE(cm->ocspOverrideURL, cm->heap, DYNAMIC_TYPE_URL);
if (url != NULL) {
int urlSz = (int)XSTRLEN(url) + 1;
cm->ocspOverrideURL = (char*)XMALLOC(urlSz, cm->heap, DYNAMIC_TYPE_URL);
if (cm->ocspOverrideURL != NULL) {
XMEMCPY(cm->ocspOverrideURL, url, urlSz);
}
else
return MEMORY_E;
}
else
cm->ocspOverrideURL = NULL;
return WOLFSSL_SUCCESS;
}
int wolfSSL_CertManagerSetOCSP_Cb(WOLFSSL_CERT_MANAGER* cm,
CbOCSPIO ioCb, CbOCSPRespFree respFreeCb, void* ioCbCtx)
{
WOLFSSL_ENTER("wolfSSL_CertManagerSetOCSP_Cb");
if (cm == NULL)
return BAD_FUNC_ARG;
cm->ocspIOCb = ioCb;
cm->ocspRespFreeCb = respFreeCb;
cm->ocspIOCtx = ioCbCtx;
return WOLFSSL_SUCCESS;
}
int wolfSSL_EnableOCSP(WOLFSSL* ssl, int options)
{
WOLFSSL_ENTER("wolfSSL_EnableOCSP");
if (ssl)
return wolfSSL_CertManagerEnableOCSP(ssl->ctx->cm, options);
else
return BAD_FUNC_ARG;
}
int wolfSSL_DisableOCSP(WOLFSSL* ssl)
{
WOLFSSL_ENTER("wolfSSL_DisableOCSP");
if (ssl)
return wolfSSL_CertManagerDisableOCSP(ssl->ctx->cm);
else
return BAD_FUNC_ARG;
}
int wolfSSL_EnableOCSPStapling(WOLFSSL* ssl)
{
WOLFSSL_ENTER("wolfSSL_EnableOCSPStapling");
if (ssl)
return wolfSSL_CertManagerEnableOCSPStapling(ssl->ctx->cm);
else
return BAD_FUNC_ARG;
}
int wolfSSL_DisableOCSPStapling(WOLFSSL* ssl)
{
WOLFSSL_ENTER("wolfSSL_DisableOCSPStapling");
if (ssl)
return wolfSSL_CertManagerDisableOCSPStapling(ssl->ctx->cm);
else
return BAD_FUNC_ARG;
}
int wolfSSL_SetOCSP_OverrideURL(WOLFSSL* ssl, const char* url)
{
WOLFSSL_ENTER("wolfSSL_SetOCSP_OverrideURL");
if (ssl)
return wolfSSL_CertManagerSetOCSPOverrideURL(ssl->ctx->cm, url);
else
return BAD_FUNC_ARG;
}
int wolfSSL_SetOCSP_Cb(WOLFSSL* ssl,
CbOCSPIO ioCb, CbOCSPRespFree respFreeCb, void* ioCbCtx)
{
WOLFSSL_ENTER("wolfSSL_SetOCSP_Cb");
if (ssl) {
ssl->ocspIOCtx = ioCbCtx; /* use SSL specific ioCbCtx */
return wolfSSL_CertManagerSetOCSP_Cb(ssl->ctx->cm,
ioCb, respFreeCb, NULL);
}
else
return BAD_FUNC_ARG;
}
int wolfSSL_CTX_EnableOCSP(WOLFSSL_CTX* ctx, int options)
{
WOLFSSL_ENTER("wolfSSL_CTX_EnableOCSP");
if (ctx)
return wolfSSL_CertManagerEnableOCSP(ctx->cm, options);
else
return BAD_FUNC_ARG;
}
int wolfSSL_CTX_DisableOCSP(WOLFSSL_CTX* ctx)
{
WOLFSSL_ENTER("wolfSSL_CTX_DisableOCSP");
if (ctx)
return wolfSSL_CertManagerDisableOCSP(ctx->cm);
else
return BAD_FUNC_ARG;
}
int wolfSSL_CTX_SetOCSP_OverrideURL(WOLFSSL_CTX* ctx, const char* url)
{
WOLFSSL_ENTER("wolfSSL_SetOCSP_OverrideURL");
if (ctx)
return wolfSSL_CertManagerSetOCSPOverrideURL(ctx->cm, url);
else
return BAD_FUNC_ARG;
}
int wolfSSL_CTX_SetOCSP_Cb(WOLFSSL_CTX* ctx, CbOCSPIO ioCb,
CbOCSPRespFree respFreeCb, void* ioCbCtx)
{
WOLFSSL_ENTER("wolfSSL_CTX_SetOCSP_Cb");
if (ctx)
return wolfSSL_CertManagerSetOCSP_Cb(ctx->cm, ioCb,
respFreeCb, ioCbCtx);
else
return BAD_FUNC_ARG;
}
#if defined(HAVE_CERTIFICATE_STATUS_REQUEST) \
|| defined(HAVE_CERTIFICATE_STATUS_REQUEST_V2)
int wolfSSL_CTX_EnableOCSPStapling(WOLFSSL_CTX* ctx)
{
WOLFSSL_ENTER("wolfSSL_CTX_EnableOCSPStapling");
if (ctx)
return wolfSSL_CertManagerEnableOCSPStapling(ctx->cm);
else
return BAD_FUNC_ARG;
}
int wolfSSL_CTX_DisableOCSPStapling(WOLFSSL_CTX* ctx)
{
WOLFSSL_ENTER("wolfSSL_CTX_DisableOCSPStapling");
if (ctx)
return wolfSSL_CertManagerDisableOCSPStapling(ctx->cm);
else
return BAD_FUNC_ARG;
}
#endif /* HAVE_CERTIFICATE_STATUS_REQUEST || HAVE_CERTIFICATE_STATUS_REQUEST_V2 */
#endif /* HAVE_OCSP */
#ifndef NO_FILESYSTEM
/* process a file with name fname into ctx of format and type
userChain specifies a user certificate chain to pass during handshake */
int ProcessFile(WOLFSSL_CTX* ctx, const char* fname, int format, int type,
WOLFSSL* ssl, int userChain, WOLFSSL_CRL* crl)
{
#ifdef WOLFSSL_SMALL_STACK
byte staticBuffer[1]; /* force heap usage */
#else
byte staticBuffer[FILE_BUFFER_SIZE];
#endif
byte* myBuffer = staticBuffer;
int dynamic = 0;
int ret;
long sz = 0;
XFILE file;
void* heapHint = wolfSSL_CTX_GetHeap(ctx, ssl);
(void)crl;
(void)heapHint;
if (fname == NULL) return WOLFSSL_BAD_FILE;
file = XFOPEN(fname, "rb");
if (file == XBADFILE) return WOLFSSL_BAD_FILE;
XFSEEK(file, 0, XSEEK_END);
sz = XFTELL(file);
XREWIND(file);
if (sz > (long)sizeof(staticBuffer)) {
WOLFSSL_MSG("Getting dynamic buffer");
myBuffer = (byte*)XMALLOC(sz, heapHint, DYNAMIC_TYPE_FILE);
if (myBuffer == NULL) {
XFCLOSE(file);
return WOLFSSL_BAD_FILE;
}
dynamic = 1;
}
else if (sz <= 0) {
XFCLOSE(file);
return WOLFSSL_BAD_FILE;
}
if ( (ret = (int)XFREAD(myBuffer, 1, sz, file)) != sz)
ret = WOLFSSL_BAD_FILE;
else {
if ((type == CA_TYPE || type == TRUSTED_PEER_TYPE)
&& format == WOLFSSL_FILETYPE_PEM)
ret = ProcessChainBuffer(ctx, myBuffer, sz, format, type, ssl);
#ifdef HAVE_CRL
else if (type == CRL_TYPE)
ret = BufferLoadCRL(crl, myBuffer, sz, format, 0);
#endif
else
ret = ProcessBuffer(ctx, myBuffer, sz, format, type, ssl, NULL,
userChain);
}
XFCLOSE(file);
if (dynamic)
XFREE(myBuffer, heapHint, DYNAMIC_TYPE_FILE);
return ret;
}
/* loads file then loads each file in path, no c_rehash */
int wolfSSL_CTX_load_verify_locations(WOLFSSL_CTX* ctx, const char* file,
const char* path)
{
int ret = WOLFSSL_SUCCESS;
#ifndef NO_WOLFSSL_DIR
int fileRet;
#endif
WOLFSSL_ENTER("wolfSSL_CTX_load_verify_locations");
if (ctx == NULL || (file == NULL && path == NULL) )
return WOLFSSL_FAILURE;
if (file)
ret = ProcessFile(ctx, file, WOLFSSL_FILETYPE_PEM, CA_TYPE, NULL, 0, NULL);
if (ret == WOLFSSL_SUCCESS && path) {
#ifndef NO_WOLFSSL_DIR
char* name = NULL;
#ifdef WOLFSSL_SMALL_STACK
ReadDirCtx* readCtx = NULL;
readCtx = (ReadDirCtx*)XMALLOC(sizeof(ReadDirCtx), ctx->heap,
DYNAMIC_TYPE_DIRCTX);
if (readCtx == NULL)
return MEMORY_E;
#else
ReadDirCtx readCtx[1];
#endif
/* try to load each regular file in path */
fileRet = wc_ReadDirFirst(readCtx, path, &name);
while (fileRet == 0 && name) {
ret = ProcessFile(ctx, name, WOLFSSL_FILETYPE_PEM, CA_TYPE,
NULL, 0, NULL);
if (ret != WOLFSSL_SUCCESS)
break;
fileRet = wc_ReadDirNext(readCtx, path, &name);
}
wc_ReadDirClose(readCtx);
/* pass directory read failure to response code */
if (ret == WOLFSSL_SUCCESS && fileRet != -1) {
ret = fileRet;
}
#ifdef WOLFSSL_SMALL_STACK
XFREE(readCtx, ctx->heap, DYNAMIC_TYPE_DIRCTX);
#endif
#else
ret = NOT_COMPILED_IN;
#endif
}
return ret;
}
#ifdef WOLFSSL_TRUST_PEER_CERT
/* Used to specify a peer cert to match when connecting
ctx : the ctx structure to load in peer cert
file: the string name of cert file
type: type of format such as PEM/DER
*/
int wolfSSL_CTX_trust_peer_cert(WOLFSSL_CTX* ctx, const char* file, int type)
{
WOLFSSL_ENTER("wolfSSL_CTX_trust_peer_cert");
if (ctx == NULL || file == NULL) {
return WOLFSSL_FAILURE;
}
return ProcessFile(ctx, file, type, TRUSTED_PEER_TYPE, NULL, 0, NULL);
}
#endif /* WOLFSSL_TRUST_PEER_CERT */
/* Verify the certificate, WOLFSSL_SUCCESS for ok, < 0 for error */
int wolfSSL_CertManagerVerify(WOLFSSL_CERT_MANAGER* cm, const char* fname,
int format)
{
int ret = WOLFSSL_FATAL_ERROR;
#ifdef WOLFSSL_SMALL_STACK
byte staticBuffer[1]; /* force heap usage */
#else
byte staticBuffer[FILE_BUFFER_SIZE];
#endif
byte* myBuffer = staticBuffer;
int dynamic = 0;
long sz = 0;
XFILE file = XFOPEN(fname, "rb");
WOLFSSL_ENTER("wolfSSL_CertManagerVerify");
if (file == XBADFILE) return WOLFSSL_BAD_FILE;
XFSEEK(file, 0, XSEEK_END);
sz = XFTELL(file);
XREWIND(file);
if (sz > MAX_WOLFSSL_FILE_SIZE || sz <= 0) {
WOLFSSL_MSG("CertManagerVerify file bad size");
XFCLOSE(file);
return WOLFSSL_BAD_FILE;
}
if (sz > (long)sizeof(staticBuffer)) {
WOLFSSL_MSG("Getting dynamic buffer");
myBuffer = (byte*) XMALLOC(sz, cm->heap, DYNAMIC_TYPE_FILE);
if (myBuffer == NULL) {
XFCLOSE(file);
return WOLFSSL_BAD_FILE;
}
dynamic = 1;
}
if ( (ret = (int)XFREAD(myBuffer, 1, sz, file)) != sz)
ret = WOLFSSL_BAD_FILE;
else
ret = wolfSSL_CertManagerVerifyBuffer(cm, myBuffer, sz, format);
XFCLOSE(file);
if (dynamic)
XFREE(myBuffer, cm->heap, DYNAMIC_TYPE_FILE);
return ret;
}
/* like load verify locations, 1 for success, < 0 for error */
int wolfSSL_CertManagerLoadCA(WOLFSSL_CERT_MANAGER* cm, const char* file,
const char* path)
{
int ret = WOLFSSL_FATAL_ERROR;
WOLFSSL_CTX* tmp;
WOLFSSL_ENTER("wolfSSL_CertManagerLoadCA");
if (cm == NULL) {
WOLFSSL_MSG("No CertManager error");
return ret;
}
tmp = wolfSSL_CTX_new(cm_pick_method());
if (tmp == NULL) {
WOLFSSL_MSG("CTX new failed");
return ret;
}
/* for tmp use */
wolfSSL_CertManagerFree(tmp->cm);
tmp->cm = cm;
ret = wolfSSL_CTX_load_verify_locations(tmp, file, path);
/* don't loose our good one */
tmp->cm = NULL;
wolfSSL_CTX_free(tmp);
return ret;
}
int wolfSSL_CTX_check_private_key(WOLFSSL_CTX* ctx)
{
/* TODO: check private against public for RSA match */
(void)ctx;
WOLFSSL_ENTER("SSL_CTX_check_private_key");
return WOLFSSL_SUCCESS;
}
#ifdef HAVE_CRL
/* check CRL if enabled, WOLFSSL_SUCCESS */
int wolfSSL_CertManagerCheckCRL(WOLFSSL_CERT_MANAGER* cm, byte* der, int sz)
{
int ret = 0;
#ifdef WOLFSSL_SMALL_STACK
DecodedCert* cert = NULL;
#else
DecodedCert cert[1];
#endif
WOLFSSL_ENTER("wolfSSL_CertManagerCheckCRL");
if (cm == NULL)
return BAD_FUNC_ARG;
if (cm->crlEnabled == 0)
return WOLFSSL_SUCCESS;
#ifdef WOLFSSL_SMALL_STACK
cert = (DecodedCert*)XMALLOC(sizeof(DecodedCert), NULL, DYNAMIC_TYPE_DCERT);
if (cert == NULL)
return MEMORY_E;
#endif
InitDecodedCert(cert, der, sz, NULL);
if ((ret = ParseCertRelative(cert, CERT_TYPE, VERIFY_CRL, cm)) != 0) {
WOLFSSL_MSG("ParseCert failed");
}
else if ((ret = CheckCertCRL(cm->crl, cert)) != 0) {
WOLFSSL_MSG("CheckCertCRL failed");
}
FreeDecodedCert(cert);
#ifdef WOLFSSL_SMALL_STACK
XFREE(cert, NULL, DYNAMIC_TYPE_DCERT);
#endif
return ret == 0 ? WOLFSSL_SUCCESS : ret;
}
int wolfSSL_CertManagerSetCRL_Cb(WOLFSSL_CERT_MANAGER* cm, CbMissingCRL cb)
{
WOLFSSL_ENTER("wolfSSL_CertManagerSetCRL_Cb");
if (cm == NULL)
return BAD_FUNC_ARG;
cm->cbMissingCRL = cb;
return WOLFSSL_SUCCESS;
}
#ifdef HAVE_CRL_IO
int wolfSSL_CertManagerSetCRL_IOCb(WOLFSSL_CERT_MANAGER* cm, CbCrlIO cb)
{
if (cm == NULL)
return BAD_FUNC_ARG;
cm->crl->crlIOCb = cb;
return WOLFSSL_SUCCESS;
}
#endif
int wolfSSL_CertManagerLoadCRL(WOLFSSL_CERT_MANAGER* cm, const char* path,
int type, int monitor)
{
WOLFSSL_ENTER("wolfSSL_CertManagerLoadCRL");
if (cm == NULL)
return BAD_FUNC_ARG;
if (cm->crl == NULL) {
if (wolfSSL_CertManagerEnableCRL(cm, 0) != WOLFSSL_SUCCESS) {
WOLFSSL_MSG("Enable CRL failed");
return WOLFSSL_FATAL_ERROR;
}
}
return LoadCRL(cm->crl, path, type, monitor);
}
int wolfSSL_EnableCRL(WOLFSSL* ssl, int options)
{
WOLFSSL_ENTER("wolfSSL_EnableCRL");
if (ssl)
return wolfSSL_CertManagerEnableCRL(ssl->ctx->cm, options);
else
return BAD_FUNC_ARG;
}
int wolfSSL_DisableCRL(WOLFSSL* ssl)
{
WOLFSSL_ENTER("wolfSSL_DisableCRL");
if (ssl)
return wolfSSL_CertManagerDisableCRL(ssl->ctx->cm);
else
return BAD_FUNC_ARG;
}
int wolfSSL_LoadCRL(WOLFSSL* ssl, const char* path, int type, int monitor)
{
WOLFSSL_ENTER("wolfSSL_LoadCRL");
if (ssl)
return wolfSSL_CertManagerLoadCRL(ssl->ctx->cm, path, type, monitor);
else
return BAD_FUNC_ARG;
}
int wolfSSL_SetCRL_Cb(WOLFSSL* ssl, CbMissingCRL cb)
{
WOLFSSL_ENTER("wolfSSL_SetCRL_Cb");
if (ssl)
return wolfSSL_CertManagerSetCRL_Cb(ssl->ctx->cm, cb);
else
return BAD_FUNC_ARG;
}
#ifdef HAVE_CRL_IO
int wolfSSL_SetCRL_IOCb(WOLFSSL* ssl, CbCrlIO cb)
{
WOLFSSL_ENTER("wolfSSL_SetCRL_Cb");
if (ssl)
return wolfSSL_CertManagerSetCRL_IOCb(ssl->ctx->cm, cb);
else
return BAD_FUNC_ARG;
}
#endif
int wolfSSL_CTX_EnableCRL(WOLFSSL_CTX* ctx, int options)
{
WOLFSSL_ENTER("wolfSSL_CTX_EnableCRL");
if (ctx)
return wolfSSL_CertManagerEnableCRL(ctx->cm, options);
else
return BAD_FUNC_ARG;
}
int wolfSSL_CTX_DisableCRL(WOLFSSL_CTX* ctx)
{
WOLFSSL_ENTER("wolfSSL_CTX_DisableCRL");
if (ctx)
return wolfSSL_CertManagerDisableCRL(ctx->cm);
else
return BAD_FUNC_ARG;
}
int wolfSSL_CTX_LoadCRL(WOLFSSL_CTX* ctx, const char* path,
int type, int monitor)
{
WOLFSSL_ENTER("wolfSSL_CTX_LoadCRL");
if (ctx)
return wolfSSL_CertManagerLoadCRL(ctx->cm, path, type, monitor);
else
return BAD_FUNC_ARG;
}
int wolfSSL_CTX_SetCRL_Cb(WOLFSSL_CTX* ctx, CbMissingCRL cb)
{
WOLFSSL_ENTER("wolfSSL_CTX_SetCRL_Cb");
if (ctx)
return wolfSSL_CertManagerSetCRL_Cb(ctx->cm, cb);
else
return BAD_FUNC_ARG;
}
#ifdef HAVE_CRL_IO
int wolfSSL_CTX_SetCRL_IOCb(WOLFSSL_CTX* ctx, CbCrlIO cb)
{
WOLFSSL_ENTER("wolfSSL_CTX_SetCRL_IOCb");
if (ctx)
return wolfSSL_CertManagerSetCRL_IOCb(ctx->cm, cb);
else
return BAD_FUNC_ARG;
}
#endif
#endif /* HAVE_CRL */
#ifdef WOLFSSL_DER_LOAD
/* Add format parameter to allow DER load of CA files */
int wolfSSL_CTX_der_load_verify_locations(WOLFSSL_CTX* ctx, const char* file,
int format)
{
WOLFSSL_ENTER("wolfSSL_CTX_der_load_verify_locations");
if (ctx == NULL || file == NULL)
return WOLFSSL_FAILURE;
if (ProcessFile(ctx, file, format, CA_TYPE, NULL, 0, NULL) == WOLFSSL_SUCCESS)
return WOLFSSL_SUCCESS;
return WOLFSSL_FAILURE;
}
#endif /* WOLFSSL_DER_LOAD */
#ifdef WOLFSSL_CERT_GEN
/* load pem cert from file into der buffer, return der size or error */
int wolfSSL_PemCertToDer(const char* fileName, unsigned char* derBuf, int derSz)
{
#ifdef WOLFSSL_SMALL_STACK
EncryptedInfo* info = NULL;
byte staticBuffer[1]; /* force XMALLOC */
#else
EncryptedInfo info[1];
byte staticBuffer[FILE_BUFFER_SIZE];
#endif
byte* fileBuf = staticBuffer;
int dynamic = 0;
int ret = 0;
int ecc = 0;
long sz = 0;
XFILE file = XFOPEN(fileName, "rb");
DerBuffer* converted = NULL;
WOLFSSL_ENTER("wolfSSL_PemCertToDer");
if (file == XBADFILE) {
ret = WOLFSSL_BAD_FILE;
}
else {
XFSEEK(file, 0, XSEEK_END);
sz = XFTELL(file);
XREWIND(file);
if (sz <= 0) {
ret = WOLFSSL_BAD_FILE;
}
else if (sz > (long)sizeof(staticBuffer)) {
#ifdef WOLFSSL_STATIC_MEMORY
WOLFSSL_MSG("File was larger then static buffer");
return MEMORY_E;
#endif
fileBuf = (byte*)XMALLOC(sz, 0, DYNAMIC_TYPE_FILE);
if (fileBuf == NULL)
ret = MEMORY_E;
else
dynamic = 1;
}
if (ret == 0) {
if ( (ret = (int)XFREAD(fileBuf, 1, sz, file)) != sz) {
ret = WOLFSSL_BAD_FILE;
}
else {
#ifdef WOLFSSL_SMALL_STACK
info = (EncryptedInfo*)XMALLOC(sizeof(EncryptedInfo), NULL,
DYNAMIC_TYPE_ENCRYPTEDINFO);
if (info == NULL)
ret = MEMORY_E;
else
#endif
{
ret = PemToDer(fileBuf, sz, CA_TYPE, &converted,
0, info, &ecc);
#ifdef WOLFSSL_SMALL_STACK
XFREE(info, NULL, DYNAMIC_TYPE_ENCRYPTEDINFO);
#endif
}
}
if (ret == 0) {
if (converted->length < (word32)derSz) {
XMEMCPY(derBuf, converted->buffer, converted->length);
ret = converted->length;
}
else
ret = BUFFER_E;
}
FreeDer(&converted);
}
XFCLOSE(file);
if (dynamic)
XFREE(fileBuf, 0, DYNAMIC_TYPE_FILE);
}
return ret;
}
#endif /* WOLFSSL_CERT_GEN */
#if defined(WOLFSSL_CERT_EXT) || defined(WOLFSSL_PUB_PEM_TO_DER)
/* load pem public key from file into der buffer, return der size or error */
int wolfSSL_PemPubKeyToDer(const char* fileName,
unsigned char* derBuf, int derSz)
{
#ifdef WOLFSSL_SMALL_STACK
byte staticBuffer[1]; /* force XMALLOC */
#else
byte staticBuffer[FILE_BUFFER_SIZE];
#endif
byte* fileBuf = staticBuffer;
int dynamic = 0;
int ret = 0;
long sz = 0;
XFILE file = XFOPEN(fileName, "rb");
DerBuffer* converted = NULL;
WOLFSSL_ENTER("wolfSSL_PemPubKeyToDer");
if (file == XBADFILE) {
ret = WOLFSSL_BAD_FILE;
}
else {
XFSEEK(file, 0, XSEEK_END);
sz = XFTELL(file);
XREWIND(file);
if (sz <= 0) {
ret = WOLFSSL_BAD_FILE;
}
else if (sz > (long)sizeof(staticBuffer)) {
#ifdef WOLFSSL_STATIC_MEMORY
WOLFSSL_MSG("File was larger then static buffer");
return MEMORY_E;
#endif
fileBuf = (byte*)XMALLOC(sz, 0, DYNAMIC_TYPE_FILE);
if (fileBuf == NULL)
ret = MEMORY_E;
else
dynamic = 1;
}
if (ret == 0) {
if ( (ret = (int)XFREAD(fileBuf, 1, sz, file)) != sz)
ret = WOLFSSL_BAD_FILE;
else
ret = PemToDer(fileBuf, sz, PUBLICKEY_TYPE, &converted,
0, NULL, NULL);
if (ret == 0) {
if (converted->length < (word32)derSz) {
XMEMCPY(derBuf, converted->buffer, converted->length);
ret = converted->length;
}
else
ret = BUFFER_E;
}
FreeDer(&converted);
}
XFCLOSE(file);
if (dynamic)
XFREE(fileBuf, 0, DYNAMIC_TYPE_FILE);
}
return ret;
}
#endif /* WOLFSSL_CERT_EXT || WOLFSSL_PUB_PEM_TO_DER */
int wolfSSL_CTX_use_certificate_file(WOLFSSL_CTX* ctx, const char* file,
int format)
{
WOLFSSL_ENTER("wolfSSL_CTX_use_certificate_file");
if (ProcessFile(ctx, file, format, CERT_TYPE, NULL, 0, NULL) == WOLFSSL_SUCCESS)
return WOLFSSL_SUCCESS;
return WOLFSSL_FAILURE;
}
int wolfSSL_CTX_use_PrivateKey_file(WOLFSSL_CTX* ctx, const char* file,
int format)
{
WOLFSSL_ENTER("wolfSSL_CTX_use_PrivateKey_file");
if (ProcessFile(ctx, file, format, PRIVATEKEY_TYPE, NULL, 0, NULL)
== WOLFSSL_SUCCESS)
return WOLFSSL_SUCCESS;
return WOLFSSL_FAILURE;
}
/* get cert chaining depth using ssl struct */
long wolfSSL_get_verify_depth(WOLFSSL* ssl)
{
if(ssl == NULL) {
return BAD_FUNC_ARG;
}
#ifndef OPENSSL_EXTRA
return MAX_CHAIN_DEPTH;
#else
return ssl->options.verifyDepth;
#endif
}
/* get cert chaining depth using ctx struct */
long wolfSSL_CTX_get_verify_depth(WOLFSSL_CTX* ctx)
{
if(ctx == NULL) {
return BAD_FUNC_ARG;
}
#ifndef OPENSSL_EXTRA
return MAX_CHAIN_DEPTH;
#else
return ctx->verifyDepth;
#endif
}
int wolfSSL_CTX_use_certificate_chain_file(WOLFSSL_CTX* ctx, const char* file)
{
/* process up to MAX_CHAIN_DEPTH plus subject cert */
WOLFSSL_ENTER("wolfSSL_CTX_use_certificate_chain_file");
if (ProcessFile(ctx, file, WOLFSSL_FILETYPE_PEM,CERT_TYPE,NULL,1, NULL)
== WOLFSSL_SUCCESS)
return WOLFSSL_SUCCESS;
return WOLFSSL_FAILURE;
}
#ifndef NO_DH
/* server Diffie-Hellman parameters */
static int wolfSSL_SetTmpDH_file_wrapper(WOLFSSL_CTX* ctx, WOLFSSL* ssl,
const char* fname, int format)
{
#ifdef WOLFSSL_SMALL_STACK
byte staticBuffer[1]; /* force heap usage */
#else
byte staticBuffer[FILE_BUFFER_SIZE];
#endif
byte* myBuffer = staticBuffer;
int dynamic = 0;
int ret;
long sz = 0;
XFILE file;
if (ctx == NULL || fname == NULL)
return BAD_FUNC_ARG;
file = XFOPEN(fname, "rb");
if (file == XBADFILE) return WOLFSSL_BAD_FILE;
XFSEEK(file, 0, XSEEK_END);
sz = XFTELL(file);
XREWIND(file);
if (sz > (long)sizeof(staticBuffer)) {
WOLFSSL_MSG("Getting dynamic buffer");
myBuffer = (byte*) XMALLOC(sz, ctx->heap, DYNAMIC_TYPE_FILE);
if (myBuffer == NULL) {
XFCLOSE(file);
return WOLFSSL_BAD_FILE;
}
dynamic = 1;
}
else if (sz <= 0) {
XFCLOSE(file);
return WOLFSSL_BAD_FILE;
}
if ( (ret = (int)XFREAD(myBuffer, 1, sz, file)) != sz)
ret = WOLFSSL_BAD_FILE;
else {
if (ssl)
ret = wolfSSL_SetTmpDH_buffer(ssl, myBuffer, sz, format);
else
ret = wolfSSL_CTX_SetTmpDH_buffer(ctx, myBuffer, sz, format);
}
XFCLOSE(file);
if (dynamic)
XFREE(myBuffer, ctx->heap, DYNAMIC_TYPE_FILE);
return ret;
}
/* server Diffie-Hellman parameters */
int wolfSSL_SetTmpDH_file(WOLFSSL* ssl, const char* fname, int format)
{
if (ssl == NULL)
return BAD_FUNC_ARG;
return wolfSSL_SetTmpDH_file_wrapper(ssl->ctx, ssl, fname, format);
}
/* server Diffie-Hellman parameters */
int wolfSSL_CTX_SetTmpDH_file(WOLFSSL_CTX* ctx, const char* fname, int format)
{
return wolfSSL_SetTmpDH_file_wrapper(ctx, NULL, fname, format);
}
#endif /* NO_DH */
#ifdef OPENSSL_EXTRA
/* put SSL type in extra for now, not very common */
WOLFSSL_EVP_PKEY* wolfSSL_d2i_PrivateKey(int type, WOLFSSL_EVP_PKEY** out,
const unsigned char **in, long inSz)
{
WOLFSSL_EVP_PKEY* local;
WOLFSSL_ENTER("wolfSSL_d2i_PrivateKey");
if (in == NULL || inSz < 0) {
WOLFSSL_MSG("Bad argument");
return NULL;
}
local = wolfSSL_PKEY_new();
if (local == NULL) {
return NULL;
}
local->type = type;
local->pkey_sz = (int)inSz;
local->pkey.ptr = (char*)XMALLOC(inSz, NULL, DYNAMIC_TYPE_PUBLIC_KEY);
if (local->pkey.ptr == NULL) {
wolfSSL_EVP_PKEY_free(local);
local = NULL;
}
else {
XMEMCPY(local->pkey.ptr, *in, inSz);
}
if (out != NULL) {
*out = local;
}
return local;
}
long wolfSSL_ctrl(WOLFSSL* ssl, int cmd, long opt, void* pt)
{
WOLFSSL_STUB("wolfSSL_ctrl");
(void)ssl;
(void)cmd;
(void)opt;
(void)pt;
return WOLFSSL_FAILURE;
}
long wolfSSL_CTX_ctrl(WOLFSSL_CTX* ctx, int cmd, long opt, void* pt)
{
WOLFSSL_STUB("wolfSSL_CTX_ctrl");
(void)ctx;
(void)cmd;
(void)opt;
(void)pt;
return WOLFSSL_FAILURE;
}
#ifndef NO_CERTS
int wolfSSL_check_private_key(const WOLFSSL* ssl)
{
DecodedCert der;
word32 size;
byte* buff;
int ret;
if (ssl == NULL) {
return WOLFSSL_FAILURE;
}
size = ssl->buffers.certificate->length;
buff = ssl->buffers.certificate->buffer;
InitDecodedCert(&der, buff, size, ssl->heap);
if (ParseCertRelative(&der, CERT_TYPE, NO_VERIFY, NULL) != 0) {
FreeDecodedCert(&der);
return WOLFSSL_FAILURE;
}
size = ssl->buffers.key->length;
buff = ssl->buffers.key->buffer;
ret = wc_CheckPrivateKey(buff, size, &der);
FreeDecodedCert(&der);
return ret;
}
/* Looks for the extension matching the passed in nid
*
* c : if not null then is set to status value -2 if multiple occurances
* of the extension are found, -1 if not found, 0 if found and not
* critical, and 1 if found and critical.
* nid : Extension OID to be found.
* idx : if NULL return first extension found match, otherwise start search at
* idx location and set idx to the location of extension returned.
* returns NULL or a pointer to an WOLFSSL_STACK holding extension structure
*
* NOTE code for decoding extensions is in asn.c DecodeCertExtensions --
* use already decoded extension in this function to avoid decoding twice.
* Currently we do not make use of idx since getting pre decoded extensions.
*/
void* wolfSSL_X509_get_ext_d2i(const WOLFSSL_X509* x509,
int nid, int* c, int* idx)
{
WOLFSSL_STACK* sk = NULL;
WOLFSSL_ASN1_OBJECT* obj = NULL;
WOLFSSL_ENTER("wolfSSL_X509_get_ext_d2i");
if (x509 == NULL) {
return NULL;
}
if (c != NULL) {
*c = -1; /* default to not found */
}
sk = (WOLF_STACK_OF(WOLFSSL_ASN1_OBJECT)*)XMALLOC(
sizeof(WOLF_STACK_OF(WOLFSSL_ASN1_OBJECT)), NULL, DYNAMIC_TYPE_ASN1);
if (sk == NULL) {
return NULL;
}
XMEMSET(sk, 0, sizeof(WOLF_STACK_OF(WOLFSSL_ASN1_OBJECT)));
switch (nid) {
case BASIC_CA_OID:
if (x509->basicConstSet) {
obj = wolfSSL_ASN1_OBJECT_new();
if (c != NULL) {
*c = x509->basicConstCrit;
}
obj->type = BASIC_CA_OID;
}
else {
WOLFSSL_MSG("No Basic Constraint set");
}
break;
case ALT_NAMES_OID:
{
DNS_entry* dns;
if (x509->subjAltNameSet && x509->altNames != NULL) {
/* alt names are DNS_entry structs */
if (c != NULL) {
if (x509->altNames->next != NULL) {
*c = -2; /* more then one found */
}
else {
*c = x509->subjAltNameCrit;
}
}
dns = x509->altNames;
while (dns != NULL) {
obj = wolfSSL_ASN1_OBJECT_new();
obj->type = ALT_NAMES_OID;
obj->obj = (byte*)dns->name;
dns = dns->next;
/* last dns in list add at end of function */
if (dns != NULL) {
if (wolfSSL_sk_ASN1_OBJECT_push(sk, obj) !=
WOLFSSL_SUCCESS) {
WOLFSSL_MSG("Error pushing ASN1 object onto stack");
wolfSSL_ASN1_OBJECT_free(obj);
wolfSSL_sk_ASN1_OBJECT_free(sk);
sk = NULL;
}
}
}
}
else {
WOLFSSL_MSG("No Alt Names set");
}
}
break;
case CRL_DIST_OID:
if (x509->CRLdistSet && x509->CRLInfo != NULL) {
if (c != NULL) {
*c = x509->CRLdistCrit;
}
obj = wolfSSL_ASN1_OBJECT_new();
obj->type = CRL_DIST_OID;
obj->obj = x509->CRLInfo;
obj->objSz = x509->CRLInfoSz;
}
else {
WOLFSSL_MSG("No CRL dist set");
}
break;
case AUTH_INFO_OID:
if (x509->authInfoSet && x509->authInfo != NULL) {
if (c != NULL) {
*c = x509->authInfoCrit;
}
obj = wolfSSL_ASN1_OBJECT_new();
obj->type = AUTH_INFO_OID;
obj->obj = x509->authInfo;
obj->objSz = x509->authInfoSz;
}
else {
WOLFSSL_MSG("No Auth Info set");
}
break;
case AUTH_KEY_OID:
if (x509->authKeyIdSet) {
if (c != NULL) {
*c = x509->authKeyIdCrit;
}
obj = wolfSSL_ASN1_OBJECT_new();
obj->type = AUTH_KEY_OID;
obj->obj = x509->authKeyId;
obj->objSz = x509->authKeyIdSz;
}
else {
WOLFSSL_MSG("No Auth Key set");
}
break;
case SUBJ_KEY_OID:
if (x509->subjKeyIdSet) {
if (c != NULL) {
*c = x509->subjKeyIdCrit;
}
obj = wolfSSL_ASN1_OBJECT_new();
obj->type = SUBJ_KEY_OID;
obj->obj = x509->subjKeyId;
obj->objSz = x509->subjKeyIdSz;
}
else {
WOLFSSL_MSG("No Subject Key set");
}
break;
case CERT_POLICY_OID:
#ifdef WOLFSSL_CERT_EXT
{
int i;
if (x509->certPoliciesNb > 0) {
if (c != NULL) {
if (x509->certPoliciesNb > 1) {
*c = -2;
}
else {
*c = 0;
}
}
for (i = 0; i < x509->certPoliciesNb - 1; i++) {
obj = wolfSSL_ASN1_OBJECT_new();
obj->type = CERT_POLICY_OID;
obj->obj = (byte*)(x509->certPolicies[i]);
obj->objSz = MAX_CERTPOL_SZ;
if (wolfSSL_sk_ASN1_OBJECT_push(sk, obj)
!= WOLFSSL_SUCCESS) {
WOLFSSL_MSG("Error pushing ASN1 object onto stack");
wolfSSL_ASN1_OBJECT_free(obj);
wolfSSL_sk_ASN1_OBJECT_free(sk);
sk = NULL;
}
}
obj = wolfSSL_ASN1_OBJECT_new();
obj->type = CERT_POLICY_OID;
obj->obj = (byte*)(x509->certPolicies[i]);
obj->objSz = MAX_CERTPOL_SZ;
}
else {
WOLFSSL_MSG("No Cert Policy set");
}
}
#else
#ifdef WOLFSSL_SEP
if (x509->certPolicySet) {
if (c != NULL) {
*c = x509->certPolicyCrit;
}
obj = wolfSSL_ASN1_OBJECT_new();
obj->type = CERT_POLICY_OID;
}
else {
WOLFSSL_MSG("No Cert Policy set");
}
#else
WOLFSSL_MSG("wolfSSL not built with WOLFSSL_SEP or WOLFSSL_CERT_EXT");
#endif /* WOLFSSL_SEP */
#endif /* WOLFSSL_CERT_EXT */
break;
case KEY_USAGE_OID:
if (x509->keyUsageSet) {
if (c != NULL) {
*c = x509->keyUsageCrit;
}
obj = wolfSSL_ASN1_OBJECT_new();
obj->type = KEY_USAGE_OID;
obj->obj = (byte*)&(x509->keyUsage);
obj->objSz = sizeof(word16);
}
else {
WOLFSSL_MSG("No Key Usage set");
}
break;
case INHIBIT_ANY_OID:
WOLFSSL_MSG("INHIBIT ANY extension not supported");
break;
case EXT_KEY_USAGE_OID:
if (x509->extKeyUsageSrc != NULL) {
if (c != NULL) {
if (x509->extKeyUsageCount > 1) {
*c = -2;
}
else {
*c = x509->extKeyUsageCrit;
}
}
obj = wolfSSL_ASN1_OBJECT_new();
obj->type = EXT_KEY_USAGE_OID;
obj->obj = x509->extKeyUsageSrc;
obj->objSz = x509->extKeyUsageSz;
}
else {
WOLFSSL_MSG("No Extended Key Usage set");
}
break;
case NAME_CONS_OID:
WOLFSSL_MSG("Name Constraint OID extension not supported");
break;
case PRIV_KEY_USAGE_PERIOD_OID:
WOLFSSL_MSG("Private Key Usage Period extension not supported");
break;
case SUBJECT_INFO_ACCESS:
WOLFSSL_MSG("Subject Info Access extension not supported");
break;
case POLICY_MAP_OID:
WOLFSSL_MSG("Policy Map extension not supported");
break;
case POLICY_CONST_OID:
WOLFSSL_MSG("Policy Constraint extension not supported");
break;
case ISSUE_ALT_NAMES_OID:
WOLFSSL_MSG("Issue Alt Names extension not supported");
break;
case TLS_FEATURE_OID:
WOLFSSL_MSG("TLS Feature extension not supported");
break;
default:
WOLFSSL_MSG("Unsupported/Unknown extension OID");
}
if (obj != NULL) {
if (wolfSSL_sk_ASN1_OBJECT_push(sk, obj) != WOLFSSL_SUCCESS) {
WOLFSSL_MSG("Error pushing ASN1 object onto stack");
wolfSSL_ASN1_OBJECT_free(obj);
wolfSSL_sk_ASN1_OBJECT_free(sk);
sk = NULL;
}
}
else { /* no ASN1 object found for extension, free stack */
wolfSSL_sk_ASN1_OBJECT_free(sk);
sk = NULL;
}
(void)idx;
return sk;
}
/* this function makes the assumption that out buffer is big enough for digest*/
static int wolfSSL_EVP_Digest(unsigned char* in, int inSz, unsigned char* out,
unsigned int* outSz, const WOLFSSL_EVP_MD* evp,
WOLFSSL_ENGINE* eng)
{
enum wc_HashType hash = WC_HASH_TYPE_NONE;
int hashSz;
if (XSTRLEN(evp) < 3) {
/* do not try comparing strings if size is too small */
return WOLFSSL_FAILURE;
}
if (XSTRNCMP("SHA", evp, 3) == 0) {
if (XSTRLEN(evp) > 3) {
if (XSTRNCMP("SHA256", evp, 6) == 0) {
hash = WC_HASH_TYPE_SHA256;
}
else if (XSTRNCMP("SHA384", evp, 6) == 0) {
hash = WC_HASH_TYPE_SHA384;
}
else if (XSTRNCMP("SHA512", evp, 6) == 0) {
hash = WC_HASH_TYPE_SHA512;
}
else {
WOLFSSL_MSG("Unknown SHA hash");
}
}
else {
hash = WC_HASH_TYPE_SHA;
}
}
else if (XSTRNCMP("MD2", evp, 3) == 0) {
hash = WC_HASH_TYPE_MD2;
}
else if (XSTRNCMP("MD4", evp, 3) == 0) {
hash = WC_HASH_TYPE_MD4;
}
else if (XSTRNCMP("MD5", evp, 3) == 0) {
hash = WC_HASH_TYPE_MD5;
}
hashSz = wc_HashGetDigestSize(hash);
if (hashSz < 0) {
WOLFSSL_LEAVE("wolfSSL_EVP_Digest", hashSz);
return WOLFSSL_FAILURE;
}
*outSz = hashSz;
(void)eng;
if (wc_Hash(hash, in, inSz, out, *outSz) == 0) {
return WOLFSSL_SUCCESS;
}
else {
return WOLFSSL_FAILURE;
}
}
int wolfSSL_X509_digest(const WOLFSSL_X509* x509, const WOLFSSL_EVP_MD* digest,
unsigned char* buf, unsigned int* len)
{
WOLFSSL_ENTER("wolfSSL_X509_digest");
if (x509 == NULL || digest == NULL) {
return WOLFSSL_FAILURE;
}
return wolfSSL_EVP_Digest(x509->derCert->buffer, x509->derCert->length, buf,
len, digest, NULL);
}
int wolfSSL_use_PrivateKey(WOLFSSL* ssl, WOLFSSL_EVP_PKEY* pkey)
{
WOLFSSL_ENTER("wolfSSL_use_PrivateKey");
if (ssl == NULL || pkey == NULL ) {
return WOLFSSL_FAILURE;
}
return wolfSSL_use_PrivateKey_buffer(ssl, (unsigned char*)pkey->pkey.ptr,
pkey->pkey_sz, WOLFSSL_FILETYPE_ASN1);
}
int wolfSSL_use_PrivateKey_ASN1(int pri, WOLFSSL* ssl, unsigned char* der,
long derSz)
{
WOLFSSL_ENTER("wolfSSL_use_PrivateKey_ASN1");
if (ssl == NULL || der == NULL ) {
return WOLFSSL_FAILURE;
}
(void)pri; /* type of private key */
return wolfSSL_use_PrivateKey_buffer(ssl, der, derSz, WOLFSSL_FILETYPE_ASN1);
}
#ifndef NO_RSA
int wolfSSL_use_RSAPrivateKey_ASN1(WOLFSSL* ssl, unsigned char* der, long derSz)
{
WOLFSSL_ENTER("wolfSSL_use_RSAPrivateKey_ASN1");
if (ssl == NULL || der == NULL ) {
return WOLFSSL_FAILURE;
}
return wolfSSL_use_PrivateKey_buffer(ssl, der, derSz, WOLFSSL_FILETYPE_ASN1);
}
#endif
int wolfSSL_use_certificate_ASN1(WOLFSSL* ssl, unsigned char* der, int derSz)
{
long idx;
WOLFSSL_ENTER("wolfSSL_use_certificate_ASN1");
if (der != NULL && ssl != NULL) {
if (ProcessBuffer(NULL, der, derSz, WOLFSSL_FILETYPE_ASN1, CERT_TYPE, ssl,
&idx, 0) == WOLFSSL_SUCCESS)
return WOLFSSL_SUCCESS;
}
(void)idx;
return WOLFSSL_FAILURE;
}
int wolfSSL_use_certificate(WOLFSSL* ssl, WOLFSSL_X509* x509)
{
long idx;
WOLFSSL_ENTER("wolfSSL_use_certificate");
if (x509 != NULL && ssl != NULL && x509->derCert != NULL) {
if (ProcessBuffer(NULL, x509->derCert->buffer, x509->derCert->length,
WOLFSSL_FILETYPE_ASN1, CERT_TYPE, ssl, &idx, 0) == WOLFSSL_SUCCESS)
return WOLFSSL_SUCCESS;
}
(void)idx;
return WOLFSSL_FAILURE;
}
#endif /* NO_CERTS */
int wolfSSL_use_certificate_file(WOLFSSL* ssl, const char* file, int format)
{
WOLFSSL_ENTER("wolfSSL_use_certificate_file");
if (ProcessFile(ssl->ctx, file, format, CERT_TYPE,
ssl, 0, NULL) == WOLFSSL_SUCCESS)
return WOLFSSL_SUCCESS;
return WOLFSSL_FAILURE;
}
int wolfSSL_use_PrivateKey_file(WOLFSSL* ssl, const char* file, int format)
{
WOLFSSL_ENTER("wolfSSL_use_PrivateKey_file");
if (ProcessFile(ssl->ctx, file, format, PRIVATEKEY_TYPE,
ssl, 0, NULL) == WOLFSSL_SUCCESS)
return WOLFSSL_SUCCESS;
return WOLFSSL_FAILURE;
}
int wolfSSL_use_certificate_chain_file(WOLFSSL* ssl, const char* file)
{
/* process up to MAX_CHAIN_DEPTH plus subject cert */
WOLFSSL_ENTER("wolfSSL_use_certificate_chain_file");
if (ProcessFile(ssl->ctx, file, WOLFSSL_FILETYPE_PEM, CERT_TYPE,
ssl, 1, NULL) == WOLFSSL_SUCCESS)
return WOLFSSL_SUCCESS;
return WOLFSSL_FAILURE;
}
#ifdef HAVE_ECC
/* Set Temp CTX EC-DHE size in octets, should be 20 - 66 for 160 - 521 bit */
int wolfSSL_CTX_SetTmpEC_DHE_Sz(WOLFSSL_CTX* ctx, word16 sz)
{
if (ctx == NULL || sz < ECC_MINSIZE || sz > ECC_MAXSIZE)
return BAD_FUNC_ARG;
ctx->eccTempKeySz = sz;
return WOLFSSL_SUCCESS;
}
/* Set Temp SSL EC-DHE size in octets, should be 20 - 66 for 160 - 521 bit */
int wolfSSL_SetTmpEC_DHE_Sz(WOLFSSL* ssl, word16 sz)
{
if (ssl == NULL || sz < ECC_MINSIZE || sz > ECC_MAXSIZE)
return BAD_FUNC_ARG;
ssl->eccTempKeySz = sz;
return WOLFSSL_SUCCESS;
}
#endif /* HAVE_ECC */
int wolfSSL_CTX_use_RSAPrivateKey_file(WOLFSSL_CTX* ctx,const char* file,
int format)
{
WOLFSSL_ENTER("SSL_CTX_use_RSAPrivateKey_file");
return wolfSSL_CTX_use_PrivateKey_file(ctx, file, format);
}
int wolfSSL_use_RSAPrivateKey_file(WOLFSSL* ssl, const char* file, int format)
{
WOLFSSL_ENTER("wolfSSL_use_RSAPrivateKey_file");
return wolfSSL_use_PrivateKey_file(ssl, file, format);
}
/* Copies the master secret over to out buffer. If outSz is 0 returns the size
* of master secret.
*
* ses : a session from completed TLS/SSL handshake
* out : buffer to hold copy of master secret
* outSz : size of out buffer
* returns : number of bytes copied into out buffer on success
* less then or equal to 0 is considered a failure case
*/
int wolfSSL_SESSION_get_master_key(const WOLFSSL_SESSION* ses,
unsigned char* out, int outSz)
{
int size;
if (outSz == 0) {
return SECRET_LEN;
}
if (ses == NULL || out == NULL || outSz < 0) {
return 0;
}
if (outSz > SECRET_LEN) {
size = SECRET_LEN;
}
else {
size = outSz;
}
XMEMCPY(out, ses->masterSecret, size);
return size;
}
int wolfSSL_SESSION_get_master_key_length(const WOLFSSL_SESSION* ses)
{
(void)ses;
return SECRET_LEN;
}
#endif /* OPENSSL_EXTRA */
#ifdef HAVE_NTRU
int wolfSSL_CTX_use_NTRUPrivateKey_file(WOLFSSL_CTX* ctx, const char* file)
{
WOLFSSL_ENTER("wolfSSL_CTX_use_NTRUPrivateKey_file");
if (ctx == NULL)
return WOLFSSL_FAILURE;
if (ProcessFile(ctx, file, WOLFSSL_FILETYPE_RAW, PRIVATEKEY_TYPE, NULL, 0, NULL)
== WOLFSSL_SUCCESS) {
ctx->haveNTRU = 1;
return WOLFSSL_SUCCESS;
}
return WOLFSSL_FAILURE;
}
#endif /* HAVE_NTRU */
#endif /* NO_FILESYSTEM */
#if defined(WOLFSSL_CERT_EXT) || defined(WOLFSSL_PUB_PEM_TO_DER)
/* Return bytes written to buff or < 0 for error */
int wolfSSL_PubKeyPemToDer(const unsigned char* pem, int pemSz,
unsigned char* buff, int buffSz)
{
int ret;
DerBuffer* der = NULL;
WOLFSSL_ENTER("wolfSSL_PubKeyPemToDer");
if (pem == NULL || buff == NULL || buffSz <= 0) {
WOLFSSL_MSG("Bad pem der args");
return BAD_FUNC_ARG;
}
ret = PemToDer(pem, pemSz, PUBLICKEY_TYPE, &der, NULL, NULL, NULL);
if (ret < 0) {
WOLFSSL_MSG("Bad Pem To Der");
}
else {
if (der->length <= (word32)buffSz) {
XMEMCPY(buff, der->buffer, der->length);
ret = der->length;
}
else {
WOLFSSL_MSG("Bad der length");
ret = BAD_FUNC_ARG;
}
}
FreeDer(&der);
return ret;
}
#endif /* WOLFSSL_CERT_EXT || WOLFSSL_PUB_PEM_TO_DER */
void wolfSSL_CTX_set_verify(WOLFSSL_CTX* ctx, int mode, VerifyCallback vc)
{
WOLFSSL_ENTER("wolfSSL_CTX_set_verify");
if (mode & WOLFSSL_VERIFY_PEER) {
ctx->verifyPeer = 1;
ctx->verifyNone = 0; /* in case previously set */
}
if (mode == WOLFSSL_VERIFY_NONE) {
ctx->verifyNone = 1;
ctx->verifyPeer = 0; /* in case previously set */
}
if (mode & WOLFSSL_VERIFY_FAIL_IF_NO_PEER_CERT)
ctx->failNoCert = 1;
if (mode & WOLFSSL_VERIFY_FAIL_EXCEPT_PSK) {
ctx->failNoCert = 0; /* fail on all is set to fail on PSK */
ctx->failNoCertxPSK = 1;
}
ctx->verifyCallback = vc;
}
void wolfSSL_set_verify(WOLFSSL* ssl, int mode, VerifyCallback vc)
{
WOLFSSL_ENTER("wolfSSL_set_verify");
if (mode & WOLFSSL_VERIFY_PEER) {
ssl->options.verifyPeer = 1;
ssl->options.verifyNone = 0; /* in case previously set */
}
if (mode == WOLFSSL_VERIFY_NONE) {
ssl->options.verifyNone = 1;
ssl->options.verifyPeer = 0; /* in case previously set */
}
if (mode & WOLFSSL_VERIFY_FAIL_IF_NO_PEER_CERT)
ssl->options.failNoCert = 1;
if (mode & WOLFSSL_VERIFY_FAIL_EXCEPT_PSK) {
ssl->options.failNoCert = 0; /* fail on all is set to fail on PSK */
ssl->options.failNoCertxPSK = 1;
}
ssl->verifyCallback = vc;
}
/* store user ctx for verify callback */
void wolfSSL_SetCertCbCtx(WOLFSSL* ssl, void* ctx)
{
WOLFSSL_ENTER("wolfSSL_SetCertCbCtx");
if (ssl)
ssl->verifyCbCtx = ctx;
}
/* store context CA Cache addition callback */
void wolfSSL_CTX_SetCACb(WOLFSSL_CTX* ctx, CallbackCACache cb)
{
if (ctx && ctx->cm)
ctx->cm->caCacheCallback = cb;
}
#if defined(PERSIST_CERT_CACHE)
#if !defined(NO_FILESYSTEM)
/* Persist cert cache to file */
int wolfSSL_CTX_save_cert_cache(WOLFSSL_CTX* ctx, const char* fname)
{
WOLFSSL_ENTER("wolfSSL_CTX_save_cert_cache");
if (ctx == NULL || fname == NULL)
return BAD_FUNC_ARG;
return CM_SaveCertCache(ctx->cm, fname);
}
/* Persist cert cache from file */
int wolfSSL_CTX_restore_cert_cache(WOLFSSL_CTX* ctx, const char* fname)
{
WOLFSSL_ENTER("wolfSSL_CTX_restore_cert_cache");
if (ctx == NULL || fname == NULL)
return BAD_FUNC_ARG;
return CM_RestoreCertCache(ctx->cm, fname);
}
#endif /* NO_FILESYSTEM */
/* Persist cert cache to memory */
int wolfSSL_CTX_memsave_cert_cache(WOLFSSL_CTX* ctx, void* mem,
int sz, int* used)
{
WOLFSSL_ENTER("wolfSSL_CTX_memsave_cert_cache");
if (ctx == NULL || mem == NULL || used == NULL || sz <= 0)
return BAD_FUNC_ARG;
return CM_MemSaveCertCache(ctx->cm, mem, sz, used);
}
/* Restore cert cache from memory */
int wolfSSL_CTX_memrestore_cert_cache(WOLFSSL_CTX* ctx, const void* mem, int sz)
{
WOLFSSL_ENTER("wolfSSL_CTX_memrestore_cert_cache");
if (ctx == NULL || mem == NULL || sz <= 0)
return BAD_FUNC_ARG;
return CM_MemRestoreCertCache(ctx->cm, mem, sz);
}
/* get how big the the cert cache save buffer needs to be */
int wolfSSL_CTX_get_cert_cache_memsize(WOLFSSL_CTX* ctx)
{
WOLFSSL_ENTER("wolfSSL_CTX_get_cert_cache_memsize");
if (ctx == NULL)
return BAD_FUNC_ARG;
return CM_GetCertCacheMemSize(ctx->cm);
}
#endif /* PERSIST_CERT_CACHE */
#endif /* !NO_CERTS */
#ifndef NO_SESSION_CACHE
WOLFSSL_SESSION* wolfSSL_get_session(WOLFSSL* ssl)
{
WOLFSSL_ENTER("SSL_get_session");
if (ssl)
return GetSession(ssl, 0, 0);
return NULL;
}
int wolfSSL_set_session(WOLFSSL* ssl, WOLFSSL_SESSION* session)
{
WOLFSSL_ENTER("SSL_set_session");
if (session)
return SetSession(ssl, session);
return WOLFSSL_FAILURE;
}
#ifndef NO_CLIENT_CACHE
/* Associate client session with serverID, find existing or store for saving
if newSession flag on, don't reuse existing session
WOLFSSL_SUCCESS on ok */
int wolfSSL_SetServerID(WOLFSSL* ssl, const byte* id, int len, int newSession)
{
WOLFSSL_SESSION* session = NULL;
WOLFSSL_ENTER("wolfSSL_SetServerID");
if (ssl == NULL || id == NULL || len <= 0)
return BAD_FUNC_ARG;
if (newSession == 0) {
session = GetSessionClient(ssl, id, len);
if (session) {
if (SetSession(ssl, session) != WOLFSSL_SUCCESS) {
#ifdef HAVE_EXT_CACHE
wolfSSL_SESSION_free(session);
#endif
WOLFSSL_MSG("SetSession failed");
session = NULL;
}
}
}
if (session == NULL) {
WOLFSSL_MSG("Valid ServerID not cached already");
ssl->session.idLen = (word16)min(SERVER_ID_LEN, (word32)len);
XMEMCPY(ssl->session.serverID, id, ssl->session.idLen);
}
#ifdef HAVE_EXT_CACHE
else
wolfSSL_SESSION_free(session);
#endif
return WOLFSSL_SUCCESS;
}
#endif /* NO_CLIENT_CACHE */
#if defined(PERSIST_SESSION_CACHE)
/* for persistence, if changes to layout need to increment and modify
save_session_cache() and restore_session_cache and memory versions too */
#define WOLFSSL_CACHE_VERSION 2
/* Session Cache Header information */
typedef struct {
int version; /* cache layout version id */
int rows; /* session rows */
int columns; /* session columns */
int sessionSz; /* sizeof WOLFSSL_SESSION */
} cache_header_t;
/* current persistence layout is:
1) cache_header_t
2) SessionCache
3) ClientCache
update WOLFSSL_CACHE_VERSION if change layout for the following
PERSISTENT_SESSION_CACHE functions
*/
/* get how big the the session cache save buffer needs to be */
int wolfSSL_get_session_cache_memsize(void)
{
int sz = (int)(sizeof(SessionCache) + sizeof(cache_header_t));
#ifndef NO_CLIENT_CACHE
sz += (int)(sizeof(ClientCache));
#endif
return sz;
}
/* Persist session cache to memory */
int wolfSSL_memsave_session_cache(void* mem, int sz)
{
int i;
cache_header_t cache_header;
SessionRow* row = (SessionRow*)((byte*)mem + sizeof(cache_header));
#ifndef NO_CLIENT_CACHE
ClientRow* clRow;
#endif
WOLFSSL_ENTER("wolfSSL_memsave_session_cache");
if (sz < wolfSSL_get_session_cache_memsize()) {
WOLFSSL_MSG("Memory buffer too small");
return BUFFER_E;
}
cache_header.version = WOLFSSL_CACHE_VERSION;
cache_header.rows = SESSION_ROWS;
cache_header.columns = SESSIONS_PER_ROW;
cache_header.sessionSz = (int)sizeof(WOLFSSL_SESSION);
XMEMCPY(mem, &cache_header, sizeof(cache_header));
if (wc_LockMutex(&session_mutex) != 0) {
WOLFSSL_MSG("Session cache mutex lock failed");
return BAD_MUTEX_E;
}
for (i = 0; i < cache_header.rows; ++i)
XMEMCPY(row++, SessionCache + i, sizeof(SessionRow));
#ifndef NO_CLIENT_CACHE
clRow = (ClientRow*)row;
for (i = 0; i < cache_header.rows; ++i)
XMEMCPY(clRow++, ClientCache + i, sizeof(ClientRow));
#endif
wc_UnLockMutex(&session_mutex);
WOLFSSL_LEAVE("wolfSSL_memsave_session_cache", WOLFSSL_SUCCESS);
return WOLFSSL_SUCCESS;
}
/* Restore the persistent session cache from memory */
int wolfSSL_memrestore_session_cache(const void* mem, int sz)
{
int i;
cache_header_t cache_header;
SessionRow* row = (SessionRow*)((byte*)mem + sizeof(cache_header));
#ifndef NO_CLIENT_CACHE
ClientRow* clRow;
#endif
WOLFSSL_ENTER("wolfSSL_memrestore_session_cache");
if (sz < wolfSSL_get_session_cache_memsize()) {
WOLFSSL_MSG("Memory buffer too small");
return BUFFER_E;
}
XMEMCPY(&cache_header, mem, sizeof(cache_header));
if (cache_header.version != WOLFSSL_CACHE_VERSION ||
cache_header.rows != SESSION_ROWS ||
cache_header.columns != SESSIONS_PER_ROW ||
cache_header.sessionSz != (int)sizeof(WOLFSSL_SESSION)) {
WOLFSSL_MSG("Session cache header match failed");
return CACHE_MATCH_ERROR;
}
if (wc_LockMutex(&session_mutex) != 0) {
WOLFSSL_MSG("Session cache mutex lock failed");
return BAD_MUTEX_E;
}
for (i = 0; i < cache_header.rows; ++i)
XMEMCPY(SessionCache + i, row++, sizeof(SessionRow));
#ifndef NO_CLIENT_CACHE
clRow = (ClientRow*)row;
for (i = 0; i < cache_header.rows; ++i)
XMEMCPY(ClientCache + i, clRow++, sizeof(ClientRow));
#endif
wc_UnLockMutex(&session_mutex);
WOLFSSL_LEAVE("wolfSSL_memrestore_session_cache", WOLFSSL_SUCCESS);
return WOLFSSL_SUCCESS;
}
#if !defined(NO_FILESYSTEM)
/* Persist session cache to file */
/* doesn't use memsave because of additional memory use */
int wolfSSL_save_session_cache(const char *fname)
{
XFILE file;
int ret;
int rc = WOLFSSL_SUCCESS;
int i;
cache_header_t cache_header;
WOLFSSL_ENTER("wolfSSL_save_session_cache");
file = XFOPEN(fname, "w+b");
if (file == XBADFILE) {
WOLFSSL_MSG("Couldn't open session cache save file");
return WOLFSSL_BAD_FILE;
}
cache_header.version = WOLFSSL_CACHE_VERSION;
cache_header.rows = SESSION_ROWS;
cache_header.columns = SESSIONS_PER_ROW;
cache_header.sessionSz = (int)sizeof(WOLFSSL_SESSION);
/* cache header */
ret = (int)XFWRITE(&cache_header, sizeof cache_header, 1, file);
if (ret != 1) {
WOLFSSL_MSG("Session cache header file write failed");
XFCLOSE(file);
return FWRITE_ERROR;
}
if (wc_LockMutex(&session_mutex) != 0) {
WOLFSSL_MSG("Session cache mutex lock failed");
XFCLOSE(file);
return BAD_MUTEX_E;
}
/* session cache */
for (i = 0; i < cache_header.rows; ++i) {
ret = (int)XFWRITE(SessionCache + i, sizeof(SessionRow), 1, file);
if (ret != 1) {
WOLFSSL_MSG("Session cache member file write failed");
rc = FWRITE_ERROR;
break;
}
}
#ifndef NO_CLIENT_CACHE
/* client cache */
for (i = 0; i < cache_header.rows; ++i) {
ret = (int)XFWRITE(ClientCache + i, sizeof(ClientRow), 1, file);
if (ret != 1) {
WOLFSSL_MSG("Client cache member file write failed");
rc = FWRITE_ERROR;
break;
}
}
#endif /* NO_CLIENT_CACHE */
wc_UnLockMutex(&session_mutex);
XFCLOSE(file);
WOLFSSL_LEAVE("wolfSSL_save_session_cache", rc);
return rc;
}
/* Restore the persistent session cache from file */
/* doesn't use memstore because of additional memory use */
int wolfSSL_restore_session_cache(const char *fname)
{
XFILE file;
int rc = WOLFSSL_SUCCESS;
int ret;
int i;
cache_header_t cache_header;
WOLFSSL_ENTER("wolfSSL_restore_session_cache");
file = XFOPEN(fname, "rb");
if (file == XBADFILE) {
WOLFSSL_MSG("Couldn't open session cache save file");
return WOLFSSL_BAD_FILE;
}
/* cache header */
ret = (int)XFREAD(&cache_header, sizeof cache_header, 1, file);
if (ret != 1) {
WOLFSSL_MSG("Session cache header file read failed");
XFCLOSE(file);
return FREAD_ERROR;
}
if (cache_header.version != WOLFSSL_CACHE_VERSION ||
cache_header.rows != SESSION_ROWS ||
cache_header.columns != SESSIONS_PER_ROW ||
cache_header.sessionSz != (int)sizeof(WOLFSSL_SESSION)) {
WOLFSSL_MSG("Session cache header match failed");
XFCLOSE(file);
return CACHE_MATCH_ERROR;
}
if (wc_LockMutex(&session_mutex) != 0) {
WOLFSSL_MSG("Session cache mutex lock failed");
XFCLOSE(file);
return BAD_MUTEX_E;
}
/* session cache */
for (i = 0; i < cache_header.rows; ++i) {
ret = (int)XFREAD(SessionCache + i, sizeof(SessionRow), 1, file);
if (ret != 1) {
WOLFSSL_MSG("Session cache member file read failed");
XMEMSET(SessionCache, 0, sizeof SessionCache);
rc = FREAD_ERROR;
break;
}
}
#ifndef NO_CLIENT_CACHE
/* client cache */
for (i = 0; i < cache_header.rows; ++i) {
ret = (int)XFREAD(ClientCache + i, sizeof(ClientRow), 1, file);
if (ret != 1) {
WOLFSSL_MSG("Client cache member file read failed");
XMEMSET(ClientCache, 0, sizeof ClientCache);
rc = FREAD_ERROR;
break;
}
}
#endif /* NO_CLIENT_CACHE */
wc_UnLockMutex(&session_mutex);
XFCLOSE(file);
WOLFSSL_LEAVE("wolfSSL_restore_session_cache", rc);
return rc;
}
#endif /* !NO_FILESYSTEM */
#endif /* PERSIST_SESSION_CACHE */
#endif /* NO_SESSION_CACHE */
void wolfSSL_load_error_strings(void) /* compatibility only */
{}
int wolfSSL_library_init(void)
{
WOLFSSL_ENTER("SSL_library_init");
if (wolfSSL_Init() == WOLFSSL_SUCCESS)
return WOLFSSL_SUCCESS;
else
return WOLFSSL_FATAL_ERROR;
}
#ifdef HAVE_SECRET_CALLBACK
int wolfSSL_set_session_secret_cb(WOLFSSL* ssl, SessionSecretCb cb, void* ctx)
{
WOLFSSL_ENTER("wolfSSL_set_session_secret_cb");
if (ssl == NULL)
return WOLFSSL_FATAL_ERROR;
ssl->sessionSecretCb = cb;
ssl->sessionSecretCtx = ctx;
/* If using a pre-set key, assume session resumption. */
ssl->session.sessionIDSz = 0;
ssl->options.resuming = 1;
return WOLFSSL_SUCCESS;
}
#endif
#ifndef NO_SESSION_CACHE
/* on by default if built in but allow user to turn off */
long wolfSSL_CTX_set_session_cache_mode(WOLFSSL_CTX* ctx, long mode)
{
WOLFSSL_ENTER("SSL_CTX_set_session_cache_mode");
if (mode == WOLFSSL_SESS_CACHE_OFF)
ctx->sessionCacheOff = 1;
if ((mode & WOLFSSL_SESS_CACHE_NO_AUTO_CLEAR) != 0)
ctx->sessionCacheFlushOff = 1;
#ifdef HAVE_EXT_CACHE
if ((mode & WOLFSSL_SESS_CACHE_NO_INTERNAL_STORE) != 0)
ctx->internalCacheOff = 1;
#endif
return WOLFSSL_SUCCESS;
}
#endif /* NO_SESSION_CACHE */
#if !defined(NO_CERTS)
#if defined(PERSIST_CERT_CACHE)
#define WOLFSSL_CACHE_CERT_VERSION 1
typedef struct {
int version; /* cache cert layout version id */
int rows; /* hash table rows, CA_TABLE_SIZE */
int columns[CA_TABLE_SIZE]; /* columns per row on list */
int signerSz; /* sizeof Signer object */
} CertCacheHeader;
/* current cert persistence layout is:
1) CertCacheHeader
2) caTable
update WOLFSSL_CERT_CACHE_VERSION if change layout for the following
PERSIST_CERT_CACHE functions
*/
/* Return memory needed to persist this signer, have lock */
static INLINE int GetSignerMemory(Signer* signer)
{
int sz = sizeof(signer->pubKeySize) + sizeof(signer->keyOID)
+ sizeof(signer->nameLen) + sizeof(signer->subjectNameHash);
#if !defined(NO_SKID)
sz += (int)sizeof(signer->subjectKeyIdHash);
#endif
/* add dynamic bytes needed */
sz += signer->pubKeySize;
sz += signer->nameLen;
return sz;
}
/* Return memory needed to persist this row, have lock */
static INLINE int GetCertCacheRowMemory(Signer* row)
{
int sz = 0;
while (row) {
sz += GetSignerMemory(row);
row = row->next;
}
return sz;
}
/* get the size of persist cert cache, have lock */
static INLINE int GetCertCacheMemSize(WOLFSSL_CERT_MANAGER* cm)
{
int sz;
int i;
sz = sizeof(CertCacheHeader);
for (i = 0; i < CA_TABLE_SIZE; i++)
sz += GetCertCacheRowMemory(cm->caTable[i]);
return sz;
}
/* Store cert cache header columns with number of items per list, have lock */
static INLINE void SetCertHeaderColumns(WOLFSSL_CERT_MANAGER* cm, int* columns)
{
int i;
Signer* row;
for (i = 0; i < CA_TABLE_SIZE; i++) {
int count = 0;
row = cm->caTable[i];
while (row) {
++count;
row = row->next;
}
columns[i] = count;
}
}
/* Restore whole cert row from memory, have lock, return bytes consumed,
< 0 on error, have lock */
static INLINE int RestoreCertRow(WOLFSSL_CERT_MANAGER* cm, byte* current,
int row, int listSz, const byte* end)
{
int idx = 0;
if (listSz < 0) {
WOLFSSL_MSG("Row header corrupted, negative value");
return PARSE_ERROR;
}
while (listSz) {
Signer* signer;
byte* start = current + idx; /* for end checks on this signer */
int minSz = sizeof(signer->pubKeySize) + sizeof(signer->keyOID) +
sizeof(signer->nameLen) + sizeof(signer->subjectNameHash);
#ifndef NO_SKID
minSz += (int)sizeof(signer->subjectKeyIdHash);
#endif
if (start + minSz > end) {
WOLFSSL_MSG("Would overread restore buffer");
return BUFFER_E;
}
signer = MakeSigner(cm->heap);
if (signer == NULL)
return MEMORY_E;
/* pubKeySize */
XMEMCPY(&signer->pubKeySize, current + idx, sizeof(signer->pubKeySize));
idx += (int)sizeof(signer->pubKeySize);
/* keyOID */
XMEMCPY(&signer->keyOID, current + idx, sizeof(signer->keyOID));
idx += (int)sizeof(signer->keyOID);
/* pulicKey */
if (start + minSz + signer->pubKeySize > end) {
WOLFSSL_MSG("Would overread restore buffer");
FreeSigner(signer, cm->heap);
return BUFFER_E;
}
signer->publicKey = (byte*)XMALLOC(signer->pubKeySize, cm->heap,
DYNAMIC_TYPE_KEY);
if (signer->publicKey == NULL) {
FreeSigner(signer, cm->heap);
return MEMORY_E;
}
XMEMCPY(signer->publicKey, current + idx, signer->pubKeySize);
idx += signer->pubKeySize;
/* nameLen */
XMEMCPY(&signer->nameLen, current + idx, sizeof(signer->nameLen));
idx += (int)sizeof(signer->nameLen);
/* name */
if (start + minSz + signer->pubKeySize + signer->nameLen > end) {
WOLFSSL_MSG("Would overread restore buffer");
FreeSigner(signer, cm->heap);
return BUFFER_E;
}
signer->name = (char*)XMALLOC(signer->nameLen, cm->heap,
DYNAMIC_TYPE_SUBJECT_CN);
if (signer->name == NULL) {
FreeSigner(signer, cm->heap);
return MEMORY_E;
}
XMEMCPY(signer->name, current + idx, signer->nameLen);
idx += signer->nameLen;
/* subjectNameHash */
XMEMCPY(signer->subjectNameHash, current + idx, SIGNER_DIGEST_SIZE);
idx += SIGNER_DIGEST_SIZE;
#ifndef NO_SKID
/* subjectKeyIdHash */
XMEMCPY(signer->subjectKeyIdHash, current + idx,SIGNER_DIGEST_SIZE);
idx += SIGNER_DIGEST_SIZE;
#endif
signer->next = cm->caTable[row];
cm->caTable[row] = signer;
--listSz;
}
return idx;
}
/* Store whole cert row into memory, have lock, return bytes added */
static INLINE int StoreCertRow(WOLFSSL_CERT_MANAGER* cm, byte* current, int row)
{
int added = 0;
Signer* list = cm->caTable[row];
while (list) {
XMEMCPY(current + added, &list->pubKeySize, sizeof(list->pubKeySize));
added += (int)sizeof(list->pubKeySize);
XMEMCPY(current + added, &list->keyOID, sizeof(list->keyOID));
added += (int)sizeof(list->keyOID);
XMEMCPY(current + added, list->publicKey, list->pubKeySize);
added += list->pubKeySize;
XMEMCPY(current + added, &list->nameLen, sizeof(list->nameLen));
added += (int)sizeof(list->nameLen);
XMEMCPY(current + added, list->name, list->nameLen);
added += list->nameLen;
XMEMCPY(current + added, list->subjectNameHash, SIGNER_DIGEST_SIZE);
added += SIGNER_DIGEST_SIZE;
#ifndef NO_SKID
XMEMCPY(current + added, list->subjectKeyIdHash,SIGNER_DIGEST_SIZE);
added += SIGNER_DIGEST_SIZE;
#endif
list = list->next;
}
return added;
}
/* Persist cert cache to memory, have lock */
static INLINE int DoMemSaveCertCache(WOLFSSL_CERT_MANAGER* cm,
void* mem, int sz)
{
int realSz;
int ret = WOLFSSL_SUCCESS;
int i;
WOLFSSL_ENTER("DoMemSaveCertCache");
realSz = GetCertCacheMemSize(cm);
if (realSz > sz) {
WOLFSSL_MSG("Mem output buffer too small");
ret = BUFFER_E;
}
else {
byte* current;
CertCacheHeader hdr;
hdr.version = WOLFSSL_CACHE_CERT_VERSION;
hdr.rows = CA_TABLE_SIZE;
SetCertHeaderColumns(cm, hdr.columns);
hdr.signerSz = (int)sizeof(Signer);
XMEMCPY(mem, &hdr, sizeof(CertCacheHeader));
current = (byte*)mem + sizeof(CertCacheHeader);
for (i = 0; i < CA_TABLE_SIZE; ++i)
current += StoreCertRow(cm, current, i);
}
return ret;
}
#if !defined(NO_FILESYSTEM)
/* Persist cert cache to file */
int CM_SaveCertCache(WOLFSSL_CERT_MANAGER* cm, const char* fname)
{
XFILE file;
int rc = WOLFSSL_SUCCESS;
int memSz;
byte* mem;
WOLFSSL_ENTER("CM_SaveCertCache");
file = XFOPEN(fname, "w+b");
if (file == XBADFILE) {
WOLFSSL_MSG("Couldn't open cert cache save file");
return WOLFSSL_BAD_FILE;
}
if (wc_LockMutex(&cm->caLock) != 0) {
WOLFSSL_MSG("wc_LockMutex on caLock failed");
XFCLOSE(file);
return BAD_MUTEX_E;
}
memSz = GetCertCacheMemSize(cm);
mem = (byte*)XMALLOC(memSz, cm->heap, DYNAMIC_TYPE_TMP_BUFFER);
if (mem == NULL) {
WOLFSSL_MSG("Alloc for tmp buffer failed");
rc = MEMORY_E;
} else {
rc = DoMemSaveCertCache(cm, mem, memSz);
if (rc == WOLFSSL_SUCCESS) {
int ret = (int)XFWRITE(mem, memSz, 1, file);
if (ret != 1) {
WOLFSSL_MSG("Cert cache file write failed");
rc = FWRITE_ERROR;
}
}
XFREE(mem, cm->heap, DYNAMIC_TYPE_TMP_BUFFER);
}
wc_UnLockMutex(&cm->caLock);
XFCLOSE(file);
return rc;
}
/* Restore cert cache from file */
int CM_RestoreCertCache(WOLFSSL_CERT_MANAGER* cm, const char* fname)
{
XFILE file;
int rc = WOLFSSL_SUCCESS;
int ret;
int memSz;
byte* mem;
WOLFSSL_ENTER("CM_RestoreCertCache");
file = XFOPEN(fname, "rb");
if (file == XBADFILE) {
WOLFSSL_MSG("Couldn't open cert cache save file");
return WOLFSSL_BAD_FILE;
}
XFSEEK(file, 0, XSEEK_END);
memSz = (int)XFTELL(file);
XREWIND(file);
if (memSz <= 0) {
WOLFSSL_MSG("Bad file size");
XFCLOSE(file);
return WOLFSSL_BAD_FILE;
}
mem = (byte*)XMALLOC(memSz, cm->heap, DYNAMIC_TYPE_TMP_BUFFER);
if (mem == NULL) {
WOLFSSL_MSG("Alloc for tmp buffer failed");
XFCLOSE(file);
return MEMORY_E;
}
ret = (int)XFREAD(mem, memSz, 1, file);
if (ret != 1) {
WOLFSSL_MSG("Cert file read error");
rc = FREAD_ERROR;
} else {
rc = CM_MemRestoreCertCache(cm, mem, memSz);
if (rc != WOLFSSL_SUCCESS) {
WOLFSSL_MSG("Mem restore cert cache failed");
}
}
XFREE(mem, cm->heap, DYNAMIC_TYPE_TMP_BUFFER);
XFCLOSE(file);
return rc;
}
#endif /* NO_FILESYSTEM */
/* Persist cert cache to memory */
int CM_MemSaveCertCache(WOLFSSL_CERT_MANAGER* cm, void* mem, int sz, int* used)
{
int ret = WOLFSSL_SUCCESS;
WOLFSSL_ENTER("CM_MemSaveCertCache");
if (wc_LockMutex(&cm->caLock) != 0) {
WOLFSSL_MSG("wc_LockMutex on caLock failed");
return BAD_MUTEX_E;
}
ret = DoMemSaveCertCache(cm, mem, sz);
if (ret == WOLFSSL_SUCCESS)
*used = GetCertCacheMemSize(cm);
wc_UnLockMutex(&cm->caLock);
return ret;
}
/* Restore cert cache from memory */
int CM_MemRestoreCertCache(WOLFSSL_CERT_MANAGER* cm, const void* mem, int sz)
{
int ret = WOLFSSL_SUCCESS;
int i;
CertCacheHeader* hdr = (CertCacheHeader*)mem;
byte* current = (byte*)mem + sizeof(CertCacheHeader);
byte* end = (byte*)mem + sz; /* don't go over */
WOLFSSL_ENTER("CM_MemRestoreCertCache");
if (current > end) {
WOLFSSL_MSG("Cert Cache Memory buffer too small");
return BUFFER_E;
}
if (hdr->version != WOLFSSL_CACHE_CERT_VERSION ||
hdr->rows != CA_TABLE_SIZE ||
hdr->signerSz != (int)sizeof(Signer)) {
WOLFSSL_MSG("Cert Cache Memory header mismatch");
return CACHE_MATCH_ERROR;
}
if (wc_LockMutex(&cm->caLock) != 0) {
WOLFSSL_MSG("wc_LockMutex on caLock failed");
return BAD_MUTEX_E;
}
FreeSignerTable(cm->caTable, CA_TABLE_SIZE, cm->heap);
for (i = 0; i < CA_TABLE_SIZE; ++i) {
int added = RestoreCertRow(cm, current, i, hdr->columns[i], end);
if (added < 0) {
WOLFSSL_MSG("RestoreCertRow error");
ret = added;
break;
}
current += added;
}
wc_UnLockMutex(&cm->caLock);
return ret;
}
/* get how big the the cert cache save buffer needs to be */
int CM_GetCertCacheMemSize(WOLFSSL_CERT_MANAGER* cm)
{
int sz;
WOLFSSL_ENTER("CM_GetCertCacheMemSize");
if (wc_LockMutex(&cm->caLock) != 0) {
WOLFSSL_MSG("wc_LockMutex on caLock failed");
return BAD_MUTEX_E;
}
sz = GetCertCacheMemSize(cm);
wc_UnLockMutex(&cm->caLock);
return sz;
}
#endif /* PERSIST_CERT_CACHE */
#endif /* NO_CERTS */
int wolfSSL_CTX_set_cipher_list(WOLFSSL_CTX* ctx, const char* list)
{
WOLFSSL_ENTER("wolfSSL_CTX_set_cipher_list");
/* alloc/init on demand only */
if (ctx->suites == NULL) {
ctx->suites = (Suites*)XMALLOC(sizeof(Suites), ctx->heap,
DYNAMIC_TYPE_SUITES);
if (ctx->suites == NULL) {
WOLFSSL_MSG("Memory alloc for Suites failed");
return WOLFSSL_FAILURE;
}
XMEMSET(ctx->suites, 0, sizeof(Suites));
}
return (SetCipherList(ctx, ctx->suites, list)) ? WOLFSSL_SUCCESS : WOLFSSL_FAILURE;
}
int wolfSSL_set_cipher_list(WOLFSSL* ssl, const char* list)
{
WOLFSSL_ENTER("wolfSSL_set_cipher_list");
return (SetCipherList(ssl->ctx, ssl->suites, list)) ? WOLFSSL_SUCCESS : WOLFSSL_FAILURE;
}
#ifndef WOLFSSL_LEANPSK
#ifdef WOLFSSL_DTLS
int wolfSSL_dtls_get_current_timeout(WOLFSSL* ssl)
{
(void)ssl;
return ssl->dtls_timeout;
}
/* user may need to alter init dtls recv timeout, WOLFSSL_SUCCESS on ok */
int wolfSSL_dtls_set_timeout_init(WOLFSSL* ssl, int timeout)
{
if (ssl == NULL || timeout < 0)
return BAD_FUNC_ARG;
if (timeout > ssl->dtls_timeout_max) {
WOLFSSL_MSG("Can't set dtls timeout init greater than dtls timeout max");
return BAD_FUNC_ARG;
}
ssl->dtls_timeout_init = timeout;
ssl->dtls_timeout = timeout;
return WOLFSSL_SUCCESS;
}
/* user may need to alter max dtls recv timeout, WOLFSSL_SUCCESS on ok */
int wolfSSL_dtls_set_timeout_max(WOLFSSL* ssl, int timeout)
{
if (ssl == NULL || timeout < 0)
return BAD_FUNC_ARG;
if (timeout < ssl->dtls_timeout_init) {
WOLFSSL_MSG("Can't set dtls timeout max less than dtls timeout init");
return BAD_FUNC_ARG;
}
ssl->dtls_timeout_max = timeout;
return WOLFSSL_SUCCESS;
}
int wolfSSL_dtls_got_timeout(WOLFSSL* ssl)
{
int result = WOLFSSL_SUCCESS;
if (!ssl->options.handShakeDone &&
(DtlsMsgPoolTimeout(ssl) < 0 || DtlsMsgPoolSend(ssl, 0) < 0)) {
result = WOLFSSL_FATAL_ERROR;
}
return result;
}
#endif /* DTLS */
#endif /* LEANPSK */
#if defined(WOLFSSL_DTLS) && !defined(NO_WOLFSSL_SERVER)
/* Not an SSL function, return 0 for success, error code otherwise */
/* Prereq: ssl's RNG needs to be initialized. */
int wolfSSL_DTLS_SetCookieSecret(WOLFSSL* ssl,
const byte* secret, word32 secretSz)
{
int ret = 0;
WOLFSSL_ENTER("wolfSSL_DTLS_SetCookieSecret");
if (ssl == NULL) {
WOLFSSL_MSG("need a SSL object");
return BAD_FUNC_ARG;
}
if (secret != NULL && secretSz == 0) {
WOLFSSL_MSG("can't have a new secret without a size");
return BAD_FUNC_ARG;
}
/* If secretSz is 0, use the default size. */
if (secretSz == 0)
secretSz = COOKIE_SECRET_SZ;
if (secretSz != ssl->buffers.dtlsCookieSecret.length) {
byte* newSecret;
if (ssl->buffers.dtlsCookieSecret.buffer != NULL) {
ForceZero(ssl->buffers.dtlsCookieSecret.buffer,
ssl->buffers.dtlsCookieSecret.length);
XFREE(ssl->buffers.dtlsCookieSecret.buffer,
ssl->heap, DYNAMIC_TYPE_NONE);
}
newSecret = (byte*)XMALLOC(secretSz, ssl->heap,DYNAMIC_TYPE_COOKIE_PWD);
if (newSecret == NULL) {
ssl->buffers.dtlsCookieSecret.buffer = NULL;
ssl->buffers.dtlsCookieSecret.length = 0;
WOLFSSL_MSG("couldn't allocate new cookie secret");
return MEMORY_ERROR;
}
ssl->buffers.dtlsCookieSecret.buffer = newSecret;
ssl->buffers.dtlsCookieSecret.length = secretSz;
}
/* If the supplied secret is NULL, randomly generate a new secret. */
if (secret == NULL) {
ret = wc_RNG_GenerateBlock(ssl->rng,
ssl->buffers.dtlsCookieSecret.buffer, secretSz);
}
else
XMEMCPY(ssl->buffers.dtlsCookieSecret.buffer, secret, secretSz);
WOLFSSL_LEAVE("wolfSSL_DTLS_SetCookieSecret", 0);
return ret;
}
#endif /* WOLFSSL_DTLS && !NO_WOLFSSL_SERVER */
#ifdef OPENSSL_EXTRA
WOLFSSL_METHOD* wolfSSLv23_method(void) {
WOLFSSL_METHOD* m;
WOLFSSL_ENTER("wolfSSLv23_method");
#ifndef NO_WOLFSSL_CLIENT
m = wolfSSLv23_client_method();
#else
m = wolfSSLv23_server_method();
#endif
if (m != NULL) {
m->side = WOLFSSL_NEITHER_END;
}
return m;
}
#endif /* OPENSSL_EXTRA */
/* client only parts */
#ifndef NO_WOLFSSL_CLIENT
#if defined(WOLFSSL_ALLOW_SSLV3) && !defined(NO_OLD_TLS)
WOLFSSL_METHOD* wolfSSLv3_client_method(void)
{
WOLFSSL_ENTER("SSLv3_client_method");
return wolfSSLv3_client_method_ex(NULL);
}
#endif
#ifdef WOLFSSL_DTLS
#ifndef NO_OLD_TLS
WOLFSSL_METHOD* wolfDTLSv1_client_method(void)
{
WOLFSSL_ENTER("DTLSv1_client_method");
return wolfDTLSv1_client_method_ex(NULL);
}
#endif /* NO_OLD_TLS */
WOLFSSL_METHOD* wolfDTLSv1_2_client_method(void)
{
WOLFSSL_ENTER("DTLSv1_2_client_method");
return wolfDTLSv1_2_client_method_ex(NULL);
}
#endif
#if defined(WOLFSSL_ALLOW_SSLV3) && !defined(NO_OLD_TLS)
WOLFSSL_METHOD* wolfSSLv3_client_method_ex(void* heap)
{
WOLFSSL_METHOD* method =
(WOLFSSL_METHOD*) XMALLOC(sizeof(WOLFSSL_METHOD),
heap, DYNAMIC_TYPE_METHOD);
WOLFSSL_ENTER("SSLv3_client_method_ex");
if (method)
InitSSL_Method(method, MakeSSLv3());
return method;
}
#endif
#ifdef WOLFSSL_DTLS
#ifndef NO_OLD_TLS
WOLFSSL_METHOD* wolfDTLSv1_client_method_ex(void* heap)
{
WOLFSSL_METHOD* method =
(WOLFSSL_METHOD*) XMALLOC(sizeof(WOLFSSL_METHOD),
heap, DYNAMIC_TYPE_METHOD);
WOLFSSL_ENTER("DTLSv1_client_method_ex");
if (method)
InitSSL_Method(method, MakeDTLSv1());
return method;
}
#endif /* NO_OLD_TLS */
WOLFSSL_METHOD* wolfDTLSv1_2_client_method_ex(void* heap)
{
WOLFSSL_METHOD* method =
(WOLFSSL_METHOD*) XMALLOC(sizeof(WOLFSSL_METHOD),
heap, DYNAMIC_TYPE_METHOD);
WOLFSSL_ENTER("DTLSv1_2_client_method_ex");
if (method)
InitSSL_Method(method, MakeDTLSv1_2());
(void)heap;
return method;
}
#endif
/* If SCTP is not enabled returns the state of the dtls option.
* If SCTP is enabled returns dtls && !sctp. */
static INLINE int IsDtlsNotSctpMode(WOLFSSL* ssl)
{
int result = ssl->options.dtls;
if (result) {
#ifdef WOLFSSL_SCTP
result = !ssl->options.dtlsSctp;
#endif
}
return result;
}
/* please see note at top of README if you get an error from connect */
int wolfSSL_connect(WOLFSSL* ssl)
{
int neededState;
WOLFSSL_ENTER("SSL_connect()");
#ifdef HAVE_ERRNO_H
errno = 0;
#endif
if (ssl == NULL)
return BAD_FUNC_ARG;
if (ssl->options.side != WOLFSSL_CLIENT_END) {
WOLFSSL_ERROR(ssl->error = SIDE_ERROR);
return WOLFSSL_FATAL_ERROR;
}
#ifdef WOLFSSL_TLS13
if (ssl->options.tls1_3)
return wolfSSL_connect_TLSv13(ssl);
#endif
#ifdef WOLFSSL_DTLS
if (ssl->version.major == DTLS_MAJOR) {
ssl->options.dtls = 1;
ssl->options.tls = 1;
ssl->options.tls1_1 = 1;
}
#endif
if (ssl->buffers.outputBuffer.length > 0) {
if ( (ssl->error = SendBuffered(ssl)) == 0) {
/* fragOffset is non-zero when sending fragments. On the last
* fragment, fragOffset is zero again, and the state can be
* advanced. */
if (ssl->fragOffset == 0) {
ssl->options.connectState++;
WOLFSSL_MSG("connect state: "
"Advanced from last buffered fragment send");
}
else {
WOLFSSL_MSG("connect state: "
"Not advanced, more fragments to send");
}
}
else {
WOLFSSL_ERROR(ssl->error);
return WOLFSSL_FATAL_ERROR;
}
}
#ifdef WOLFSSL_TLS13
if (ssl->options.tls1_3)
return wolfSSL_connect_TLSv13(ssl);
#endif
switch (ssl->options.connectState) {
case CONNECT_BEGIN :
/* always send client hello first */
if ( (ssl->error = SendClientHello(ssl)) != 0) {
WOLFSSL_ERROR(ssl->error);
return WOLFSSL_FATAL_ERROR;
}
ssl->options.connectState = CLIENT_HELLO_SENT;
WOLFSSL_MSG("connect state: CLIENT_HELLO_SENT");
FALL_THROUGH;
case CLIENT_HELLO_SENT :
neededState = ssl->options.resuming ? SERVER_FINISHED_COMPLETE :
SERVER_HELLODONE_COMPLETE;
#ifdef WOLFSSL_DTLS
/* In DTLS, when resuming, we can go straight to FINISHED,
* or do a cookie exchange and then skip to FINISHED, assume
* we need the cookie exchange first. */
if (IsDtlsNotSctpMode(ssl))
neededState = SERVER_HELLOVERIFYREQUEST_COMPLETE;
#endif
/* get response */
while (ssl->options.serverState < neededState) {
if ( (ssl->error = ProcessReply(ssl)) < 0) {
WOLFSSL_ERROR(ssl->error);
return WOLFSSL_FATAL_ERROR;
}
/* if resumption failed, reset needed state */
else if (neededState == SERVER_FINISHED_COMPLETE)
if (!ssl->options.resuming) {
if (!IsDtlsNotSctpMode(ssl))
neededState = SERVER_HELLODONE_COMPLETE;
else
neededState = SERVER_HELLOVERIFYREQUEST_COMPLETE;
}
}
ssl->options.connectState = HELLO_AGAIN;
WOLFSSL_MSG("connect state: HELLO_AGAIN");
FALL_THROUGH;
case HELLO_AGAIN :
if (ssl->options.certOnly)
return WOLFSSL_SUCCESS;
#ifdef WOLFSSL_TLS13
if (ssl->options.tls1_3)
return wolfSSL_connect_TLSv13(ssl);
#endif
#ifdef WOLFSSL_DTLS
if (IsDtlsNotSctpMode(ssl)) {
/* re-init hashes, exclude first hello and verify request */
if ((ssl->error = InitHandshakeHashes(ssl)) != 0) {
WOLFSSL_ERROR(ssl->error);
return WOLFSSL_FATAL_ERROR;
}
if ( (ssl->error = SendClientHello(ssl)) != 0) {
WOLFSSL_ERROR(ssl->error);
return WOLFSSL_FATAL_ERROR;
}
}
#endif
ssl->options.connectState = HELLO_AGAIN_REPLY;
WOLFSSL_MSG("connect state: HELLO_AGAIN_REPLY");
FALL_THROUGH;
case HELLO_AGAIN_REPLY :
#ifdef WOLFSSL_DTLS
if (IsDtlsNotSctpMode(ssl)) {
neededState = ssl->options.resuming ?
SERVER_FINISHED_COMPLETE : SERVER_HELLODONE_COMPLETE;
/* get response */
while (ssl->options.serverState < neededState) {
if ( (ssl->error = ProcessReply(ssl)) < 0) {
WOLFSSL_ERROR(ssl->error);
return WOLFSSL_FATAL_ERROR;
}
/* if resumption failed, reset needed state */
else if (neededState == SERVER_FINISHED_COMPLETE)
if (!ssl->options.resuming)
neededState = SERVER_HELLODONE_COMPLETE;
}
}
#endif
ssl->options.connectState = FIRST_REPLY_DONE;
WOLFSSL_MSG("connect state: FIRST_REPLY_DONE");
FALL_THROUGH;
case FIRST_REPLY_DONE :
#ifdef WOLFSSL_TLS13
if (ssl->options.tls1_3)
return wolfSSL_connect_TLSv13(ssl);
#endif
#ifndef NO_CERTS
if (ssl->options.sendVerify) {
if ( (ssl->error = SendCertificate(ssl)) != 0) {
WOLFSSL_ERROR(ssl->error);
return WOLFSSL_FATAL_ERROR;
}
WOLFSSL_MSG("sent: certificate");
}
#endif
ssl->options.connectState = FIRST_REPLY_FIRST;
WOLFSSL_MSG("connect state: FIRST_REPLY_FIRST");
FALL_THROUGH;
case FIRST_REPLY_FIRST :
#ifdef WOLFSSL_TLS13
if (ssl->options.tls1_3)
return wolfSSL_connect_TLSv13(ssl);
#endif
if (!ssl->options.resuming) {
if ( (ssl->error = SendClientKeyExchange(ssl)) != 0) {
WOLFSSL_ERROR(ssl->error);
return WOLFSSL_FATAL_ERROR;
}
WOLFSSL_MSG("sent: client key exchange");
}
ssl->options.connectState = FIRST_REPLY_SECOND;
WOLFSSL_MSG("connect state: FIRST_REPLY_SECOND");
FALL_THROUGH;
case FIRST_REPLY_SECOND :
#ifndef NO_CERTS
if (ssl->options.sendVerify) {
if ( (ssl->error = SendCertificateVerify(ssl)) != 0) {
WOLFSSL_ERROR(ssl->error);
return WOLFSSL_FATAL_ERROR;
}
WOLFSSL_MSG("sent: certificate verify");
}
#endif
ssl->options.connectState = FIRST_REPLY_THIRD;
WOLFSSL_MSG("connect state: FIRST_REPLY_THIRD");
FALL_THROUGH;
case FIRST_REPLY_THIRD :
if ( (ssl->error = SendChangeCipher(ssl)) != 0) {
WOLFSSL_ERROR(ssl->error);
return WOLFSSL_FATAL_ERROR;
}
WOLFSSL_MSG("sent: change cipher spec");
ssl->options.connectState = FIRST_REPLY_FOURTH;
WOLFSSL_MSG("connect state: FIRST_REPLY_FOURTH");
FALL_THROUGH;
case FIRST_REPLY_FOURTH :
if ( (ssl->error = SendFinished(ssl)) != 0) {
WOLFSSL_ERROR(ssl->error);
return WOLFSSL_FATAL_ERROR;
}
WOLFSSL_MSG("sent: finished");
ssl->options.connectState = FINISHED_DONE;
WOLFSSL_MSG("connect state: FINISHED_DONE");
FALL_THROUGH;
case FINISHED_DONE :
/* get response */
while (ssl->options.serverState < SERVER_FINISHED_COMPLETE)
if ( (ssl->error = ProcessReply(ssl)) < 0) {
WOLFSSL_ERROR(ssl->error);
return WOLFSSL_FATAL_ERROR;
}
ssl->options.connectState = SECOND_REPLY_DONE;
WOLFSSL_MSG("connect state: SECOND_REPLY_DONE");
FALL_THROUGH;
case SECOND_REPLY_DONE:
#ifndef NO_HANDSHAKE_DONE_CB
if (ssl->hsDoneCb) {
int cbret = ssl->hsDoneCb(ssl, ssl->hsDoneCtx);
if (cbret < 0) {
ssl->error = cbret;
WOLFSSL_MSG("HandShake Done Cb don't continue error");
return WOLFSSL_FATAL_ERROR;
}
}
#endif /* NO_HANDSHAKE_DONE_CB */
if (!ssl->options.dtls) {
if (!ssl->options.keepResources) {
FreeHandshakeResources(ssl);
}
}
#ifdef WOLFSSL_DTLS
else {
ssl->options.dtlsHsRetain = 1;
}
#endif /* WOLFSSL_DTLS */
WOLFSSL_LEAVE("SSL_connect()", WOLFSSL_SUCCESS);
return WOLFSSL_SUCCESS;
default:
WOLFSSL_MSG("Unknown connect state ERROR");
return WOLFSSL_FATAL_ERROR; /* unknown connect state */
}
}
#endif /* NO_WOLFSSL_CLIENT */
/* server only parts */
#ifndef NO_WOLFSSL_SERVER
#if defined(WOLFSSL_ALLOW_SSLV3) && !defined(NO_OLD_TLS)
WOLFSSL_METHOD* wolfSSLv3_server_method(void)
{
WOLFSSL_ENTER("SSLv3_server_method");
return wolfSSLv3_server_method_ex(NULL);
}
#endif
#ifdef WOLFSSL_DTLS
#ifndef NO_OLD_TLS
WOLFSSL_METHOD* wolfDTLSv1_server_method(void)
{
WOLFSSL_ENTER("DTLSv1_server_method");
return wolfDTLSv1_server_method_ex(NULL);
}
#endif /* NO_OLD_TLS */
WOLFSSL_METHOD* wolfDTLSv1_2_server_method(void)
{
WOLFSSL_ENTER("DTLSv1_2_server_method");
return wolfDTLSv1_2_server_method_ex(NULL);
}
#endif
#if defined(WOLFSSL_ALLOW_SSLV3) && !defined(NO_OLD_TLS)
WOLFSSL_METHOD* wolfSSLv3_server_method_ex(void* heap)
{
WOLFSSL_METHOD* method =
(WOLFSSL_METHOD*) XMALLOC(sizeof(WOLFSSL_METHOD),
heap, DYNAMIC_TYPE_METHOD);
WOLFSSL_ENTER("SSLv3_server_method_ex");
if (method) {
InitSSL_Method(method, MakeSSLv3());
method->side = WOLFSSL_SERVER_END;
}
return method;
}
#endif
#ifdef WOLFSSL_DTLS
#ifndef NO_OLD_TLS
WOLFSSL_METHOD* wolfDTLSv1_server_method_ex(void* heap)
{
WOLFSSL_METHOD* method =
(WOLFSSL_METHOD*) XMALLOC(sizeof(WOLFSSL_METHOD),
heap, DYNAMIC_TYPE_METHOD);
WOLFSSL_ENTER("DTLSv1_server_method_ex");
if (method) {
InitSSL_Method(method, MakeDTLSv1());
method->side = WOLFSSL_SERVER_END;
}
return method;
}
#endif /* NO_OLD_TLS */
WOLFSSL_METHOD* wolfDTLSv1_2_server_method_ex(void* heap)
{
WOLFSSL_METHOD* method =
(WOLFSSL_METHOD*) XMALLOC(sizeof(WOLFSSL_METHOD),
heap, DYNAMIC_TYPE_METHOD);
WOLFSSL_ENTER("DTLSv1_2_server_method_ex");
if (method) {
InitSSL_Method(method, MakeDTLSv1_2());
method->side = WOLFSSL_SERVER_END;
}
(void)heap;
return method;
}
#endif
int wolfSSL_accept(WOLFSSL* ssl)
{
word16 havePSK = 0;
word16 haveAnon = 0;
word16 haveMcast = 0;
#ifdef WOLFSSL_TLS13
if (ssl->options.tls1_3)
return wolfSSL_accept_TLSv13(ssl);
#endif
WOLFSSL_ENTER("SSL_accept()");
#ifdef HAVE_ERRNO_H
errno = 0;
#endif
#ifndef NO_PSK
havePSK = ssl->options.havePSK;
#endif
(void)havePSK;
#ifdef HAVE_ANON
haveAnon = ssl->options.haveAnon;
#endif
(void)haveAnon;
#ifdef WOLFSSL_MULTICAST
haveMcast = ssl->options.haveMcast;
#endif
(void)haveMcast;
if (ssl->options.side != WOLFSSL_SERVER_END) {
WOLFSSL_ERROR(ssl->error = SIDE_ERROR);
return WOLFSSL_FATAL_ERROR;
}
#ifndef NO_CERTS
/* in case used set_accept_state after init */
if (!havePSK && !haveAnon && !haveMcast &&
(!ssl->buffers.certificate ||
!ssl->buffers.certificate->buffer ||
!ssl->buffers.key ||
!ssl->buffers.key->buffer)) {
WOLFSSL_MSG("accept error: don't have server cert and key");
ssl->error = NO_PRIVATE_KEY;
WOLFSSL_ERROR(ssl->error);
return WOLFSSL_FATAL_ERROR;
}
#endif
#ifdef WOLFSSL_DTLS
if (ssl->version.major == DTLS_MAJOR) {
ssl->options.dtls = 1;
ssl->options.tls = 1;
ssl->options.tls1_1 = 1;
}
#endif
if (ssl->buffers.outputBuffer.length > 0) {
if ( (ssl->error = SendBuffered(ssl)) == 0) {
/* fragOffset is non-zero when sending fragments. On the last
* fragment, fragOffset is zero again, and the state can be
* advanced. */
if (ssl->fragOffset == 0) {
ssl->options.acceptState++;
WOLFSSL_MSG("accept state: "
"Advanced from last buffered fragment send");
}
else {
WOLFSSL_MSG("accept state: "
"Not advanced, more fragments to send");
}
}
else {
WOLFSSL_ERROR(ssl->error);
return WOLFSSL_FATAL_ERROR;
}
}
switch (ssl->options.acceptState) {
case ACCEPT_BEGIN :
/* get response */
while (ssl->options.clientState < CLIENT_HELLO_COMPLETE)
if ( (ssl->error = ProcessReply(ssl)) < 0) {
WOLFSSL_ERROR(ssl->error);
return WOLFSSL_FATAL_ERROR;
}
#ifdef WOLFSSL_TLS13
ssl->options.acceptState = ACCEPT_CLIENT_HELLO_DONE;
WOLFSSL_MSG("accept state ACCEPT_CLIENT_HELLO_DONE");
FALL_THROUGH;
case ACCEPT_CLIENT_HELLO_DONE :
if (ssl->options.serverState == SERVER_HELLO_RETRY_REQUEST) {
if ((ssl->error = SendTls13HelloRetryRequest(ssl)) != 0) {
WOLFSSL_ERROR(ssl->error);
return WOLFSSL_FATAL_ERROR;
}
}
ssl->options.acceptState = ACCEPT_HELLO_RETRY_REQUEST_DONE;
WOLFSSL_MSG("accept state ACCEPT_HELLO_RETRY_REQUEST_DONE");
FALL_THROUGH;
case ACCEPT_HELLO_RETRY_REQUEST_DONE :
if (ssl->options.serverState == SERVER_HELLO_RETRY_REQUEST) {
if ( (ssl->error = ProcessReply(ssl)) < 0) {
WOLFSSL_ERROR(ssl->error);
return WOLFSSL_FATAL_ERROR;
}
}
#endif
ssl->options.acceptState = ACCEPT_FIRST_REPLY_DONE;
WOLFSSL_MSG("accept state ACCEPT_FIRST_REPLY_DONE");
FALL_THROUGH;
case ACCEPT_FIRST_REPLY_DONE :
#ifdef WOLFSSL_TLS13
if (ssl->options.tls1_3) {
return wolfSSL_accept_TLSv13(ssl);
}
#endif
if ( (ssl->error = SendServerHello(ssl)) != 0) {
WOLFSSL_ERROR(ssl->error);
return WOLFSSL_FATAL_ERROR;
}
ssl->options.acceptState = SERVER_HELLO_SENT;
WOLFSSL_MSG("accept state SERVER_HELLO_SENT");
FALL_THROUGH;
case SERVER_HELLO_SENT :
#ifdef WOLFSSL_TLS13
if (ssl->options.tls1_3) {
return wolfSSL_accept_TLSv13(ssl);
}
#endif
#ifndef NO_CERTS
if (!ssl->options.resuming)
if ( (ssl->error = SendCertificate(ssl)) != 0) {
WOLFSSL_ERROR(ssl->error);
return WOLFSSL_FATAL_ERROR;
}
#endif
ssl->options.acceptState = CERT_SENT;
WOLFSSL_MSG("accept state CERT_SENT");
FALL_THROUGH;
case CERT_SENT :
#ifndef NO_CERTS
if (!ssl->options.resuming)
if ( (ssl->error = SendCertificateStatus(ssl)) != 0) {
WOLFSSL_ERROR(ssl->error);
return WOLFSSL_FATAL_ERROR;
}
#endif
ssl->options.acceptState = CERT_STATUS_SENT;
WOLFSSL_MSG("accept state CERT_STATUS_SENT");
FALL_THROUGH;
case CERT_STATUS_SENT :
#ifdef WOLFSSL_TLS13
if (ssl->options.tls1_3) {
return wolfSSL_accept_TLSv13(ssl);
}
#endif
if (!ssl->options.resuming)
if ( (ssl->error = SendServerKeyExchange(ssl)) != 0) {
WOLFSSL_ERROR(ssl->error);
return WOLFSSL_FATAL_ERROR;
}
ssl->options.acceptState = KEY_EXCHANGE_SENT;
WOLFSSL_MSG("accept state KEY_EXCHANGE_SENT");
FALL_THROUGH;
case KEY_EXCHANGE_SENT :
#ifndef NO_CERTS
if (!ssl->options.resuming) {
if (ssl->options.verifyPeer) {
if ( (ssl->error = SendCertificateRequest(ssl)) != 0) {
WOLFSSL_ERROR(ssl->error);
return WOLFSSL_FATAL_ERROR;
}
}
}
#endif
ssl->options.acceptState = CERT_REQ_SENT;
WOLFSSL_MSG("accept state CERT_REQ_SENT");
FALL_THROUGH;
case CERT_REQ_SENT :
if (!ssl->options.resuming)
if ( (ssl->error = SendServerHelloDone(ssl)) != 0) {
WOLFSSL_ERROR(ssl->error);
return WOLFSSL_FATAL_ERROR;
}
ssl->options.acceptState = SERVER_HELLO_DONE;
WOLFSSL_MSG("accept state SERVER_HELLO_DONE");
FALL_THROUGH;
case SERVER_HELLO_DONE :
if (!ssl->options.resuming) {
while (ssl->options.clientState < CLIENT_FINISHED_COMPLETE)
if ( (ssl->error = ProcessReply(ssl)) < 0) {
WOLFSSL_ERROR(ssl->error);
return WOLFSSL_FATAL_ERROR;
}
}
ssl->options.acceptState = ACCEPT_SECOND_REPLY_DONE;
WOLFSSL_MSG("accept state ACCEPT_SECOND_REPLY_DONE");
FALL_THROUGH;
case ACCEPT_SECOND_REPLY_DONE :
#ifdef HAVE_SESSION_TICKET
if (ssl->options.createTicket) {
if ( (ssl->error = SendTicket(ssl)) != 0) {
WOLFSSL_ERROR(ssl->error);
return WOLFSSL_FATAL_ERROR;
}
}
#endif /* HAVE_SESSION_TICKET */
ssl->options.acceptState = TICKET_SENT;
WOLFSSL_MSG("accept state TICKET_SENT");
FALL_THROUGH;
case TICKET_SENT:
if ( (ssl->error = SendChangeCipher(ssl)) != 0) {
WOLFSSL_ERROR(ssl->error);
return WOLFSSL_FATAL_ERROR;
}
ssl->options.acceptState = CHANGE_CIPHER_SENT;
WOLFSSL_MSG("accept state CHANGE_CIPHER_SENT");
FALL_THROUGH;
case CHANGE_CIPHER_SENT :
if ( (ssl->error = SendFinished(ssl)) != 0) {
WOLFSSL_ERROR(ssl->error);
return WOLFSSL_FATAL_ERROR;
}
ssl->options.acceptState = ACCEPT_FINISHED_DONE;
WOLFSSL_MSG("accept state ACCEPT_FINISHED_DONE");
FALL_THROUGH;
case ACCEPT_FINISHED_DONE :
if (ssl->options.resuming)
while (ssl->options.clientState < CLIENT_FINISHED_COMPLETE)
if ( (ssl->error = ProcessReply(ssl)) < 0) {
WOLFSSL_ERROR(ssl->error);
return WOLFSSL_FATAL_ERROR;
}
ssl->options.acceptState = ACCEPT_THIRD_REPLY_DONE;
WOLFSSL_MSG("accept state ACCEPT_THIRD_REPLY_DONE");
FALL_THROUGH;
case ACCEPT_THIRD_REPLY_DONE :
#ifndef NO_HANDSHAKE_DONE_CB
if (ssl->hsDoneCb) {
int cbret = ssl->hsDoneCb(ssl, ssl->hsDoneCtx);
if (cbret < 0) {
ssl->error = cbret;
WOLFSSL_MSG("HandShake Done Cb don't continue error");
return WOLFSSL_FATAL_ERROR;
}
}
#endif /* NO_HANDSHAKE_DONE_CB */
if (!ssl->options.dtls) {
if (!ssl->options.keepResources) {
FreeHandshakeResources(ssl);
}
}
#ifdef WOLFSSL_DTLS
else {
ssl->options.dtlsHsRetain = 1;
}
#endif /* WOLFSSL_DTLS */
#ifdef WOLFSSL_SESSION_EXPORT
if (ssl->dtls_export) {
if ((ssl->error = wolfSSL_send_session(ssl)) != 0) {
WOLFSSL_MSG("Export DTLS session error");
WOLFSSL_ERROR(ssl->error);
return WOLFSSL_FATAL_ERROR;
}
}
#endif
WOLFSSL_LEAVE("SSL_accept()", WOLFSSL_SUCCESS);
return WOLFSSL_SUCCESS;
default :
WOLFSSL_MSG("Unknown accept state ERROR");
return WOLFSSL_FATAL_ERROR;
}
}
#endif /* NO_WOLFSSL_SERVER */
#ifndef NO_HANDSHAKE_DONE_CB
int wolfSSL_SetHsDoneCb(WOLFSSL* ssl, HandShakeDoneCb cb, void* user_ctx)
{
WOLFSSL_ENTER("wolfSSL_SetHsDoneCb");
if (ssl == NULL)
return BAD_FUNC_ARG;
ssl->hsDoneCb = cb;
ssl->hsDoneCtx = user_ctx;
return WOLFSSL_SUCCESS;
}
#endif /* NO_HANDSHAKE_DONE_CB */
int wolfSSL_Cleanup(void)
{
int ret = WOLFSSL_SUCCESS;
int release = 0;
WOLFSSL_ENTER("wolfSSL_Cleanup");
if (initRefCount == 0)
return ret; /* possibly no init yet, but not failure either way */
if (wc_LockMutex(&count_mutex) != 0) {
WOLFSSL_MSG("Bad Lock Mutex count");
return BAD_MUTEX_E;
}
release = initRefCount-- == 1;
if (initRefCount < 0)
initRefCount = 0;
wc_UnLockMutex(&count_mutex);
if (!release)
return ret;
#ifndef NO_SESSION_CACHE
if (wc_FreeMutex(&session_mutex) != 0)
ret = BAD_MUTEX_E;
#endif
if (wc_FreeMutex(&count_mutex) != 0)
ret = BAD_MUTEX_E;
if (wolfCrypt_Cleanup() != 0) {
WOLFSSL_MSG("Error with wolfCrypt_Cleanup call");
ret = WC_CLEANUP_E;
}
return ret;
}
#ifndef NO_SESSION_CACHE
/* some session IDs aren't random after all, let's make them random */
static INLINE word32 HashSession(const byte* sessionID, word32 len, int* error)
{
byte digest[MAX_DIGEST_SIZE];
#ifndef NO_MD5
*error = wc_Md5Hash(sessionID, len, digest);
#elif !defined(NO_SHA)
*error = wc_ShaHash(sessionID, len, digest);
#elif !defined(NO_SHA256)
*error = wc_Sha256Hash(sessionID, len, digest);
#else
#error "We need a digest to hash the session IDs"
#endif
return *error == 0 ? MakeWordFromHash(digest) : 0; /* 0 on failure */
}
void wolfSSL_flush_sessions(WOLFSSL_CTX* ctx, long tm)
{
/* static table now, no flushing needed */
(void)ctx;
(void)tm;
}
/* set ssl session timeout in seconds */
int wolfSSL_set_timeout(WOLFSSL* ssl, unsigned int to)
{
if (ssl == NULL)
return BAD_FUNC_ARG;
if (to == 0)
to = WOLFSSL_SESSION_TIMEOUT;
ssl->timeout = to;
return WOLFSSL_SUCCESS;
}
/* set ctx session timeout in seconds */
int wolfSSL_CTX_set_timeout(WOLFSSL_CTX* ctx, unsigned int to)
{
if (ctx == NULL)
return BAD_FUNC_ARG;
if (to == 0)
to = WOLFSSL_SESSION_TIMEOUT;
ctx->timeout = to;
return WOLFSSL_SUCCESS;
}
#ifndef NO_CLIENT_CACHE
/* Get Session from Client cache based on id/len, return NULL on failure */
WOLFSSL_SESSION* GetSessionClient(WOLFSSL* ssl, const byte* id, int len)
{
WOLFSSL_SESSION* ret = NULL;
word32 row;
int idx;
int count;
int error = 0;
WOLFSSL_ENTER("GetSessionClient");
if (ssl->ctx->sessionCacheOff)
return NULL;
if (ssl->options.side == WOLFSSL_SERVER_END)
return NULL;
len = min(SERVER_ID_LEN, (word32)len);
#ifdef HAVE_EXT_CACHE
if (ssl->ctx->get_sess_cb != NULL) {
int copy = 0;
ret = ssl->ctx->get_sess_cb(ssl, (byte*)id, len, &copy);
if (ret != NULL)
return ret;
}
if (ssl->ctx->internalCacheOff)
return NULL;
#endif
row = HashSession(id, len, &error) % SESSION_ROWS;
if (error != 0) {
WOLFSSL_MSG("Hash session failed");
return NULL;
}
if (wc_LockMutex(&session_mutex) != 0) {
WOLFSSL_MSG("Lock session mutex failed");
return NULL;
}
/* start from most recently used */
count = min((word32)ClientCache[row].totalCount, SESSIONS_PER_ROW);
idx = ClientCache[row].nextIdx - 1;
if (idx < 0)
idx = SESSIONS_PER_ROW - 1; /* if back to front, the previous was end */
for (; count > 0; --count, idx = idx ? idx - 1 : SESSIONS_PER_ROW - 1) {
WOLFSSL_SESSION* current;
ClientSession clSess;
if (idx >= SESSIONS_PER_ROW || idx < 0) { /* sanity check */
WOLFSSL_MSG("Bad idx");
break;
}
clSess = ClientCache[row].Clients[idx];
current = &SessionCache[clSess.serverRow].Sessions[clSess.serverIdx];
if (XMEMCMP(current->serverID, id, len) == 0) {
WOLFSSL_MSG("Found a serverid match for client");
if (LowResTimer() < (current->bornOn + current->timeout)) {
WOLFSSL_MSG("Session valid");
ret = current;
break;
} else {
WOLFSSL_MSG("Session timed out"); /* could have more for id */
}
} else {
WOLFSSL_MSG("ServerID not a match from client table");
}
}
wc_UnLockMutex(&session_mutex);
return ret;
}
#endif /* NO_CLIENT_CACHE */
/* Restore the master secret and session information for certificates.
*
* ssl The SSL/TLS object.
* session The cached session to restore.
* masterSecret The master secret from the cached session.
* restoreSessionCerts Restoring session certificates is required.
*/
static INLINE void RestoreSession(WOLFSSL* ssl, WOLFSSL_SESSION* session,
byte* masterSecret, byte restoreSessionCerts)
{
(void)ssl;
(void)restoreSessionCerts;
if (masterSecret)
XMEMCPY(masterSecret, session->masterSecret, SECRET_LEN);
#ifdef SESSION_CERTS
/* If set, we should copy the session certs into the ssl object
* from the session we are returning so we can resume */
if (restoreSessionCerts) {
ssl->session.chain = session->chain;
ssl->session.version = session->version;
ssl->session.cipherSuite0 = session->cipherSuite0;
ssl->session.cipherSuite = session->cipherSuite;
}
#endif /* SESSION_CERTS */
}
WOLFSSL_SESSION* GetSession(WOLFSSL* ssl, byte* masterSecret,
byte restoreSessionCerts)
{
WOLFSSL_SESSION* ret = 0;
const byte* id = NULL;
word32 row;
int idx;
int count;
int error = 0;
(void) restoreSessionCerts;
if (ssl->options.sessionCacheOff)
return NULL;
if (ssl->options.haveSessionId == 0)
return NULL;
#ifdef HAVE_SESSION_TICKET
if (ssl->options.side == WOLFSSL_SERVER_END && ssl->options.useTicket == 1)
return NULL;
#endif
if (ssl->arrays)
id = ssl->arrays->sessionID;
else
id = ssl->session.sessionID;
#ifdef HAVE_EXT_CACHE
if (ssl->ctx->get_sess_cb != NULL) {
int copy = 0;
/* Attempt to retrieve the session from the external cache. */
ret = ssl->ctx->get_sess_cb(ssl, (byte*)id, ID_LEN, &copy);
if (ret != NULL) {
RestoreSession(ssl, ret, masterSecret, restoreSessionCerts);
return ret;
}
}
if (ssl->ctx->internalCacheOff)
return NULL;
#endif
row = HashSession(id, ID_LEN, &error) % SESSION_ROWS;
if (error != 0) {
WOLFSSL_MSG("Hash session failed");
return NULL;
}
if (wc_LockMutex(&session_mutex) != 0)
return 0;
/* start from most recently used */
count = min((word32)SessionCache[row].totalCount, SESSIONS_PER_ROW);
idx = SessionCache[row].nextIdx - 1;
if (idx < 0)
idx = SESSIONS_PER_ROW - 1; /* if back to front, the previous was end */
for (; count > 0; --count, idx = idx ? idx - 1 : SESSIONS_PER_ROW - 1) {
WOLFSSL_SESSION* current;
if (idx >= SESSIONS_PER_ROW || idx < 0) { /* sanity check */
WOLFSSL_MSG("Bad idx");
break;
}
current = &SessionCache[row].Sessions[idx];
if (XMEMCMP(current->sessionID, id, ID_LEN) == 0) {
WOLFSSL_MSG("Found a session match");
if (LowResTimer() < (current->bornOn + current->timeout)) {
WOLFSSL_MSG("Session valid");
ret = current;
RestoreSession(ssl, ret, masterSecret, restoreSessionCerts);
} else {
WOLFSSL_MSG("Session timed out");
}
break; /* no more sessionIDs whether valid or not that match */
} else {
WOLFSSL_MSG("SessionID not a match at this idx");
}
}
wc_UnLockMutex(&session_mutex);
return ret;
}
static int GetDeepCopySession(WOLFSSL* ssl, WOLFSSL_SESSION* copyFrom)
{
WOLFSSL_SESSION* copyInto = &ssl->session;
void* tmpBuff = NULL;
int ticketLen = 0;
int doDynamicCopy = 0;
int ret = WOLFSSL_SUCCESS;
(void)ticketLen;
(void)doDynamicCopy;
(void)tmpBuff;
if (!ssl || !copyFrom)
return BAD_FUNC_ARG;
#ifdef HAVE_SESSION_TICKET
/* Free old dynamic ticket if we had one to avoid leak */
if (copyInto->isDynamic) {
XFREE(copyInto->ticket, ssl->heap, DYNAMIC_TYPE_SESSION_TICK);
copyInto->ticket = copyInto->staticTicket;
copyInto->isDynamic = 0;
}
#endif
if (wc_LockMutex(&session_mutex) != 0)
return BAD_MUTEX_E;
#ifdef HAVE_SESSION_TICKET
/* Size of ticket to alloc if needed; Use later for alloc outside lock */
doDynamicCopy = copyFrom->isDynamic;
ticketLen = copyFrom->ticketLen;
#endif
*copyInto = *copyFrom;
/* Default ticket to non dynamic. This will avoid crash if we fail below */
#ifdef HAVE_SESSION_TICKET
copyInto->ticket = copyInto->staticTicket;
copyInto->isDynamic = 0;
#endif
if (wc_UnLockMutex(&session_mutex) != 0) {
return BAD_MUTEX_E;
}
#ifdef HAVE_SESSION_TICKET
#ifdef WOLFSSL_TLS13
if (wc_LockMutex(&session_mutex) != 0) {
XFREE(tmpBuff, ssl->heap, DYNAMIC_TYPE_SESSION_TICK);
return BAD_MUTEX_E;
}
copyInto->cipherSuite0 = copyFrom->cipherSuite0;
copyInto->cipherSuite = copyFrom->cipherSuite;
copyInto->namedGroup = copyFrom->namedGroup;
copyInto->ticketSeen = copyFrom->ticketSeen;
copyInto->ticketAdd = copyFrom->ticketAdd;
#ifndef WOLFSSL_TLS13_DRAFT_18
XMEMCPY(&copyInto->ticketNonce, &copyFrom->ticketNonce,
sizeof(TicketNonce));
#endif
#ifdef WOLFSSL_EARLY_DATA
copyInto->maxEarlyDataSz = copyFrom->maxEarlyDataSz;
#endif
XMEMCPY(copyInto->masterSecret, copyFrom->masterSecret, SECRET_LEN);
if (wc_UnLockMutex(&session_mutex) != 0) {
if (ret == WOLFSSL_SUCCESS)
ret = BAD_MUTEX_E;
}
#endif
/* If doing dynamic copy, need to alloc outside lock, then inside a lock
* confirm the size still matches and memcpy */
if (doDynamicCopy) {
tmpBuff = (byte*)XMALLOC(ticketLen, ssl->heap,
DYNAMIC_TYPE_SESSION_TICK);
if (!tmpBuff)
return MEMORY_ERROR;
if (wc_LockMutex(&session_mutex) != 0) {
XFREE(tmpBuff, ssl->heap, DYNAMIC_TYPE_SESSION_TICK);
return BAD_MUTEX_E;
}
if (ticketLen != copyFrom->ticketLen) {
/* Another thread modified the ssl-> session ticket during alloc.
* Treat as error, since ticket different than when copy requested */
ret = VAR_STATE_CHANGE_E;
}
if (ret == WOLFSSL_SUCCESS) {
copyInto->ticket = (byte*)tmpBuff;
copyInto->isDynamic = 1;
XMEMCPY(copyInto->ticket, copyFrom->ticket, ticketLen);
}
} else {
/* Need to ensure ticket pointer gets updated to own buffer
* and is not pointing to buff of session copied from */
copyInto->ticket = copyInto->staticTicket;
}
if (doDynamicCopy) {
if (wc_UnLockMutex(&session_mutex) != 0) {
if (ret == WOLFSSL_SUCCESS)
ret = BAD_MUTEX_E;
}
}
if (ret != WOLFSSL_SUCCESS) {
/* cleanup */
if (tmpBuff)
XFREE(tmpBuff, ssl->heap, DYNAMIC_TYPE_SESSION_TICK);
copyInto->ticket = copyInto->staticTicket;
copyInto->isDynamic = 0;
}
#endif /* HAVE_SESSION_TICKET */
return ret;
}
int SetSession(WOLFSSL* ssl, WOLFSSL_SESSION* session)
{
if (ssl->options.sessionCacheOff)
return WOLFSSL_FAILURE;
if (LowResTimer() < (session->bornOn + session->timeout)) {
int ret = GetDeepCopySession(ssl, session);
if (ret == WOLFSSL_SUCCESS) {
ssl->options.resuming = 1;
#if defined(SESSION_CERTS) || (defined(WOLFSSL_TLS13) && \
defined(HAVE_SESSION_TICKET))
ssl->version = session->version;
ssl->options.cipherSuite0 = session->cipherSuite0;
ssl->options.cipherSuite = session->cipherSuite;
#endif
}
return ret;
}
return WOLFSSL_FAILURE; /* session timed out */
}
#ifdef WOLFSSL_SESSION_STATS
static int get_locked_session_stats(word32* active, word32* total,
word32* peak);
#endif
int AddSession(WOLFSSL* ssl)
{
word32 row = 0;
word32 idx = 0;
int error = 0;
#ifdef HAVE_SESSION_TICKET
byte* tmpBuff = NULL;
int ticLen = 0;
#endif
WOLFSSL_SESSION* session;
if (ssl->options.sessionCacheOff)
return 0;
if (ssl->options.haveSessionId == 0)
return 0;
#ifdef HAVE_SESSION_TICKET
if (ssl->options.side == WOLFSSL_SERVER_END && ssl->options.useTicket == 1)
return 0;
#endif
#ifdef HAVE_SESSION_TICKET
ticLen = ssl->session.ticketLen;
/* Alloc Memory here so if Malloc fails can exit outside of lock */
if(ticLen > SESSION_TICKET_LEN) {
tmpBuff = (byte*)XMALLOC(ticLen, ssl->heap,
DYNAMIC_TYPE_SESSION_TICK);
if(!tmpBuff)
return MEMORY_E;
}
#endif
#ifdef HAVE_EXT_CACHE
if (ssl->options.internalCacheOff) {
/* Create a new session object to be stored. */
session = (WOLFSSL_SESSION*)XMALLOC(sizeof(WOLFSSL_SESSION), NULL,
DYNAMIC_TYPE_OPENSSL);
if (session == NULL) {
#ifdef HAVE_SESSION_TICKET
XFREE(tmpBuff, ssl->heap, DYNAMIC_TYPE_SESSION_TICK);
#endif
return MEMORY_E;
}
XMEMSET(session, 0, sizeof(WOLFSSL_SESSION));
session->isAlloced = 1;
}
else
#endif
{
/* Use the session object in the cache for external cache if required.
*/
row = HashSession(ssl->arrays->sessionID, ID_LEN, &error) %
SESSION_ROWS;
if (error != 0) {
WOLFSSL_MSG("Hash session failed");
#ifdef HAVE_SESSION_TICKET
XFREE(tmpBuff, ssl->heap, DYNAMIC_TYPE_SESSION_TICK);
#endif
return error;
}
if (wc_LockMutex(&session_mutex) != 0) {
#ifdef HAVE_SESSION_TICKET
XFREE(tmpBuff, ssl->heap, DYNAMIC_TYPE_SESSION_TICK);
#endif
return BAD_MUTEX_E;
}
idx = SessionCache[row].nextIdx++;
#ifdef SESSION_INDEX
ssl->sessionIndex = (row << SESSIDX_ROW_SHIFT) | idx;
#endif
session = &SessionCache[row].Sessions[idx];
}
if (!ssl->options.tls1_3)
XMEMCPY(session->masterSecret, ssl->arrays->masterSecret, SECRET_LEN);
else
XMEMCPY(session->masterSecret, ssl->session.masterSecret, SECRET_LEN);
session->haveEMS = ssl->options.haveEMS;
XMEMCPY(session->sessionID, ssl->arrays->sessionID, ID_LEN);
session->sessionIDSz = ssl->arrays->sessionIDSz;
session->timeout = ssl->timeout;
session->bornOn = LowResTimer();
#ifdef HAVE_SESSION_TICKET
/* Check if another thread modified ticket since alloc */
if (ticLen != ssl->session.ticketLen) {
error = VAR_STATE_CHANGE_E;
}
if (error == 0) {
/* Cleanup cache row's old Dynamic buff if exists */
if(session->isDynamic) {
XFREE(session->ticket, ssl->heap, DYNAMIC_TYPE_SESSION_TICK);
session->ticket = NULL;
}
/* If too large to store in static buffer, use dyn buffer */
if (ticLen > SESSION_TICKET_LEN) {
session->ticket = tmpBuff;
session->isDynamic = 1;
} else {
session->ticket = session->staticTicket;
session->isDynamic = 0;
}
}
if (error == 0) {
session->ticketLen = (word16)ticLen;
XMEMCPY(session->ticket, ssl->session.ticket, ticLen);
} else { /* cleanup, reset state */
session->ticket = session->staticTicket;
session->isDynamic = 0;
session->ticketLen = 0;
if (tmpBuff) {
XFREE(tmpBuff, ssl->heap, DYNAMIC_TYPE_SESSION_TICK);
tmpBuff = NULL;
}
}
#endif
#ifdef SESSION_CERTS
if (error == 0) {
session->chain.count = ssl->session.chain.count;
XMEMCPY(session->chain.certs, ssl->session.chain.certs,
sizeof(x509_buffer) * MAX_CHAIN_DEPTH);
}
#endif /* SESSION_CERTS */
#if defined(SESSION_CERTS) || (defined(WOLFSSL_TLS13) && \
defined(HAVE_SESSION_TICKET))
if (error == 0) {
session->version = ssl->version;
session->cipherSuite0 = ssl->options.cipherSuite0;
session->cipherSuite = ssl->options.cipherSuite;
}
#endif /* SESSION_CERTS || (WOLFSSL_TLS13 & HAVE_SESSION_TICKET) */
#if defined(WOLFSSL_TLS13) && defined(HAVE_SESSION_TICKET)
if (error == 0) {
session->namedGroup = ssl->session.namedGroup;
session->ticketSeen = ssl->session.ticketSeen;
session->ticketAdd = ssl->session.ticketAdd;
#ifndef WOLFSSL_TLS13_DRAFT_18
XMEMCPY(&session->ticketNonce, &ssl->session.ticketNonce,
sizeof(TicketNonce));
#endif
#ifdef WOLFSSL_EARLY_DATA
session->maxEarlyDataSz = ssl->session.maxEarlyDataSz;
#endif
}
#endif /* WOLFSSL_TLS13 && HAVE_SESSION_TICKET */
#ifdef HAVE_EXT_CACHE
if (!ssl->options.internalCacheOff)
#endif
{
if (error == 0) {
SessionCache[row].totalCount++;
if (SessionCache[row].nextIdx == SESSIONS_PER_ROW)
SessionCache[row].nextIdx = 0;
}
}
#ifndef NO_CLIENT_CACHE
if (error == 0) {
if (ssl->options.side == WOLFSSL_CLIENT_END && ssl->session.idLen) {
word32 clientRow, clientIdx;
WOLFSSL_MSG("Adding client cache entry");
session->idLen = ssl->session.idLen;
XMEMCPY(session->serverID, ssl->session.serverID,
ssl->session.idLen);
#ifdef HAVE_EXT_CACHE
if (!ssl->options.internalCacheOff)
#endif
{
clientRow = HashSession(ssl->session.serverID,
ssl->session.idLen, &error) % SESSION_ROWS;
if (error != 0) {
WOLFSSL_MSG("Hash session failed");
} else {
clientIdx = ClientCache[clientRow].nextIdx++;
ClientCache[clientRow].Clients[clientIdx].serverRow =
(word16)row;
ClientCache[clientRow].Clients[clientIdx].serverIdx =
(word16)idx;
ClientCache[clientRow].totalCount++;
if (ClientCache[clientRow].nextIdx == SESSIONS_PER_ROW)
ClientCache[clientRow].nextIdx = 0;
}
}
}
else
session->idLen = 0;
}
#endif /* NO_CLIENT_CACHE */
#if defined(WOLFSSL_SESSION_STATS) && defined(WOLFSSL_PEAK_SESSIONS)
#ifdef HAVE_EXT_CACHE
if (!ssl->options.internalCacheOff)
#endif
{
if (error == 0) {
word32 active = 0;
error = get_locked_session_stats(&active, NULL, NULL);
if (error == WOLFSSL_SUCCESS) {
error = 0; /* back to this function ok */
if (active > PeakSessions)
PeakSessions = active;
}
}
}
#endif /* defined(WOLFSSL_SESSION_STATS) && defined(WOLFSSL_PEAK_SESSIONS) */
#ifdef HAVE_EXT_CACHE
if (!ssl->options.internalCacheOff)
#endif
{
if (wc_UnLockMutex(&session_mutex) != 0)
return BAD_MUTEX_E;
}
#ifdef HAVE_EXT_CACHE
if (error == 0 && ssl->ctx->new_sess_cb != NULL)
ssl->ctx->new_sess_cb(ssl, session);
if (ssl->options.internalCacheOff)
wolfSSL_SESSION_free(session);
#endif
return error;
}
#ifdef SESSION_INDEX
int wolfSSL_GetSessionIndex(WOLFSSL* ssl)
{
WOLFSSL_ENTER("wolfSSL_GetSessionIndex");
WOLFSSL_LEAVE("wolfSSL_GetSessionIndex", ssl->sessionIndex);
return ssl->sessionIndex;
}
int wolfSSL_GetSessionAtIndex(int idx, WOLFSSL_SESSION* session)
{
int row, col, result = WOLFSSL_FAILURE;
WOLFSSL_ENTER("wolfSSL_GetSessionAtIndex");
row = idx >> SESSIDX_ROW_SHIFT;
col = idx & SESSIDX_IDX_MASK;
if (wc_LockMutex(&session_mutex) != 0) {
return BAD_MUTEX_E;
}
if (row < SESSION_ROWS &&
col < (int)min(SessionCache[row].totalCount, SESSIONS_PER_ROW)) {
XMEMCPY(session,
&SessionCache[row].Sessions[col], sizeof(WOLFSSL_SESSION));
result = WOLFSSL_SUCCESS;
}
if (wc_UnLockMutex(&session_mutex) != 0)
result = BAD_MUTEX_E;
WOLFSSL_LEAVE("wolfSSL_GetSessionAtIndex", result);
return result;
}
#endif /* SESSION_INDEX */
#if defined(SESSION_INDEX) && defined(SESSION_CERTS)
WOLFSSL_X509_CHAIN* wolfSSL_SESSION_get_peer_chain(WOLFSSL_SESSION* session)
{
WOLFSSL_X509_CHAIN* chain = NULL;
WOLFSSL_ENTER("wolfSSL_SESSION_get_peer_chain");
if (session)
chain = &session->chain;
WOLFSSL_LEAVE("wolfSSL_SESSION_get_peer_chain", chain ? 1 : 0);
return chain;
}
#endif /* SESSION_INDEX && SESSION_CERTS */
#ifdef WOLFSSL_SESSION_STATS
/* requires session_mutex lock held, WOLFSSL_SUCCESS on ok */
static int get_locked_session_stats(word32* active, word32* total, word32* peak)
{
int result = WOLFSSL_SUCCESS;
int i;
int count;
int idx;
word32 now = 0;
word32 seen = 0;
word32 ticks = LowResTimer();
(void)peak;
WOLFSSL_ENTER("get_locked_session_stats");
for (i = 0; i < SESSION_ROWS; i++) {
seen += SessionCache[i].totalCount;
if (active == NULL)
continue; /* no need to calculate what we can't set */
count = min((word32)SessionCache[i].totalCount, SESSIONS_PER_ROW);
idx = SessionCache[i].nextIdx - 1;
if (idx < 0)
idx = SESSIONS_PER_ROW - 1; /* if back to front previous was end */
for (; count > 0; --count, idx = idx ? idx - 1 : SESSIONS_PER_ROW - 1) {
if (idx >= SESSIONS_PER_ROW || idx < 0) { /* sanity check */
WOLFSSL_MSG("Bad idx");
break;
}
/* if not expried then good */
if (ticks < (SessionCache[i].Sessions[idx].bornOn +
SessionCache[i].Sessions[idx].timeout) ) {
now++;
}
}
}
if (active)
*active = now;
if (total)
*total = seen;
#ifdef WOLFSSL_PEAK_SESSIONS
if (peak)
*peak = PeakSessions;
#endif
WOLFSSL_LEAVE("get_locked_session_stats", result);
return result;
}
/* return WOLFSSL_SUCCESS on ok */
int wolfSSL_get_session_stats(word32* active, word32* total, word32* peak,
word32* maxSessions)
{
int result = WOLFSSL_SUCCESS;
WOLFSSL_ENTER("wolfSSL_get_session_stats");
if (maxSessions) {
*maxSessions = SESSIONS_PER_ROW * SESSION_ROWS;
if (active == NULL && total == NULL && peak == NULL)
return result; /* we're done */
}
/* user must provide at least one query value */
if (active == NULL && total == NULL && peak == NULL)
return BAD_FUNC_ARG;
if (wc_LockMutex(&session_mutex) != 0) {
return BAD_MUTEX_E;
}
result = get_locked_session_stats(active, total, peak);
if (wc_UnLockMutex(&session_mutex) != 0)
result = BAD_MUTEX_E;
WOLFSSL_LEAVE("wolfSSL_get_session_stats", result);
return result;
}
#endif /* WOLFSSL_SESSION_STATS */
#ifdef PRINT_SESSION_STATS
/* WOLFSSL_SUCCESS on ok */
int wolfSSL_PrintSessionStats(void)
{
word32 totalSessionsSeen = 0;
word32 totalSessionsNow = 0;
word32 peak = 0;
word32 maxSessions = 0;
int i;
int ret;
double E; /* expected freq */
double chiSquare = 0;
ret = wolfSSL_get_session_stats(&totalSessionsNow, &totalSessionsSeen,
&peak, &maxSessions);
if (ret != WOLFSSL_SUCCESS)
return ret;
printf("Total Sessions Seen = %d\n", totalSessionsSeen);
printf("Total Sessions Now = %d\n", totalSessionsNow);
#ifdef WOLFSSL_PEAK_SESSIONS
printf("Peak Sessions = %d\n", peak);
#endif
printf("Max Sessions = %d\n", maxSessions);
E = (double)totalSessionsSeen / SESSION_ROWS;
for (i = 0; i < SESSION_ROWS; i++) {
double diff = SessionCache[i].totalCount - E;
diff *= diff; /* square */
diff /= E; /* normalize */
chiSquare += diff;
}
printf(" chi-square = %5.1f, d.f. = %d\n", chiSquare,
SESSION_ROWS - 1);
#if (SESSION_ROWS == 11)
printf(" .05 p value = 18.3, chi-square should be less\n");
#elif (SESSION_ROWS == 211)
printf(".05 p value = 244.8, chi-square should be less\n");
#elif (SESSION_ROWS == 5981)
printf(".05 p value = 6161.0, chi-square should be less\n");
#elif (SESSION_ROWS == 3)
printf(".05 p value = 6.0, chi-square should be less\n");
#elif (SESSION_ROWS == 2861)
printf(".05 p value = 2985.5, chi-square should be less\n");
#endif
printf("\n");
return ret;
}
#endif /* SESSION_STATS */
#else /* NO_SESSION_CACHE */
/* No session cache version */
WOLFSSL_SESSION* GetSession(WOLFSSL* ssl, byte* masterSecret,
byte restoreSessionCerts)
{
(void)ssl;
(void)masterSecret;
(void)restoreSessionCerts;
return NULL;
}
#endif /* NO_SESSION_CACHE */
/* call before SSL_connect, if verifying will add name check to
date check and signature check */
int wolfSSL_check_domain_name(WOLFSSL* ssl, const char* dn)
{
WOLFSSL_ENTER("wolfSSL_check_domain_name");
if (ssl == NULL || dn == NULL) {
WOLFSSL_MSG("Bad function argument: NULL");
return WOLFSSL_FAILURE;
}
if (ssl->buffers.domainName.buffer)
XFREE(ssl->buffers.domainName.buffer, ssl->heap, DYNAMIC_TYPE_DOMAIN);
ssl->buffers.domainName.length = (word32)XSTRLEN(dn) + 1;
ssl->buffers.domainName.buffer = (byte*) XMALLOC(
ssl->buffers.domainName.length, ssl->heap, DYNAMIC_TYPE_DOMAIN);
if (ssl->buffers.domainName.buffer) {
XSTRNCPY((char*)ssl->buffers.domainName.buffer, dn,
ssl->buffers.domainName.length);
return WOLFSSL_SUCCESS;
}
else {
ssl->error = MEMORY_ERROR;
return WOLFSSL_FAILURE;
}
}
/* turn on wolfSSL zlib compression
returns WOLFSSL_SUCCESS for success, else error (not built in)
*/
int wolfSSL_set_compression(WOLFSSL* ssl)
{
WOLFSSL_ENTER("wolfSSL_set_compression");
(void)ssl;
#ifdef HAVE_LIBZ
ssl->options.usingCompression = 1;
return WOLFSSL_SUCCESS;
#else
return NOT_COMPILED_IN;
#endif
}
#ifndef USE_WINDOWS_API
#ifndef NO_WRITEV
/* simulate writev semantics, doesn't actually do block at a time though
because of SSL_write behavior and because front adds may be small */
int wolfSSL_writev(WOLFSSL* ssl, const struct iovec* iov, int iovcnt)
{
#ifdef WOLFSSL_SMALL_STACK
byte staticBuffer[1]; /* force heap usage */
#else
byte staticBuffer[FILE_BUFFER_SIZE];
#endif
byte* myBuffer = staticBuffer;
int dynamic = 0;
int sending = 0;
int idx = 0;
int i;
int ret;
WOLFSSL_ENTER("wolfSSL_writev");
for (i = 0; i < iovcnt; i++)
sending += (int)iov[i].iov_len;
if (sending > (int)sizeof(staticBuffer)) {
myBuffer = (byte*)XMALLOC(sending, ssl->heap,
DYNAMIC_TYPE_WRITEV);
if (!myBuffer)
return MEMORY_ERROR;
dynamic = 1;
}
for (i = 0; i < iovcnt; i++) {
XMEMCPY(&myBuffer[idx], iov[i].iov_base, iov[i].iov_len);
idx += (int)iov[i].iov_len;
}
ret = wolfSSL_write(ssl, myBuffer, sending);
if (dynamic)
XFREE(myBuffer, ssl->heap, DYNAMIC_TYPE_WRITEV);
return ret;
}
#endif
#endif
#ifdef WOLFSSL_CALLBACKS
typedef struct itimerval Itimerval;
/* don't keep calling simple functions while setting up timer and signals
if no inlining these are the next best */
#define AddTimes(a, b, c) \
do { \
c.tv_sec = a.tv_sec + b.tv_sec; \
c.tv_usec = a.tv_usec + b.tv_usec; \
if (c.tv_usec >= 1000000) { \
c.tv_sec++; \
c.tv_usec -= 1000000; \
} \
} while (0)
#define SubtractTimes(a, b, c) \
do { \
c.tv_sec = a.tv_sec - b.tv_sec; \
c.tv_usec = a.tv_usec - b.tv_usec; \
if (c.tv_usec < 0) { \
c.tv_sec--; \
c.tv_usec += 1000000; \
} \
} while (0)
#define CmpTimes(a, b, cmp) \
((a.tv_sec == b.tv_sec) ? \
(a.tv_usec cmp b.tv_usec) : \
(a.tv_sec cmp b.tv_sec)) \
/* do nothing handler */
static void myHandler(int signo)
{
(void)signo;
return;
}
static int wolfSSL_ex_wrapper(WOLFSSL* ssl, HandShakeCallBack hsCb,
TimeoutCallBack toCb, Timeval timeout)
{
int ret = WOLFSSL_FATAL_ERROR;
int oldTimerOn = 0; /* was timer already on */
Timeval startTime;
Timeval endTime;
Timeval totalTime;
Itimerval myTimeout;
Itimerval oldTimeout; /* if old timer adjust from total time to reset */
struct sigaction act, oact;
#define ERR_OUT(x) { ssl->hsInfoOn = 0; ssl->toInfoOn = 0; return x; }
if (hsCb) {
ssl->hsInfoOn = 1;
InitHandShakeInfo(&ssl->handShakeInfo, ssl);
}
if (toCb) {
ssl->toInfoOn = 1;
InitTimeoutInfo(&ssl->timeoutInfo);
if (gettimeofday(&startTime, 0) < 0)
ERR_OUT(GETTIME_ERROR);
/* use setitimer to simulate getitimer, init 0 myTimeout */
myTimeout.it_interval.tv_sec = 0;
myTimeout.it_interval.tv_usec = 0;
myTimeout.it_value.tv_sec = 0;
myTimeout.it_value.tv_usec = 0;
if (setitimer(ITIMER_REAL, &myTimeout, &oldTimeout) < 0)
ERR_OUT(SETITIMER_ERROR);
if (oldTimeout.it_value.tv_sec || oldTimeout.it_value.tv_usec) {
oldTimerOn = 1;
/* is old timer going to expire before ours */
if (CmpTimes(oldTimeout.it_value, timeout, <)) {
timeout.tv_sec = oldTimeout.it_value.tv_sec;
timeout.tv_usec = oldTimeout.it_value.tv_usec;
}
}
myTimeout.it_value.tv_sec = timeout.tv_sec;
myTimeout.it_value.tv_usec = timeout.tv_usec;
/* set up signal handler, don't restart socket send/recv */
act.sa_handler = myHandler;
sigemptyset(&act.sa_mask);
act.sa_flags = 0;
#ifdef SA_INTERRUPT
act.sa_flags |= SA_INTERRUPT;
#endif
if (sigaction(SIGALRM, &act, &oact) < 0)
ERR_OUT(SIGACT_ERROR);
if (setitimer(ITIMER_REAL, &myTimeout, 0) < 0)
ERR_OUT(SETITIMER_ERROR);
}
/* do main work */
#ifndef NO_WOLFSSL_CLIENT
if (ssl->options.side == WOLFSSL_CLIENT_END)
ret = wolfSSL_connect(ssl);
#endif
#ifndef NO_WOLFSSL_SERVER
if (ssl->options.side == WOLFSSL_SERVER_END)
ret = wolfSSL_accept(ssl);
#endif
/* do callbacks */
if (toCb) {
if (oldTimerOn) {
gettimeofday(&endTime, 0);
SubtractTimes(endTime, startTime, totalTime);
/* adjust old timer for elapsed time */
if (CmpTimes(totalTime, oldTimeout.it_value, <))
SubtractTimes(oldTimeout.it_value, totalTime,
oldTimeout.it_value);
else {
/* reset value to interval, may be off */
oldTimeout.it_value.tv_sec = oldTimeout.it_interval.tv_sec;
oldTimeout.it_value.tv_usec =oldTimeout.it_interval.tv_usec;
}
/* keep iter the same whether there or not */
}
/* restore old handler */
if (sigaction(SIGALRM, &oact, 0) < 0)
ret = SIGACT_ERROR; /* more pressing error, stomp */
else
/* use old settings which may turn off (expired or not there) */
if (setitimer(ITIMER_REAL, &oldTimeout, 0) < 0)
ret = SETITIMER_ERROR;
/* if we had a timeout call callback */
if (ssl->timeoutInfo.timeoutName[0]) {
ssl->timeoutInfo.timeoutValue.tv_sec = timeout.tv_sec;
ssl->timeoutInfo.timeoutValue.tv_usec = timeout.tv_usec;
(toCb)(&ssl->timeoutInfo);
}
/* clean up */
FreeTimeoutInfo(&ssl->timeoutInfo, ssl->heap);
ssl->toInfoOn = 0;
}
if (hsCb) {
FinishHandShakeInfo(&ssl->handShakeInfo);
(hsCb)(&ssl->handShakeInfo);
ssl->hsInfoOn = 0;
}
return ret;
}
#ifndef NO_WOLFSSL_CLIENT
int wolfSSL_connect_ex(WOLFSSL* ssl, HandShakeCallBack hsCb,
TimeoutCallBack toCb, Timeval timeout)
{
WOLFSSL_ENTER("wolfSSL_connect_ex");
return wolfSSL_ex_wrapper(ssl, hsCb, toCb, timeout);
}
#endif
#ifndef NO_WOLFSSL_SERVER
int wolfSSL_accept_ex(WOLFSSL* ssl, HandShakeCallBack hsCb,
TimeoutCallBack toCb,Timeval timeout)
{
WOLFSSL_ENTER("wolfSSL_accept_ex");
return wolfSSL_ex_wrapper(ssl, hsCb, toCb, timeout);
}
#endif
#endif /* WOLFSSL_CALLBACKS */
#ifndef NO_PSK
void wolfSSL_CTX_set_psk_client_callback(WOLFSSL_CTX* ctx,
wc_psk_client_callback cb)
{
WOLFSSL_ENTER("SSL_CTX_set_psk_client_callback");
ctx->havePSK = 1;
ctx->client_psk_cb = cb;
}
void wolfSSL_set_psk_client_callback(WOLFSSL* ssl,wc_psk_client_callback cb)
{
byte haveRSA = 1;
int keySz = 0;
WOLFSSL_ENTER("SSL_set_psk_client_callback");
ssl->options.havePSK = 1;
ssl->options.client_psk_cb = cb;
#ifdef NO_RSA
haveRSA = 0;
#endif
#ifndef NO_CERTS
keySz = ssl->buffers.keySz;
#endif
InitSuites(ssl->suites, ssl->version, keySz, haveRSA, TRUE,
ssl->options.haveDH, ssl->options.haveNTRU,
ssl->options.haveECDSAsig, ssl->options.haveECC,
ssl->options.haveStaticECC, ssl->options.side);
}
void wolfSSL_CTX_set_psk_server_callback(WOLFSSL_CTX* ctx,
wc_psk_server_callback cb)
{
WOLFSSL_ENTER("SSL_CTX_set_psk_server_callback");
ctx->havePSK = 1;
ctx->server_psk_cb = cb;
}
void wolfSSL_set_psk_server_callback(WOLFSSL* ssl,wc_psk_server_callback cb)
{
byte haveRSA = 1;
int keySz = 0;
WOLFSSL_ENTER("SSL_set_psk_server_callback");
ssl->options.havePSK = 1;
ssl->options.server_psk_cb = cb;
#ifdef NO_RSA
haveRSA = 0;
#endif
#ifndef NO_CERTS
keySz = ssl->buffers.keySz;
#endif
InitSuites(ssl->suites, ssl->version, keySz, haveRSA, TRUE,
ssl->options.haveDH, ssl->options.haveNTRU,
ssl->options.haveECDSAsig, ssl->options.haveECC,
ssl->options.haveStaticECC, ssl->options.side);
}
const char* wolfSSL_get_psk_identity_hint(const WOLFSSL* ssl)
{
WOLFSSL_ENTER("SSL_get_psk_identity_hint");
if (ssl == NULL || ssl->arrays == NULL)
return NULL;
return ssl->arrays->server_hint;
}
const char* wolfSSL_get_psk_identity(const WOLFSSL* ssl)
{
WOLFSSL_ENTER("SSL_get_psk_identity");
if (ssl == NULL || ssl->arrays == NULL)
return NULL;
return ssl->arrays->client_identity;
}
int wolfSSL_CTX_use_psk_identity_hint(WOLFSSL_CTX* ctx, const char* hint)
{
WOLFSSL_ENTER("SSL_CTX_use_psk_identity_hint");
if (hint == 0)
ctx->server_hint[0] = 0;
else {
XSTRNCPY(ctx->server_hint, hint, sizeof(ctx->server_hint));
ctx->server_hint[MAX_PSK_ID_LEN] = '\0'; /* null term */
}
return WOLFSSL_SUCCESS;
}
int wolfSSL_use_psk_identity_hint(WOLFSSL* ssl, const char* hint)
{
WOLFSSL_ENTER("SSL_use_psk_identity_hint");
if (ssl == NULL || ssl->arrays == NULL)
return WOLFSSL_FAILURE;
if (hint == 0)
ssl->arrays->server_hint[0] = 0;
else {
XSTRNCPY(ssl->arrays->server_hint, hint,
sizeof(ssl->arrays->server_hint));
ssl->arrays->server_hint[MAX_PSK_ID_LEN] = '\0'; /* null term */
}
return WOLFSSL_SUCCESS;
}
#endif /* NO_PSK */
#ifdef HAVE_ANON
int wolfSSL_CTX_allow_anon_cipher(WOLFSSL_CTX* ctx)
{
WOLFSSL_ENTER("wolfSSL_CTX_allow_anon_cipher");
if (ctx == NULL)
return WOLFSSL_FAILURE;
ctx->haveAnon = 1;
return WOLFSSL_SUCCESS;
}
#endif /* HAVE_ANON */
#ifndef NO_CERTS
/* used to be defined on NO_FILESYSTEM only, but are generally useful */
/* wolfSSL extension allows DER files to be loaded from buffers as well */
int wolfSSL_CTX_load_verify_buffer(WOLFSSL_CTX* ctx,
const unsigned char* in,
long sz, int format)
{
WOLFSSL_ENTER("wolfSSL_CTX_load_verify_buffer");
if (format == WOLFSSL_FILETYPE_PEM)
return ProcessChainBuffer(ctx, in, sz, format, CA_TYPE, NULL);
else
return ProcessBuffer(ctx, in, sz, format, CA_TYPE, NULL,NULL,0);
}
#ifdef WOLFSSL_TRUST_PEER_CERT
int wolfSSL_CTX_trust_peer_buffer(WOLFSSL_CTX* ctx,
const unsigned char* in,
long sz, int format)
{
WOLFSSL_ENTER("wolfSSL_CTX_trust_peer_buffer");
/* sanity check on arguments */
if (sz < 0 || in == NULL || ctx == NULL) {
return BAD_FUNC_ARG;
}
if (format == WOLFSSL_FILETYPE_PEM)
return ProcessChainBuffer(ctx, in, sz, format,
TRUSTED_PEER_TYPE, NULL);
else
return ProcessBuffer(ctx, in, sz, format, TRUSTED_PEER_TYPE,
NULL,NULL,0);
}
#endif /* WOLFSSL_TRUST_PEER_CERT */
int wolfSSL_CTX_use_certificate_buffer(WOLFSSL_CTX* ctx,
const unsigned char* in, long sz, int format)
{
WOLFSSL_ENTER("wolfSSL_CTX_use_certificate_buffer");
return ProcessBuffer(ctx, in, sz, format, CERT_TYPE, NULL, NULL, 0);
}
int wolfSSL_CTX_use_PrivateKey_buffer(WOLFSSL_CTX* ctx,
const unsigned char* in, long sz, int format)
{
WOLFSSL_ENTER("wolfSSL_CTX_use_PrivateKey_buffer");
return ProcessBuffer(ctx, in, sz, format, PRIVATEKEY_TYPE, NULL,NULL,0);
}
int wolfSSL_CTX_use_certificate_chain_buffer_format(WOLFSSL_CTX* ctx,
const unsigned char* in, long sz, int format)
{
WOLFSSL_ENTER("wolfSSL_CTX_use_certificate_chain_buffer_format");
return ProcessBuffer(ctx, in, sz, format, CERT_TYPE, NULL, NULL, 1);
}
int wolfSSL_CTX_use_certificate_chain_buffer(WOLFSSL_CTX* ctx,
const unsigned char* in, long sz)
{
return wolfSSL_CTX_use_certificate_chain_buffer_format(ctx, in, sz,
WOLFSSL_FILETYPE_PEM);
}
#ifndef NO_DH
/* server wrapper for ctx or ssl Diffie-Hellman parameters */
static int wolfSSL_SetTmpDH_buffer_wrapper(WOLFSSL_CTX* ctx, WOLFSSL* ssl,
const unsigned char* buf,
long sz, int format)
{
DerBuffer* der = NULL;
int ret = 0;
word32 pSz = MAX_DH_SIZE;
word32 gSz = MAX_DH_SIZE;
#ifdef WOLFSSL_SMALL_STACK
byte* p = NULL;
byte* g = NULL;
#else
byte p[MAX_DH_SIZE];
byte g[MAX_DH_SIZE];
#endif
if (ctx == NULL || buf == NULL)
return BAD_FUNC_ARG;
ret = AllocDer(&der, 0, DH_PARAM_TYPE, ctx->heap);
if (ret != 0) {
return ret;
}
der->buffer = (byte*)buf;
der->length = (word32)sz;
#ifdef WOLFSSL_SMALL_STACK
p = (byte*)XMALLOC(pSz, NULL, DYNAMIC_TYPE_PUBLIC_KEY);
g = (byte*)XMALLOC(gSz, NULL, DYNAMIC_TYPE_PUBLIC_KEY);
if (p == NULL || g == NULL) {
XFREE(p, NULL, DYNAMIC_TYPE_PUBLIC_KEY);
XFREE(g, NULL, DYNAMIC_TYPE_PUBLIC_KEY);
return MEMORY_E;
}
#endif
if (format != WOLFSSL_FILETYPE_ASN1 && format != WOLFSSL_FILETYPE_PEM)
ret = WOLFSSL_BAD_FILETYPE;
else {
if (format == WOLFSSL_FILETYPE_PEM) {
FreeDer(&der);
ret = PemToDer(buf, sz, DH_PARAM_TYPE, &der, ctx->heap,
NULL, NULL);
#ifdef WOLFSSL_WPAS
#ifndef NO_DSA
if (ret < 0) {
ret = PemToDer(buf, sz, DSA_PARAM_TYPE, &der, ctx->heap,
NULL, NULL);
}
#endif
#endif
}
if (ret == 0) {
if (wc_DhParamsLoad(der->buffer, der->length, p, &pSz, g, &gSz) < 0)
ret = WOLFSSL_BAD_FILETYPE;
else if (ssl)
ret = wolfSSL_SetTmpDH(ssl, p, pSz, g, gSz);
else
ret = wolfSSL_CTX_SetTmpDH(ctx, p, pSz, g, gSz);
}
}
FreeDer(&der);
#ifdef WOLFSSL_SMALL_STACK
XFREE(p, NULL, DYNAMIC_TYPE_PUBLIC_KEY);
XFREE(g, NULL, DYNAMIC_TYPE_PUBLIC_KEY);
#endif
return ret;
}
/* server Diffie-Hellman parameters, WOLFSSL_SUCCESS on ok */
int wolfSSL_SetTmpDH_buffer(WOLFSSL* ssl, const unsigned char* buf, long sz,
int format)
{
if (ssl == NULL)
return BAD_FUNC_ARG;
return wolfSSL_SetTmpDH_buffer_wrapper(ssl->ctx, ssl, buf, sz, format);
}
/* server ctx Diffie-Hellman parameters, WOLFSSL_SUCCESS on ok */
int wolfSSL_CTX_SetTmpDH_buffer(WOLFSSL_CTX* ctx, const unsigned char* buf,
long sz, int format)
{
return wolfSSL_SetTmpDH_buffer_wrapper(ctx, NULL, buf, sz, format);
}
#endif /* NO_DH */
int wolfSSL_use_certificate_buffer(WOLFSSL* ssl,
const unsigned char* in, long sz, int format)
{
WOLFSSL_ENTER("wolfSSL_use_certificate_buffer");
return ProcessBuffer(ssl->ctx, in, sz, format,CERT_TYPE,ssl,NULL,0);
}
int wolfSSL_use_PrivateKey_buffer(WOLFSSL* ssl,
const unsigned char* in, long sz, int format)
{
WOLFSSL_ENTER("wolfSSL_use_PrivateKey_buffer");
return ProcessBuffer(ssl->ctx, in, sz, format, PRIVATEKEY_TYPE,
ssl, NULL, 0);
}
int wolfSSL_use_certificate_chain_buffer_format(WOLFSSL* ssl,
const unsigned char* in, long sz, int format)
{
WOLFSSL_ENTER("wolfSSL_use_certificate_chain_buffer_format");
return ProcessBuffer(ssl->ctx, in, sz, format, CERT_TYPE,
ssl, NULL, 1);
}
int wolfSSL_use_certificate_chain_buffer(WOLFSSL* ssl,
const unsigned char* in, long sz)
{
return wolfSSL_use_certificate_chain_buffer_format(ssl, in, sz,
WOLFSSL_FILETYPE_PEM);
}
/* unload any certs or keys that SSL owns, leave CTX as is
WOLFSSL_SUCCESS on ok */
int wolfSSL_UnloadCertsKeys(WOLFSSL* ssl)
{
if (ssl == NULL) {
WOLFSSL_MSG("Null function arg");
return BAD_FUNC_ARG;
}
if (ssl->buffers.weOwnCert && !ssl->keepCert) {
WOLFSSL_MSG("Unloading cert");
FreeDer(&ssl->buffers.certificate);
#ifdef KEEP_OUR_CERT
FreeX509(ssl->ourCert);
if (ssl->ourCert) {
XFREE(ssl->ourCert, ssl->heap, DYNAMIC_TYPE_X509);
ssl->ourCert = NULL;
}
#endif
ssl->buffers.weOwnCert = 0;
}
if (ssl->buffers.weOwnCertChain) {
WOLFSSL_MSG("Unloading cert chain");
FreeDer(&ssl->buffers.certChain);
ssl->buffers.weOwnCertChain = 0;
}
if (ssl->buffers.weOwnKey) {
WOLFSSL_MSG("Unloading key");
FreeDer(&ssl->buffers.key);
ssl->buffers.weOwnKey = 0;
}
return WOLFSSL_SUCCESS;
}
int wolfSSL_CTX_UnloadCAs(WOLFSSL_CTX* ctx)
{
WOLFSSL_ENTER("wolfSSL_CTX_UnloadCAs");
if (ctx == NULL)
return BAD_FUNC_ARG;
return wolfSSL_CertManagerUnloadCAs(ctx->cm);
}
#ifdef WOLFSSL_TRUST_PEER_CERT
int wolfSSL_CTX_Unload_trust_peers(WOLFSSL_CTX* ctx)
{
WOLFSSL_ENTER("wolfSSL_CTX_Unload_trust_peers");
if (ctx == NULL)
return BAD_FUNC_ARG;
return wolfSSL_CertManagerUnload_trust_peers(ctx->cm);
}
#endif /* WOLFSSL_TRUST_PEER_CERT */
/* old NO_FILESYSTEM end */
#endif /* !NO_CERTS */
#if defined(OPENSSL_EXTRA) || defined(GOAHEAD_WS)
int wolfSSL_add_all_algorithms(void)
{
WOLFSSL_ENTER("wolfSSL_add_all_algorithms");
if (wolfSSL_Init() == WOLFSSL_SUCCESS)
return WOLFSSL_SUCCESS;
else
return WOLFSSL_FATAL_ERROR;
}
/* returns previous set cache size which stays constant */
long wolfSSL_CTX_sess_set_cache_size(WOLFSSL_CTX* ctx, long sz)
{
/* cache size fixed at compile time in wolfSSL */
(void)ctx;
(void)sz;
WOLFSSL_MSG("session cache is set at compile time");
#ifndef NO_SESSION_CACHE
return SESSIONS_PER_ROW * SESSION_ROWS;
#else
return 0;
#endif
}
void wolfSSL_CTX_set_quiet_shutdown(WOLFSSL_CTX* ctx, int mode)
{
WOLFSSL_ENTER("wolfSSL_CTX_set_quiet_shutdown");
if (mode)
ctx->quietShutdown = 1;
}
void wolfSSL_set_quiet_shutdown(WOLFSSL* ssl, int mode)
{
WOLFSSL_ENTER("wolfSSL_CTX_set_quiet_shutdown");
if (mode)
ssl->options.quietShutdown = 1;
}
void wolfSSL_set_bio(WOLFSSL* ssl, WOLFSSL_BIO* rd, WOLFSSL_BIO* wr)
{
WOLFSSL_ENTER("SSL_set_bio");
wolfSSL_set_rfd(ssl, rd->fd);
wolfSSL_set_wfd(ssl, wr->fd);
ssl->biord = rd;
ssl->biowr = wr;
}
void wolfSSL_CTX_set_client_CA_list(WOLFSSL_CTX* ctx,
WOLF_STACK_OF(WOLFSSL_X509_NAME)* names)
{
WOLFSSL_ENTER("wolfSSL_SSL_CTX_set_client_CA_list");
if (ctx != NULL)
ctx->ca_names = names;
}
WOLF_STACK_OF(WOLFSSL_X509_NAME)* wolfSSL_SSL_CTX_get_client_CA_list(
const WOLFSSL_CTX *s)
{
WOLFSSL_ENTER("wolfSSL_SSL_CTX_get_client_CA_list");
if (s == NULL)
return NULL;
return s->ca_names;
}
#if !defined(NO_RSA) && !defined(NO_CERTS)
WOLF_STACK_OF(WOLFSSL_X509_NAME)* wolfSSL_load_client_CA_file(const char* fname)
{
WOLFSSL_STACK *list = NULL;
WOLFSSL_STACK *node;
WOLFSSL_BIO* bio;
WOLFSSL_X509 *cert = NULL;
WOLFSSL_X509_NAME *subjectName = NULL;
WOLFSSL_ENTER("wolfSSL_load_client_CA_file");
bio = wolfSSL_BIO_new_file(fname, "r");
if (bio == NULL)
return NULL;
/* Read each certificate in the chain out of the file. */
while (wolfSSL_PEM_read_bio_X509(bio, &cert, NULL, NULL) != NULL) {
subjectName = wolfSSL_X509_get_subject_name(cert);
if (subjectName == NULL)
break;
node = (WOLFSSL_STACK*)XMALLOC(sizeof(WOLFSSL_STACK), NULL,
DYNAMIC_TYPE_OPENSSL);
if (node == NULL)
break;
/* Need a persistent copy of the subject name. */
node->data.name = (WOLFSSL_X509_NAME*)XMALLOC(
sizeof(WOLFSSL_X509_NAME), NULL, DYNAMIC_TYPE_OPENSSL);
if (node->data.name == NULL) {
XFREE(node, NULL, DYNAMIC_TYPE_OPENSSL);
break;
}
XMEMCPY(node->data.name, subjectName, sizeof(WOLFSSL_X509_NAME));
/* Clear pointers so freeing certificate doesn't free memory. */
XMEMSET(subjectName, 0, sizeof(WOLFSSL_X509_NAME));
/* Put node on the front of the list. */
node->num = (list == NULL) ? 1 : list->num + 1;
node->next = list;
list = node;
wolfSSL_X509_free(cert);
cert = NULL;
}
wolfSSL_X509_free(cert);
wolfSSL_BIO_free(bio);
return list;
}
int wolfSSL_CTX_add_client_CA(WOLFSSL_CTX* ctx, WOLFSSL_X509* x509)
{
WOLFSSL_STACK *node = NULL;
WOLFSSL_X509_NAME *subjectName = NULL;
WOLFSSL_ENTER("wolfSSL_CTX_add_client_CA");
if (ctx == NULL || x509 == NULL){
WOLFSSL_MSG("Bad argument");
return SSL_FAILURE;
}
subjectName = wolfSSL_X509_get_subject_name(x509);
if (subjectName == NULL){
WOLFSSL_MSG("invalid x509 data");
return SSL_FAILURE;
}
/* Alloc stack struct */
node = (WOLF_STACK_OF(WOLFSSL_X509_NAME)*)XMALLOC(
sizeof(WOLF_STACK_OF(WOLFSSL_X509_NAME)),
NULL, DYNAMIC_TYPE_OPENSSL);
if (node == NULL){
WOLFSSL_MSG("memory allocation error");
return SSL_FAILURE;
}
XMEMSET(node, 0, sizeof(WOLF_STACK_OF(WOLFSSL_X509_NAME)));
/* Alloc and copy WOLFSSL_X509_NAME */
node->data.name = (WOLFSSL_X509_NAME*)XMALLOC(
sizeof(WOLFSSL_X509_NAME),
NULL, DYNAMIC_TYPE_OPENSSL);
if (node->data.name == NULL) {
XFREE(node, NULL, DYNAMIC_TYPE_OPENSSL);
WOLFSSL_MSG("memory allocation error");
return SSL_FAILURE;
}
XMEMCPY(node->data.name, subjectName, sizeof(WOLFSSL_X509_NAME));
XMEMSET(subjectName, 0, sizeof(WOLFSSL_X509_NAME));
/* push new node onto head of stack */
node->num = (ctx->ca_names == NULL) ? 1 : ctx->ca_names->num + 1;
node->next = ctx->ca_names;
ctx->ca_names = node;
return SSL_SUCCESS;
}
#endif
int wolfSSL_CTX_set_default_verify_paths(WOLFSSL_CTX* ctx)
{
/* TODO:, not needed in goahead */
(void)ctx;
return WOLFSSL_NOT_IMPLEMENTED;
}
#if defined(WOLFCRYPT_HAVE_SRP) && !defined(NO_SHA256) \
&& !defined(WC_NO_RNG)
static const byte srp_N[] = {
0xEE, 0xAF, 0x0A, 0xB9, 0xAD, 0xB3, 0x8D, 0xD6, 0x9C, 0x33, 0xF8,
0x0A, 0xFA, 0x8F, 0xC5, 0xE8, 0x60, 0x72, 0x61, 0x87, 0x75, 0xFF,
0x3C, 0x0B, 0x9E, 0xA2, 0x31, 0x4C, 0x9C, 0x25, 0x65, 0x76, 0xD6,
0x74, 0xDF, 0x74, 0x96, 0xEA, 0x81, 0xD3, 0x38, 0x3B, 0x48, 0x13,
0xD6, 0x92, 0xC6, 0xE0, 0xE0, 0xD5, 0xD8, 0xE2, 0x50, 0xB9, 0x8B,
0xE4, 0x8E, 0x49, 0x5C, 0x1D, 0x60, 0x89, 0xDA, 0xD1, 0x5D, 0xC7,
0xD7, 0xB4, 0x61, 0x54, 0xD6, 0xB6, 0xCE, 0x8E, 0xF4, 0xAD, 0x69,
0xB1, 0x5D, 0x49, 0x82, 0x55, 0x9B, 0x29, 0x7B, 0xCF, 0x18, 0x85,
0xC5, 0x29, 0xF5, 0x66, 0x66, 0x0E, 0x57, 0xEC, 0x68, 0xED, 0xBC,
0x3C, 0x05, 0x72, 0x6C, 0xC0, 0x2F, 0xD4, 0xCB, 0xF4, 0x97, 0x6E,
0xAA, 0x9A, 0xFD, 0x51, 0x38, 0xFE, 0x83, 0x76, 0x43, 0x5B, 0x9F,
0xC6, 0x1D, 0x2F, 0xC0, 0xEB, 0x06, 0xE3
};
static const byte srp_g[] = {
0x02
};
int wolfSSL_CTX_set_srp_username(WOLFSSL_CTX* ctx, char* username)
{
int r = 0;
SrpSide srp_side = SRP_CLIENT_SIDE;
WC_RNG rng;
byte salt[SRP_SALT_SIZE];
WOLFSSL_ENTER("wolfSSL_CTX_set_srp_username");
if (ctx == NULL || ctx->srp == NULL || username==NULL)
return SSL_FAILURE;
if (ctx->method->side == WOLFSSL_SERVER_END){
srp_side = SRP_SERVER_SIDE;
} else if (ctx->method->side == WOLFSSL_CLIENT_END){
srp_side = SRP_CLIENT_SIDE;
} else {
WOLFSSL_MSG("Init CTX failed");
return SSL_FAILURE;
}
if (wc_SrpInit(ctx->srp, SRP_TYPE_SHA256, srp_side) < 0){
WOLFSSL_MSG("Init CTX failed");
XFREE(ctx->srp, ctx->heap, DYNAMIC_TYPE_SRP);
wolfSSL_CTX_free(ctx);
return SSL_FAILURE;
}
r = wc_SrpSetUsername(ctx->srp, (const byte*)username,
(word32)XSTRLEN(username));
if (r < 0) {
WOLFSSL_MSG("fail to set srp username.");
return SSL_FAILURE;
}
/* if wolfSSL_CTX_set_srp_password has already been called, */
/* execute wc_SrpSetPassword here */
if (ctx->srp_password != NULL){
if (wc_InitRng(&rng) < 0){
WOLFSSL_MSG("wc_InitRng failed");
return SSL_FAILURE;
}
XMEMSET(salt, 0, sizeof(salt)/sizeof(salt[0]));
if (wc_RNG_GenerateBlock(&rng, salt,
sizeof(salt)/sizeof(salt[0])) < 0){
WOLFSSL_MSG("wc_RNG_GenerateBlock failed");
wc_FreeRng(&rng);
return SSL_FAILURE;
}
if (wc_SrpSetParams(ctx->srp, srp_N, sizeof(srp_N)/sizeof(srp_N[0]),
srp_g, sizeof(srp_g)/sizeof(srp_g[0]),
salt, sizeof(salt)/sizeof(salt[0])) < 0){
WOLFSSL_MSG("wc_SrpSetParam failed");
wc_FreeRng(&rng);
return SSL_FAILURE;
}
r = wc_SrpSetPassword(ctx->srp,
(const byte*)ctx->srp_password,
(word32)XSTRLEN((char *)ctx->srp_password));
if (r < 0) {
WOLFSSL_MSG("fail to set srp password.");
return SSL_FAILURE;
}
wc_FreeRng(&rng);
XFREE(ctx->srp_password, ctx->heap, DYNAMIC_TYPE_SRP);
ctx->srp_password = NULL;
}
return SSL_SUCCESS;
}
int wolfSSL_CTX_set_srp_password(WOLFSSL_CTX* ctx, char* password)
{
int r;
WC_RNG rng;
byte salt[SRP_SALT_SIZE];
WOLFSSL_ENTER("wolfSSL_CTX_set_srp_password");
if (ctx == NULL || ctx->srp == NULL || password == NULL)
return SSL_FAILURE;
if (ctx->srp->user != NULL){
if (wc_InitRng(&rng) < 0){
WOLFSSL_MSG("wc_InitRng failed");
return SSL_FAILURE;
}
XMEMSET(salt, 0, sizeof(salt)/sizeof(salt[0]));
if (wc_RNG_GenerateBlock(&rng, salt,
sizeof(salt)/sizeof(salt[0])) < 0){
WOLFSSL_MSG("wc_RNG_GenerateBlock failed");
wc_FreeRng(&rng);
return SSL_FAILURE;
}
if (wc_SrpSetParams(ctx->srp, srp_N, sizeof(srp_N)/sizeof(srp_N[0]),
srp_g, sizeof(srp_g)/sizeof(srp_g[0]),
salt, sizeof(salt)/sizeof(salt[0])) < 0){
WOLFSSL_MSG("wc_SrpSetParam failed");
wc_FreeRng(&rng);
return SSL_FAILURE;
}
r = wc_SrpSetPassword(ctx->srp, (const byte*)password,
(word32)XSTRLEN(password));
if (r < 0) {
WOLFSSL_MSG("wc_SrpSetPassword failed.");
wc_FreeRng(&rng);
return SSL_FAILURE;
}
if (ctx->srp_password != NULL){
XFREE(ctx->srp_password,NULL,
DYNAMIC_TYPE_SRP);
ctx->srp_password = NULL;
}
wc_FreeRng(&rng);
} else {
/* save password for wolfSSL_set_srp_username */
if (ctx->srp_password != NULL)
XFREE(ctx->srp_password,ctx->heap, DYNAMIC_TYPE_SRP);
ctx->srp_password = (byte*)XMALLOC(XSTRLEN(password) + 1, ctx->heap,
DYNAMIC_TYPE_SRP);
if (ctx->srp_password == NULL){
WOLFSSL_MSG("memory allocation error");
return SSL_FAILURE;
}
XMEMCPY(ctx->srp_password, password, XSTRLEN(password) + 1);
}
return SSL_SUCCESS;
}
#endif /* WOLFCRYPT_HAVE_SRP && !NO_SHA256 && !WC_NO_RNG */
/* keyblock size in bytes or -1 */
int wolfSSL_get_keyblock_size(WOLFSSL* ssl)
{
if (ssl == NULL)
return WOLFSSL_FATAL_ERROR;
return 2 * (ssl->specs.key_size + ssl->specs.iv_size +
ssl->specs.hash_size);
}
/* store keys returns WOLFSSL_SUCCESS or -1 on error */
int wolfSSL_get_keys(WOLFSSL* ssl, unsigned char** ms, unsigned int* msLen,
unsigned char** sr, unsigned int* srLen,
unsigned char** cr, unsigned int* crLen)
{
if (ssl == NULL || ssl->arrays == NULL)
return WOLFSSL_FATAL_ERROR;
*ms = ssl->arrays->masterSecret;
*sr = ssl->arrays->serverRandom;
*cr = ssl->arrays->clientRandom;
*msLen = SECRET_LEN;
*srLen = RAN_LEN;
*crLen = RAN_LEN;
return WOLFSSL_SUCCESS;
}
void wolfSSL_set_accept_state(WOLFSSL* ssl)
{
word16 haveRSA = 1;
word16 havePSK = 0;
WOLFSSL_ENTER("SSL_set_accept_state");
if (ssl->options.side == WOLFSSL_CLIENT_END) {
#ifdef HAVE_ECC
ecc_key key;
word32 idx = 0;
if (ssl->options.haveStaticECC && ssl->buffers.key != NULL) {
wc_ecc_init(&key);
if (wc_EccPrivateKeyDecode(ssl->buffers.key->buffer, &idx, &key,
ssl->buffers.key->length) != 0) {
ssl->options.haveECDSAsig = 0;
ssl->options.haveECC = 0;
ssl->options.haveStaticECC = 0;
}
wc_ecc_free(&key);
}
#endif
#ifndef NO_DH
if (!ssl->options.haveDH && ssl->ctx->haveDH) {
ssl->buffers.serverDH_P = ssl->ctx->serverDH_P;
ssl->buffers.serverDH_G = ssl->ctx->serverDH_G;
ssl->options.haveDH = 1;
}
#endif
}
ssl->options.side = WOLFSSL_SERVER_END;
/* reset suites in case user switched */
#ifdef NO_RSA
haveRSA = 0;
#endif
#ifndef NO_PSK
havePSK = ssl->options.havePSK;
#endif
InitSuites(ssl->suites, ssl->version, ssl->buffers.keySz, haveRSA,
havePSK, ssl->options.haveDH, ssl->options.haveNTRU,
ssl->options.haveECDSAsig, ssl->options.haveECC,
ssl->options.haveStaticECC, ssl->options.side);
}
#endif
/* return true if connection established */
int wolfSSL_is_init_finished(WOLFSSL* ssl)
{
if (ssl == NULL)
return 0;
if (ssl->options.handShakeState == HANDSHAKE_DONE)
return 1;
return 0;
}
#if defined(OPENSSL_EXTRA) || defined(GOAHEAD_WS)
void wolfSSL_CTX_set_tmp_rsa_callback(WOLFSSL_CTX* ctx,
WOLFSSL_RSA*(*f)(WOLFSSL*, int, int))
{
/* wolfSSL verifies all these internally */
(void)ctx;
(void)f;
}
void wolfSSL_set_shutdown(WOLFSSL* ssl, int opt)
{
WOLFSSL_ENTER("wolfSSL_set_shutdown");
if(ssl==NULL) {
WOLFSSL_MSG("Shutdown not set. ssl is null");
return;
}
ssl->options.sentNotify = (opt&WOLFSSL_SENT_SHUTDOWN) > 0;
ssl->options.closeNotify = (opt&WOLFSSL_RECEIVED_SHUTDOWN) > 0;
}
long wolfSSL_CTX_get_options(WOLFSSL_CTX* ctx)
{
(void)ctx;
WOLFSSL_ENTER("wolfSSL_CTX_get_options");
WOLFSSL_MSG("wolfSSL options are set through API calls and macros");
return 0;
}
long wolfSSL_CTX_set_options(WOLFSSL_CTX* ctx, long opt)
{
WOLFSSL_ENTER("SSL_CTX_set_options");
ctx->mask |= opt;
return opt;
}
int wolfSSL_set_rfd(WOLFSSL* ssl, int rfd)
{
WOLFSSL_ENTER("SSL_set_rfd");
ssl->rfd = rfd; /* not used directly to allow IO callbacks */
ssl->IOCB_ReadCtx = &ssl->rfd;
return WOLFSSL_SUCCESS;
}
int wolfSSL_set_wfd(WOLFSSL* ssl, int wfd)
{
WOLFSSL_ENTER("SSL_set_wfd");
ssl->wfd = wfd; /* not used directly to allow IO callbacks */
ssl->IOCB_WriteCtx = &ssl->wfd;
return WOLFSSL_SUCCESS;
}
WOLFSSL_RSA* wolfSSL_RSA_generate_key(int len, unsigned long bits,
void(*f)(int, int, void*), void* data)
{
/* no tmp key needed, actual generation not supported */
WOLFSSL_ENTER("RSA_generate_key");
(void)len;
(void)bits;
(void)f;
(void)data;
return NULL;
}
WOLFSSL_X509_STORE* wolfSSL_CTX_get_cert_store(WOLFSSL_CTX* ctx)
{
if (ctx == NULL) {
return NULL;
}
return &(ctx->x509_store);
}
#ifndef NO_CERTS
void wolfSSL_CTX_set_cert_store(WOLFSSL_CTX* ctx, WOLFSSL_X509_STORE* str)
{
if (ctx == NULL || str == NULL) {
return;
}
/* free cert manager if have one */
if (ctx->cm != NULL) {
wolfSSL_CertManagerFree(ctx->cm);
}
ctx->cm = str->cm;
ctx->x509_store.cache = str->cache;
}
WOLFSSL_X509* wolfSSL_X509_STORE_CTX_get_current_cert(
WOLFSSL_X509_STORE_CTX* ctx)
{
WOLFSSL_ENTER("wolfSSL_X509_STORE_CTX_get_current_cert");
if (ctx)
return ctx->current_cert;
return NULL;
}
int wolfSSL_X509_STORE_CTX_get_error(WOLFSSL_X509_STORE_CTX* ctx)
{
WOLFSSL_ENTER("wolfSSL_X509_STORE_CTX_get_error");
if (ctx != NULL)
return ctx->error;
return 0;
}
int wolfSSL_X509_STORE_CTX_get_error_depth(WOLFSSL_X509_STORE_CTX* ctx)
{
WOLFSSL_ENTER("wolfSSL_X509_STORE_CTX_get_error_depth");
if(ctx)
return ctx->error_depth;
return WOLFSSL_FATAL_ERROR;
}
#endif
WOLFSSL_BIO_METHOD* wolfSSL_BIO_f_buffer(void)
{
static WOLFSSL_BIO_METHOD meth;
WOLFSSL_ENTER("BIO_f_buffer");
meth.type = BIO_BUFFER;
return &meth;
}
long wolfSSL_BIO_set_write_buffer_size(WOLFSSL_BIO* bio, long size)
{
/* wolfSSL has internal buffer, compatibility only */
WOLFSSL_ENTER("BIO_set_write_buffer_size");
(void)bio;
return size;
}
WOLFSSL_BIO_METHOD* wolfSSL_BIO_s_bio(void)
{
static WOLFSSL_BIO_METHOD bio_meth;
WOLFSSL_ENTER("wolfSSL_BIO_f_bio");
bio_meth.type = BIO_BIO;
return &bio_meth;
}
#ifndef NO_FILESYSTEM
WOLFSSL_BIO_METHOD* wolfSSL_BIO_s_file(void)
{
static WOLFSSL_BIO_METHOD file_meth;
WOLFSSL_ENTER("wolfSSL_BIO_f_file");
file_meth.type = BIO_FILE;
return &file_meth;
}
#endif
WOLFSSL_BIO_METHOD* wolfSSL_BIO_f_ssl(void)
{
static WOLFSSL_BIO_METHOD meth;
WOLFSSL_ENTER("BIO_f_ssl");
meth.type = BIO_SSL;
return &meth;
}
WOLFSSL_BIO_METHOD *wolfSSL_BIO_s_socket(void)
{
static WOLFSSL_BIO_METHOD meth;
WOLFSSL_ENTER("BIO_s_socket");
meth.type = BIO_SOCKET;
return &meth;
}
WOLFSSL_BIO* wolfSSL_BIO_new_socket(int sfd, int closeF)
{
WOLFSSL_BIO* bio = (WOLFSSL_BIO*) XMALLOC(sizeof(WOLFSSL_BIO), 0,
DYNAMIC_TYPE_OPENSSL);
WOLFSSL_ENTER("BIO_new_socket");
if (bio) {
XMEMSET(bio, 0, sizeof(WOLFSSL_BIO));
bio->type = BIO_SOCKET;
bio->close = (byte)closeF;
bio->fd = sfd;
bio->mem = NULL;
}
return bio;
}
int wolfSSL_BIO_eof(WOLFSSL_BIO* b)
{
WOLFSSL_ENTER("BIO_eof");
if (b->eof)
return 1;
return 0;
}
long wolfSSL_BIO_set_ssl(WOLFSSL_BIO* b, WOLFSSL* ssl, int closeF)
{
WOLFSSL_ENTER("wolfSSL_BIO_set_ssl");
if (b != NULL) {
b->ssl = ssl;
b->close = (byte)closeF;
/* add to ssl for bio free if SSL_free called before/instead of free_all? */
}
return 0;
}
long wolfSSL_BIO_set_fd(WOLFSSL_BIO* b, int fd, int closeF)
{
WOLFSSL_ENTER("wolfSSL_BIO_set_fd");
if (b != NULL) {
b->fd = fd;
b->close = (byte)closeF;
}
return WOLFSSL_SUCCESS;
}
WOLFSSL_BIO* wolfSSL_BIO_new(WOLFSSL_BIO_METHOD* method)
{
WOLFSSL_BIO* bio = (WOLFSSL_BIO*) XMALLOC(sizeof(WOLFSSL_BIO), 0,
DYNAMIC_TYPE_OPENSSL);
WOLFSSL_ENTER("BIO_new");
if (bio) {
XMEMSET(bio, 0, sizeof(WOLFSSL_BIO));
bio->type = method->type;
bio->ssl = NULL;
bio->mem = NULL;
bio->prev = NULL;
bio->next = NULL;
}
return bio;
}
int wolfSSL_BIO_get_mem_data(WOLFSSL_BIO* bio, void* p)
{
WOLFSSL_ENTER("wolfSSL_BIO_get_mem_data");
if (bio == NULL || p == NULL)
return WOLFSSL_FATAL_ERROR;
*(byte **)p = bio->mem;
return bio->memLen;
}
WOLFSSL_BIO* wolfSSL_BIO_new_mem_buf(void* buf, int len)
{
WOLFSSL_BIO* bio = NULL;
if (buf == NULL)
return bio;
bio = wolfSSL_BIO_new(wolfSSL_BIO_s_mem());
if (bio == NULL)
return bio;
bio->memLen = len;
bio->mem = (byte*)XMALLOC(len, 0, DYNAMIC_TYPE_OPENSSL);
if (bio->mem == NULL) {
XFREE(bio, 0, DYNAMIC_TYPE_OPENSSL);
return NULL;
}
XMEMCPY(bio->mem, buf, len);
return bio;
}
#ifdef USE_WINDOWS_API
#define CloseSocket(s) closesocket(s)
#elif defined(WOLFSSL_MDK_ARM) || defined(WOLFSSL_KEIL_TCP_NET)
#define CloseSocket(s) closesocket(s)
extern int closesocket(int);
#else
#define CloseSocket(s) close(s)
#endif
int wolfSSL_BIO_free(WOLFSSL_BIO* bio)
{
/* unchain?, doesn't matter in goahead since from free all */
WOLFSSL_ENTER("wolfSSL_BIO_free");
if (bio) {
/* remove from pair by setting the paired bios pair to NULL */
if (bio->pair != NULL) {
bio->pair->pair = NULL;
}
if (bio->close) {
if (bio->ssl)
wolfSSL_free(bio->ssl);
if (bio->fd)
CloseSocket(bio->fd);
}
#ifndef NO_FILESYSTEM
if (bio->type == BIO_FILE && bio->close == BIO_CLOSE) {
if (bio->file) {
XFCLOSE(bio->file);
}
}
#endif
if (bio->mem)
XFREE(bio->mem, bio->heap, DYNAMIC_TYPE_OPENSSL);
XFREE(bio, bio->heap, DYNAMIC_TYPE_OPENSSL);
}
return 0;
}
int wolfSSL_BIO_free_all(WOLFSSL_BIO* bio)
{
WOLFSSL_ENTER("BIO_free_all");
while (bio) {
WOLFSSL_BIO* next = bio->next;
wolfSSL_BIO_free(bio);
bio = next;
}
return 0;
}
static int wolfSSL_BIO_BIO_read(WOLFSSL_BIO* bio, void* buf, int len)
{
int sz;
char* pt;
sz = wolfSSL_BIO_nread(bio, &pt, len);
if (sz > 0) {
XMEMCPY(buf, pt, sz);
}
return sz;
}
/* Handles reading from a memory type BIO and advancing the state.
*
* bio WOLFSSL_BIO to read from
* buf buffer to put data from bio in
* len amount of data to be read
*
* returns size read on success
*/
static int wolfSSL_BIO_MEMORY_read(WOLFSSL_BIO* bio, void* buf, int len)
{
int sz;
sz = (int)wolfSSL_BIO_ctrl_pending(bio);
if (sz > 0) {
byte* pt = NULL;
int memSz;
if (sz > len) {
sz = len;
}
memSz = wolfSSL_BIO_get_mem_data(bio, (void*)&pt);
if (memSz >= sz && pt != NULL) {
byte* tmp;
XMEMCPY(buf, pt, sz);
if (memSz - sz > 0) {
tmp = (byte*)XMALLOC(memSz-sz, bio->heap,
DYNAMIC_TYPE_OPENSSL);
if (tmp == NULL) {
WOLFSSL_MSG("Memory error");
return WOLFSSL_BIO_ERROR;
}
XMEMCPY(tmp, pt + sz, memSz - sz);
/* reset internal bio->mem, tmp gets free'd with
* wolfSSL_BIO_free */
XFREE(bio->mem, bio->heap, DYNAMIC_TYPE_OPENSSL);
bio->mem = tmp;
}
bio->wrSz -= sz;
bio->memLen = memSz - sz;
}
else {
WOLFSSL_MSG("Issue with getting bio mem pointer");
return 0;
}
}
else {
return WOLFSSL_BIO_ERROR;
}
return sz;
}
int wolfSSL_BIO_read(WOLFSSL_BIO* bio, void* buf, int len)
{
int ret;
WOLFSSL* ssl = 0;
WOLFSSL_BIO* front = bio;
WOLFSSL_ENTER("wolfSSL_BIO_read");
if (bio && bio->type == BIO_BIO) {
return wolfSSL_BIO_BIO_read(bio, buf, len);
}
#ifndef NO_FILESYSTEM
if (bio && bio->type == BIO_FILE) {
return (int)XFREAD(buf, 1, len, bio->file);
}
#endif
if (bio && bio->type == BIO_MEMORY) {
return wolfSSL_BIO_MEMORY_read(bio, buf, len);
}
/* already got eof, again is error */
if (bio && front->eof)
return WOLFSSL_FATAL_ERROR;
while(bio && ((ssl = bio->ssl) == 0) )
bio = bio->next;
if (ssl == 0) return BAD_FUNC_ARG;
ret = wolfSSL_read(ssl, buf, len);
if (ret == 0)
front->eof = 1;
else if (ret < 0) {
int err = wolfSSL_get_error(ssl, 0);
if ( !(err == WOLFSSL_ERROR_WANT_READ || err == WOLFSSL_ERROR_WANT_WRITE) )
front->eof = 1;
}
return ret;
}
static int wolfSSL_BIO_BIO_write(WOLFSSL_BIO* bio, const void* data,
int len)
{
/* internal function where arguments have already been sanity checked */
int sz;
char* buf;
sz = wolfSSL_BIO_nwrite(bio, &buf, len);
/* test space for write */
if (sz <= 0) {
WOLFSSL_MSG("No room left to write");
return sz;
}
XMEMCPY(buf, data, sz);
return sz;
}
int wolfSSL_BIO_write(WOLFSSL_BIO* bio, const void* data, int len)
{
int ret;
WOLFSSL* ssl = 0;
WOLFSSL_BIO* front = bio;
byte* p;
WOLFSSL_ENTER("wolfSSL_BIO_write");
if (bio && bio->type == BIO_BIO) {
return wolfSSL_BIO_BIO_write(bio, data, len);
}
#ifndef NO_FILESYSTEM
if (bio && bio->type == BIO_FILE) {
return (int)XFWRITE(data, 1, len, bio->file);
}
#endif
if (bio && bio->type == BIO_MEMORY) {
/* Make buffer big enough to hold new data. */
if (bio->mem == NULL) {
bio->mem = (byte*)XMALLOC(len, bio->heap, DYNAMIC_TYPE_OPENSSL);
if (bio->mem == NULL)
return -1;
p = bio->mem;
}
else {
p = (byte*)XMALLOC(len + bio->memLen, bio->heap,
DYNAMIC_TYPE_OPENSSL);
if (p == NULL)
return -1;
XMEMCPY(p, bio->mem, bio->memLen);
XFREE(bio->mem, bio->heap, DYNAMIC_TYPE_OPENSSL);
bio->mem = p;
p += bio->memLen;
}
/* Put data on the end of the buffer. */
XMEMCPY(p, data, len);
bio->memLen += len;
return len;
}
/* already got eof, again is error */
if (bio && front->eof)
return WOLFSSL_FATAL_ERROR;
while(bio && ((ssl = bio->ssl) == 0) )
bio = bio->next;
if (ssl == 0) return BAD_FUNC_ARG;
ret = wolfSSL_write(ssl, data, len);
if (ret == 0)
front->eof = 1;
else if (ret < 0) {
int err = wolfSSL_get_error(ssl, 0);
if ( !(err == WOLFSSL_ERROR_WANT_READ || err == WOLFSSL_ERROR_WANT_WRITE) )
front->eof = 1;
}
return ret;
}
WOLFSSL_BIO* wolfSSL_BIO_push(WOLFSSL_BIO* top, WOLFSSL_BIO* append)
{
WOLFSSL_ENTER("BIO_push");
top->next = append;
append->prev = top;
return top;
}
int wolfSSL_BIO_flush(WOLFSSL_BIO* bio)
{
/* for wolfSSL no flushing needed */
WOLFSSL_ENTER("BIO_flush");
(void)bio;
return 1;
}
#endif /* OPENSSL_EXTRA || GOAHEAD_WS */
#if defined(OPENSSL_EXTRA) || defined(HAVE_WEBSERVER)
void wolfSSL_CTX_set_default_passwd_cb_userdata(WOLFSSL_CTX* ctx,
void* userdata)
{
WOLFSSL_ENTER("SSL_CTX_set_default_passwd_cb_userdata");
ctx->userdata = userdata;
}
void wolfSSL_CTX_set_default_passwd_cb(WOLFSSL_CTX* ctx,pem_password_cb* cb)
{
WOLFSSL_ENTER("SSL_CTX_set_default_passwd_cb");
if (ctx != NULL) {
ctx->passwd_cb = cb;
}
}
int wolfSSL_num_locks(void)
{
return 0;
}
void wolfSSL_set_locking_callback(void (*f)(int, int, const char*, int))
{
(void)f;
}
void wolfSSL_set_id_callback(unsigned long (*f)(void))
{
(void)f;
}
unsigned long wolfSSL_ERR_get_error(void)
{
WOLFSSL_ENTER("wolfSSL_ERR_get_error");
#if defined(WOLFSSL_NGINX) || defined(WOLFSSL_HAPROXY)
{
unsigned long ret = wolfSSL_ERR_peek_error_line_data(NULL, NULL,
NULL, NULL);
wc_RemoveErrorNode(-1);
return ret;
}
#else
return (unsigned long)(0 - NOT_COMPILED_IN);
#endif
}
#ifndef NO_MD5
int wolfSSL_EVP_BytesToKey(const WOLFSSL_EVP_CIPHER* type,
const WOLFSSL_EVP_MD* md, const byte* salt,
const byte* data, int sz, int count, byte* key, byte* iv)
{
int keyLen = 0;
int ivLen = 0;
int j;
int keyLeft;
int ivLeft;
int keyOutput = 0;
byte digest[WC_MD5_DIGEST_SIZE];
#ifdef WOLFSSL_SMALL_STACK
wc_Md5* md5 = NULL;
#else
wc_Md5 md5[1];
#endif
#ifdef WOLFSSL_SMALL_STACK
md5 = (wc_Md5*)XMALLOC(sizeof(wc_Md5), NULL, DYNAMIC_TYPE_HASHCTX);
if (md5 == NULL)
return 0;
#endif
(void)type;
WOLFSSL_ENTER("wolfSSL_EVP_BytesToKey");
if (wc_InitMd5(md5) != 0) {
#ifdef WOLFSSL_SMALL_STACK
XFREE(md5, NULL, DYNAMIC_TYPE_HASHCTX);
#endif
return 0;
}
/* only support MD5 for now */
if (XSTRNCMP(md, "MD5", 3) != 0) {
#ifdef WOLFSSL_SMALL_STACK
XFREE(md5, NULL, DYNAMIC_TYPE_HASHCTX);
#endif
return 0;
}
/* only support CBC DES and AES for now */
#ifndef NO_DES3
if (XSTRNCMP(type, EVP_DES_CBC, EVP_DES_SIZE) == 0) {
keyLen = DES_KEY_SIZE;
ivLen = DES_IV_SIZE;
}
else if (XSTRNCMP(type, EVP_DES_EDE3_CBC, EVP_DES_EDE3_SIZE) == 0) {
keyLen = DES3_KEY_SIZE;
ivLen = DES_IV_SIZE;
}
else
#endif /* NO_DES3 */
#ifndef NO_AES
if (XSTRNCMP(type, EVP_AES_128_CBC, EVP_AES_SIZE) == 0) {
keyLen = AES_128_KEY_SIZE;
ivLen = AES_IV_SIZE;
}
else if (XSTRNCMP(type, EVP_AES_192_CBC, EVP_AES_SIZE) == 0) {
keyLen = AES_192_KEY_SIZE;
ivLen = AES_IV_SIZE;
}
else if (XSTRNCMP(type, EVP_AES_256_CBC, EVP_AES_SIZE) == 0) {
keyLen = AES_256_KEY_SIZE;
ivLen = AES_IV_SIZE;
}
else
#endif /* NO_AES */
{
#ifdef WOLFSSL_SMALL_STACK
XFREE(md5, NULL, DYNAMIC_TYPE_HASHCTX);
#endif
return 0;
}
keyLeft = keyLen;
ivLeft = ivLen;
while (keyOutput < (keyLen + ivLen)) {
int digestLeft = WC_MD5_DIGEST_SIZE;
/* D_(i - 1) */
if (keyOutput) /* first time D_0 is empty */
wc_Md5Update(md5, digest, WC_MD5_DIGEST_SIZE);
/* data */
wc_Md5Update(md5, data, sz);
/* salt */
if (salt)
wc_Md5Update(md5, salt, EVP_SALT_SIZE);
wc_Md5Final(md5, digest);
/* count */
for (j = 1; j < count; j++) {
wc_Md5Update(md5, digest, WC_MD5_DIGEST_SIZE);
wc_Md5Final(md5, digest);
}
if (keyLeft) {
int store = min(keyLeft, WC_MD5_DIGEST_SIZE);
XMEMCPY(&key[keyLen - keyLeft], digest, store);
keyOutput += store;
keyLeft -= store;
digestLeft -= store;
}
if (ivLeft && digestLeft) {
int store = min(ivLeft, digestLeft);
if (iv != NULL)
XMEMCPY(&iv[ivLen - ivLeft],
&digest[WC_MD5_DIGEST_SIZE - digestLeft], store);
keyOutput += store;
ivLeft -= store;
}
}
#ifdef WOLFSSL_SMALL_STACK
XFREE(md5, NULL, DYNAMIC_TYPE_HASHCTX);
#endif
return keyOutput == (keyLen + ivLen) ? keyOutput : 0;
}
#endif /* NO_MD5 */
#endif /* OPENSSL_EXTRA || HAVE_WEBSERVER */
#ifdef OPENSSL_EXTRA
#if !defined(NO_WOLFSSL_SERVER)
size_t wolfSSL_get_server_random(const WOLFSSL *ssl, unsigned char *out,
size_t outSz)
{
size_t size;
/* return max size of buffer */
if (outSz == 0) {
return RAN_LEN;
}
if (ssl == NULL || out == NULL) {
return 0;
}
if (ssl->options.saveArrays == 0 || ssl->arrays == NULL) {
WOLFSSL_MSG("Arrays struct not saved after handshake");
return 0;
}
if (outSz > RAN_LEN) {
size = RAN_LEN;
}
else {
size = outSz;
}
XMEMCPY(out, ssl->arrays->serverRandom, size);
return size;
}
#endif /* !defined(NO_WOLFSSL_SERVER) */
#if !defined(NO_WOLFSSL_CLIENT)
/* Return the amount of random bytes copied over or error case.
* ssl : ssl struct after handshake
* out : buffer to hold random bytes
* outSz : either 0 (return max buffer sz) or size of out buffer
*
* NOTE: wolfSSL_KeepArrays(ssl) must be called to retain handshake information.
*/
size_t wolfSSL_get_client_random(const WOLFSSL* ssl, unsigned char* out,
size_t outSz)
{
size_t size;
/* return max size of buffer */
if (outSz == 0) {
return RAN_LEN;
}
if (ssl == NULL || out == NULL) {
return 0;
}
if (ssl->options.saveArrays == 0 || ssl->arrays == NULL) {
WOLFSSL_MSG("Arrays struct not saved after handshake");
return 0;
}
if (outSz > RAN_LEN) {
size = RAN_LEN;
}
else {
size = outSz;
}
XMEMCPY(out, ssl->arrays->clientRandom, size);
return size;
}
#endif /* !defined(NO_WOLFSSL_CLIENT) */
unsigned long wolfSSLeay(void)
{
return SSLEAY_VERSION_NUMBER;
}
const char* wolfSSLeay_version(int type)
{
static const char* version = "SSLeay wolfSSL compatibility";
(void)type;
return version;
}
#ifndef NO_MD5
int wolfSSL_MD5_Init(WOLFSSL_MD5_CTX* md5)
{
int ret;
typedef char md5_test[sizeof(MD5_CTX) >= sizeof(wc_Md5) ? 1 : -1];
(void)sizeof(md5_test);
WOLFSSL_ENTER("MD5_Init");
ret = wc_InitMd5((wc_Md5*)md5);
/* return 1 on success, 0 otherwise */
if (ret == 0)
return 1;
return 0;
}
int wolfSSL_MD5_Update(WOLFSSL_MD5_CTX* md5, const void* input,
unsigned long sz)
{
int ret;
WOLFSSL_ENTER("wolfSSL_MD5_Update");
ret = wc_Md5Update((wc_Md5*)md5, (const byte*)input, (word32)sz);
/* return 1 on success, 0 otherwise */
if (ret == 0)
return 1;
return 0;
}
int wolfSSL_MD5_Final(byte* input, WOLFSSL_MD5_CTX* md5)
{
int ret;
WOLFSSL_ENTER("MD5_Final");
ret = wc_Md5Final((wc_Md5*)md5, input);
/* return 1 on success, 0 otherwise */
if (ret == 0)
return 1;
return 0;
}
#endif /* NO_MD5 */
#ifndef NO_SHA
int wolfSSL_SHA_Init(WOLFSSL_SHA_CTX* sha)
{
int ret;
typedef char sha_test[sizeof(SHA_CTX) >= sizeof(wc_Sha) ? 1 : -1];
(void)sizeof(sha_test);
WOLFSSL_ENTER("SHA_Init");
ret = wc_InitSha((wc_Sha*)sha);
/* return 1 on success, 0 otherwise */
if (ret == 0)
return 1;
return 0;
}
int wolfSSL_SHA_Update(WOLFSSL_SHA_CTX* sha, const void* input,
unsigned long sz)
{
int ret;
WOLFSSL_ENTER("SHA_Update");
ret = wc_ShaUpdate((wc_Sha*)sha, (const byte*)input, (word32)sz);
/* return 1 on success, 0 otherwise */
if (ret == 0)
return 1;
return 0;
}
int wolfSSL_SHA_Final(byte* input, WOLFSSL_SHA_CTX* sha)
{
int ret;
WOLFSSL_ENTER("SHA_Final");
ret = wc_ShaFinal((wc_Sha*)sha, input);
/* return 1 on success, 0 otherwise */
if (ret == 0)
return 1;
return 0;
}
int wolfSSL_SHA1_Init(WOLFSSL_SHA_CTX* sha)
{
WOLFSSL_ENTER("SHA1_Init");
return SHA_Init(sha);
}
int wolfSSL_SHA1_Update(WOLFSSL_SHA_CTX* sha, const void* input,
unsigned long sz)
{
WOLFSSL_ENTER("SHA1_Update");
return SHA_Update(sha, input, sz);
}
int wolfSSL_SHA1_Final(byte* input, WOLFSSL_SHA_CTX* sha)
{
WOLFSSL_ENTER("SHA1_Final");
return SHA_Final(input, sha);
}
#endif /* NO_SHA */
#ifdef WOLFSSL_SHA224
int wolfSSL_SHA224_Init(WOLFSSL_SHA224_CTX* sha)
{
int ret;
typedef char sha_test[sizeof(SHA224_CTX) >= sizeof(wc_Sha224) ? 1 : -1];
(void)sizeof(sha_test);
WOLFSSL_ENTER("SHA224_Init");
ret = wc_InitSha224((wc_Sha224*)sha);
/* return 1 on success, 0 otherwise */
if (ret == 0)
return 1;
return 0;
}
int wolfSSL_SHA224_Update(WOLFSSL_SHA224_CTX* sha, const void* input,
unsigned long sz)
{
int ret;
WOLFSSL_ENTER("SHA224_Update");
ret = wc_Sha224Update((wc_Sha224*)sha, (const byte*)input, (word32)sz);
/* return 1 on success, 0 otherwise */
if (ret == 0)
return 1;
return 0;
}
int wolfSSL_SHA224_Final(byte* input, WOLFSSL_SHA224_CTX* sha)
{
int ret;
WOLFSSL_ENTER("SHA224_Final");
ret = wc_Sha224Final((wc_Sha224*)sha, input);
/* return 1 on success, 0 otherwise */
if (ret == 0)
return 1;
return 0;
}
#endif /* WOLFSSL_SHA224 */
int wolfSSL_SHA256_Init(WOLFSSL_SHA256_CTX* sha256)
{
int ret;
typedef char sha_test[sizeof(SHA256_CTX) >= sizeof(wc_Sha256) ? 1 : -1];
(void)sizeof(sha_test);
WOLFSSL_ENTER("SHA256_Init");
ret = wc_InitSha256((wc_Sha256*)sha256);
/* return 1 on success, 0 otherwise */
if (ret == 0)
return 1;
return 0;
}
int wolfSSL_SHA256_Update(WOLFSSL_SHA256_CTX* sha, const void* input,
unsigned long sz)
{
int ret;
WOLFSSL_ENTER("SHA256_Update");
ret = wc_Sha256Update((wc_Sha256*)sha, (const byte*)input, (word32)sz);
/* return 1 on success, 0 otherwise */
if (ret == 0)
return 1;
return 0;
}
int wolfSSL_SHA256_Final(byte* input, WOLFSSL_SHA256_CTX* sha)
{
int ret;
WOLFSSL_ENTER("SHA256_Final");
ret = wc_Sha256Final((wc_Sha256*)sha, input);
/* return 1 on success, 0 otherwise */
if (ret == 0)
return 1;
return 0;
}
#ifdef WOLFSSL_SHA384
int wolfSSL_SHA384_Init(WOLFSSL_SHA384_CTX* sha)
{
int ret;
typedef char sha_test[sizeof(SHA384_CTX) >= sizeof(wc_Sha384) ? 1 : -1];
(void)sizeof(sha_test);
WOLFSSL_ENTER("SHA384_Init");
ret = wc_InitSha384((wc_Sha384*)sha);
/* return 1 on success, 0 otherwise */
if (ret == 0)
return 1;
return 0;
}
int wolfSSL_SHA384_Update(WOLFSSL_SHA384_CTX* sha, const void* input,
unsigned long sz)
{
int ret;
WOLFSSL_ENTER("SHA384_Update");
ret = wc_Sha384Update((wc_Sha384*)sha, (const byte*)input, (word32)sz);
/* return 1 on success, 0 otherwise */
if (ret == 0)
return 1;
return 0;
}
int wolfSSL_SHA384_Final(byte* input, WOLFSSL_SHA384_CTX* sha)
{
int ret;
WOLFSSL_ENTER("SHA384_Final");
ret = wc_Sha384Final((wc_Sha384*)sha, input);
/* return 1 on success, 0 otherwise */
if (ret == 0)
return 1;
return 0;
}
#endif /* WOLFSSL_SHA384 */
#ifdef WOLFSSL_SHA512
int wolfSSL_SHA512_Init(WOLFSSL_SHA512_CTX* sha)
{
int ret;
typedef char sha_test[sizeof(SHA512_CTX) >= sizeof(wc_Sha512) ? 1 : -1];
(void)sizeof(sha_test);
WOLFSSL_ENTER("SHA512_Init");
ret = wc_InitSha512((wc_Sha512*)sha);
/* return 1 on success, 0 otherwise */
if (ret == 0)
return 1;
return 0;
}
int wolfSSL_SHA512_Update(WOLFSSL_SHA512_CTX* sha, const void* input,
unsigned long sz)
{
int ret;
WOLFSSL_ENTER("SHA512_Update");
ret = wc_Sha512Update((wc_Sha512*)sha, (const byte*)input, (word32)sz);
/* return 1 on success, 0 otherwise */
if (ret == 0)
return 1;
return 0;
}
int wolfSSL_SHA512_Final(byte* input, WOLFSSL_SHA512_CTX* sha)
{
int ret;
WOLFSSL_ENTER("SHA512_Final");
ret = wc_Sha512Final((wc_Sha512*)sha, input);
/* return 1 on success, 0 otherwise */
if (ret == 0)
return 1;
return 0;
}
#endif /* WOLFSSL_SHA512 */
static const struct s_ent {
const unsigned char macType;
const char *name;
} md_tbl[] = {
#ifndef NO_MD5
{WC_MD5, "MD5"},
#endif /* NO_MD5 */
#ifndef NO_SHA
{WC_SHA, "SHA"},
#endif /* NO_SHA */
#ifdef WOLFSSL_SHA224
{WC_SHA224, "SHA224"},
#endif /* WOLFSSL_SHA224 */
#ifndef NO_SHA256
{WC_SHA256, "SHA256"},
#endif
#ifdef WOLFSSL_SHA384
{WC_SHA384, "SHA384"},
#endif /* WOLFSSL_SHA384 */
#ifdef WOLFSSL_SHA512
{WC_SHA512, "SHA512"},
#endif /* WOLFSSL_SHA512 */
{0, NULL}
};
const WOLFSSL_EVP_MD *wolfSSL_EVP_get_digestbyname(const char *name)
{
static const struct alias {
const char *name;
const char *alias;
} alias_tbl[] = {
{"MD5", "ssl3-md5"},
{"SHA", "ssl3-sha1"},
{"SHA", "SHA1"},
{ NULL, NULL}
};
const struct alias *al;
const struct s_ent *ent;
for (al = alias_tbl; al->name != NULL; al++)
if(XSTRNCMP(name, al->alias, XSTRLEN(al->alias)+1) == 0) {
name = al->name;
break;
}
for (ent = md_tbl; ent->name != NULL; ent++)
if(XSTRNCMP(name, ent->name, XSTRLEN(ent->name)+1) == 0) {
return (EVP_MD *)ent->name;
}
return NULL;
}
static WOLFSSL_EVP_MD *wolfSSL_EVP_get_md(const unsigned char type)
{
const struct s_ent *ent;
for( ent = md_tbl; ent->macType != 0; ent++)
if(type == ent->macType) {
return (WOLFSSL_EVP_MD *)ent->name;
}
return 0;
}
int wolfSSL_EVP_MD_type(const WOLFSSL_EVP_MD *md)
{
const struct s_ent *ent;
for( ent = md_tbl; ent->name != NULL; ent++)
if(XSTRNCMP((const char *)md, ent->name, XSTRLEN(ent->name)+1) == 0) {
return ent->macType;
}
return 0;
}
#ifndef NO_MD5
const WOLFSSL_EVP_MD* wolfSSL_EVP_md5(void)
{
const char* type = EVP_get_digestbyname("MD5");
WOLFSSL_ENTER("EVP_md5");
return type;
}
#endif /* NO_MD5 */
#ifndef NO_SHA
const WOLFSSL_EVP_MD* wolfSSL_EVP_sha1(void)
{
const char* type = EVP_get_digestbyname("SHA");
WOLFSSL_ENTER("EVP_sha1");
return type;
}
#endif /* NO_SHA */
#ifdef WOLFSSL_SHA224
const WOLFSSL_EVP_MD* wolfSSL_EVP_sha224(void)
{
const char* type = EVP_get_digestbyname("SHA224");
WOLFSSL_ENTER("EVP_sha224");
return type;
}
#endif /* WOLFSSL_SHA224 */
const WOLFSSL_EVP_MD* wolfSSL_EVP_sha256(void)
{
const char* type = EVP_get_digestbyname("SHA256");
WOLFSSL_ENTER("EVP_sha256");
return type;
}
#ifdef WOLFSSL_SHA384
const WOLFSSL_EVP_MD* wolfSSL_EVP_sha384(void)
{
const char* type = EVP_get_digestbyname("SHA384");
WOLFSSL_ENTER("EVP_sha384");
return type;
}
#endif /* WOLFSSL_SHA384 */
#ifdef WOLFSSL_SHA512
const WOLFSSL_EVP_MD* wolfSSL_EVP_sha512(void)
{
const char* type = EVP_get_digestbyname("SHA512");
WOLFSSL_ENTER("EVP_sha512");
return type;
}
#endif /* WOLFSSL_SHA512 */
WOLFSSL_EVP_MD_CTX *wolfSSL_EVP_MD_CTX_new(void)
{
WOLFSSL_EVP_MD_CTX* ctx;
WOLFSSL_ENTER("EVP_MD_CTX_new");
ctx = (WOLFSSL_EVP_MD_CTX*)XMALLOC(sizeof *ctx, NULL,
DYNAMIC_TYPE_OPENSSL);
if (ctx){
wolfSSL_EVP_MD_CTX_init(ctx);
}
return ctx;
}
WOLFSSL_API void wolfSSL_EVP_MD_CTX_free(WOLFSSL_EVP_MD_CTX *ctx)
{
if (ctx) {
WOLFSSL_ENTER("EVP_MD_CTX_free");
wolfSSL_EVP_MD_CTX_cleanup(ctx);
XFREE(ctx, NULL, DYNAMIC_TYPE_OPENSSL);
}
}
void wolfSSL_EVP_MD_CTX_init(WOLFSSL_EVP_MD_CTX* ctx)
{
WOLFSSL_ENTER("EVP_CIPHER_MD_CTX_init");
XMEMSET(ctx, 0, sizeof(WOLFSSL_EVP_MD_CTX));
}
const WOLFSSL_EVP_MD *wolfSSL_EVP_MD_CTX_md(const WOLFSSL_EVP_MD_CTX *ctx)
{
if (!ctx)
return NULL;
return (const WOLFSSL_EVP_MD *)wolfSSL_EVP_get_md(ctx->macType);
}
#ifndef NO_AES
const WOLFSSL_EVP_CIPHER* wolfSSL_EVP_aes_128_cbc(void)
{
WOLFSSL_ENTER("wolfSSL_EVP_aes_128_cbc");
if (EVP_AES_128_CBC == NULL)
wolfSSL_EVP_init();
return EVP_AES_128_CBC;
}
const WOLFSSL_EVP_CIPHER* wolfSSL_EVP_aes_192_cbc(void)
{
WOLFSSL_ENTER("wolfSSL_EVP_aes_192_cbc");
if (EVP_AES_192_CBC == NULL)
wolfSSL_EVP_init();
return EVP_AES_192_CBC;
}
const WOLFSSL_EVP_CIPHER* wolfSSL_EVP_aes_256_cbc(void)
{
WOLFSSL_ENTER("wolfSSL_EVP_aes_256_cbc");
if (EVP_AES_256_CBC == NULL)
wolfSSL_EVP_init();
return EVP_AES_256_CBC;
}
const WOLFSSL_EVP_CIPHER* wolfSSL_EVP_aes_128_ctr(void)
{
WOLFSSL_ENTER("wolfSSL_EVP_aes_128_ctr");
if (EVP_AES_128_CTR == NULL)
wolfSSL_EVP_init();
return EVP_AES_128_CTR;
}
const WOLFSSL_EVP_CIPHER* wolfSSL_EVP_aes_192_ctr(void)
{
WOLFSSL_ENTER("wolfSSL_EVP_aes_192_ctr");
if (EVP_AES_192_CTR == NULL)
wolfSSL_EVP_init();
return EVP_AES_192_CTR;
}
const WOLFSSL_EVP_CIPHER* wolfSSL_EVP_aes_256_ctr(void)
{
WOLFSSL_ENTER("wolfSSL_EVP_aes_256_ctr");
if (EVP_AES_256_CTR == NULL)
wolfSSL_EVP_init();
return EVP_AES_256_CTR;
}
const WOLFSSL_EVP_CIPHER* wolfSSL_EVP_aes_128_ecb(void)
{
WOLFSSL_ENTER("wolfSSL_EVP_aes_128_ecb");
if (EVP_AES_128_ECB == NULL)
wolfSSL_EVP_init();
return EVP_AES_128_ECB;
}
const WOLFSSL_EVP_CIPHER* wolfSSL_EVP_aes_192_ecb(void)
{
WOLFSSL_ENTER("wolfSSL_EVP_aes_192_ecb");
if (EVP_AES_192_ECB == NULL)
wolfSSL_EVP_init();
return EVP_AES_192_ECB;
}
const WOLFSSL_EVP_CIPHER* wolfSSL_EVP_aes_256_ecb(void)
{
WOLFSSL_ENTER("wolfSSL_EVP_aes_256_ecb");
if (EVP_AES_256_ECB == NULL)
wolfSSL_EVP_init();
return EVP_AES_256_ECB;
}
#endif /* NO_AES */
#ifndef NO_DES3
const WOLFSSL_EVP_CIPHER* wolfSSL_EVP_des_cbc(void)
{
WOLFSSL_ENTER("wolfSSL_EVP_des_cbc");
if (EVP_DES_CBC == NULL)
wolfSSL_EVP_init();
return EVP_DES_CBC;
}
#ifdef WOLFSSL_DES_ECB
const WOLFSSL_EVP_CIPHER* wolfSSL_EVP_des_ecb(void)
{
WOLFSSL_ENTER("wolfSSL_EVP_des_ecb");
if (EVP_DES_ECB == NULL)
wolfSSL_EVP_init();
return EVP_DES_ECB;
}
#endif
const WOLFSSL_EVP_CIPHER* wolfSSL_EVP_des_ede3_cbc(void)
{
WOLFSSL_ENTER("wolfSSL_EVP_des_ede3_cbc");
if (EVP_DES_EDE3_CBC == NULL)
wolfSSL_EVP_init();
return EVP_DES_EDE3_CBC;
}
#ifdef WOLFSSL_DES_ECB
const WOLFSSL_EVP_CIPHER* wolfSSL_EVP_des_ede3_ecb(void)
{
WOLFSSL_ENTER("wolfSSL_EVP_des_ede3_ecb");
if (EVP_DES_EDE3_ECB == NULL)
wolfSSL_EVP_init();
return EVP_DES_EDE3_ECB;
}
#endif
#endif /* NO_DES3 */
const WOLFSSL_EVP_CIPHER* wolfSSL_EVP_rc4(void)
{
static const char* type = "ARC4";
WOLFSSL_ENTER("wolfSSL_EVP_rc4");
return type;
}
#ifdef HAVE_IDEA
const WOLFSSL_EVP_CIPHER* wolfSSL_EVP_idea_cbc(void)
{
WOLFSSL_ENTER("wolfSSL_EVP_idea_cbc");
if (EVP_IDEA_CBC == NULL)
wolfSSL_EVP_init();
return EVP_IDEA_CBC;
}
#endif
const WOLFSSL_EVP_CIPHER* wolfSSL_EVP_enc_null(void)
{
static const char* type = "NULL";
WOLFSSL_ENTER("wolfSSL_EVP_enc_null");
return type;
}
int wolfSSL_EVP_MD_CTX_cleanup(WOLFSSL_EVP_MD_CTX* ctx)
{
WOLFSSL_ENTER("EVP_MD_CTX_cleanup");
ForceZero(ctx, sizeof(*ctx));
ctx->macType = 0xFF;
return 1;
}
void wolfSSL_EVP_CIPHER_CTX_init(WOLFSSL_EVP_CIPHER_CTX* ctx)
{
WOLFSSL_ENTER("EVP_CIPHER_CTX_init");
if (ctx) {
ctx->cipherType = 0xff; /* no init */
ctx->keyLen = 0;
ctx->enc = 1; /* start in encrypt mode */
}
}
/* WOLFSSL_SUCCESS on ok */
int wolfSSL_EVP_CIPHER_CTX_cleanup(WOLFSSL_EVP_CIPHER_CTX* ctx)
{
WOLFSSL_ENTER("EVP_CIPHER_CTX_cleanup");
if (ctx) {
ctx->cipherType = 0xff; /* no more init */
ctx->keyLen = 0;
}
return WOLFSSL_SUCCESS;
}
/* return WOLFSSL_SUCCESS on ok, 0 on failure to match API compatibility */
int wolfSSL_EVP_CipherInit(WOLFSSL_EVP_CIPHER_CTX* ctx,
const WOLFSSL_EVP_CIPHER* type, byte* key,
byte* iv, int enc)
{
int ret = -1; /* failure local, during function 0 means success
because internal functions work that way */
(void)key;
(void)iv;
(void)enc;
WOLFSSL_ENTER("wolfSSL_EVP_CipherInit");
if (ctx == NULL) {
WOLFSSL_MSG("no ctx");
return 0; /* failure */
}
if (type == NULL && ctx->cipherType == 0xff) {
WOLFSSL_MSG("no type set");
return 0; /* failure */
}
ctx->bufUsed = 0;
ctx->lastUsed = 0;
ctx->flags = 0;
#ifndef NO_AES
if (ctx->cipherType == AES_128_CBC_TYPE ||
(type && XSTRNCMP(type, EVP_AES_128_CBC, EVP_AES_SIZE) == 0)) {
WOLFSSL_MSG("EVP_AES_128_CBC");
ctx->cipherType = AES_128_CBC_TYPE;
ctx->flags = WOLFSSL_EVP_CIPH_CBC_MODE;
ctx->keyLen = 16;
ctx->block_size = AES_BLOCK_SIZE;
if (enc == 0 || enc == 1)
ctx->enc = enc ? 1 : 0;
if (key) {
ret = wc_AesSetKey(&ctx->cipher.aes, key, ctx->keyLen, iv,
ctx->enc ? AES_ENCRYPTION : AES_DECRYPTION);
if (ret != 0)
return ret;
}
if (iv && key == NULL) {
ret = wc_AesSetIV(&ctx->cipher.aes, iv);
if (ret != 0)
return ret;
}
}
else if (ctx->cipherType == AES_192_CBC_TYPE ||
(type && XSTRNCMP(type, EVP_AES_192_CBC, EVP_AES_SIZE) == 0)) {
WOLFSSL_MSG("EVP_AES_192_CBC");
ctx->cipherType = AES_192_CBC_TYPE;
ctx->flags = WOLFSSL_EVP_CIPH_CBC_MODE;
ctx->keyLen = 24;
ctx->block_size = AES_BLOCK_SIZE;
if (enc == 0 || enc == 1)
ctx->enc = enc ? 1 : 0;
if (key) {
ret = wc_AesSetKey(&ctx->cipher.aes, key, ctx->keyLen, iv,
ctx->enc ? AES_ENCRYPTION : AES_DECRYPTION);
if (ret != 0)
return ret;
}
if (iv && key == NULL) {
ret = wc_AesSetIV(&ctx->cipher.aes, iv);
if (ret != 0)
return ret;
}
}
else if (ctx->cipherType == AES_256_CBC_TYPE ||
(type && XSTRNCMP(type, EVP_AES_256_CBC, EVP_AES_SIZE) == 0)) {
WOLFSSL_MSG("EVP_AES_256_CBC");
ctx->cipherType = AES_256_CBC_TYPE;
ctx->flags = WOLFSSL_EVP_CIPH_CBC_MODE;
ctx->keyLen = 32;
ctx->block_size = AES_BLOCK_SIZE;
if (enc == 0 || enc == 1)
ctx->enc = enc ? 1 : 0;
if (key) {
ret = wc_AesSetKey(&ctx->cipher.aes, key, ctx->keyLen, iv,
ctx->enc ? AES_ENCRYPTION : AES_DECRYPTION);
if (ret != 0){
WOLFSSL_MSG("wc_AesSetKey() failed");
return ret;
}
}
if (iv && key == NULL) {
ret = wc_AesSetIV(&ctx->cipher.aes, iv);
if (ret != 0){
WOLFSSL_MSG("wc_AesSetIV() failed");
return ret;
}
}
WOLFSSL_MSG("wolfSSL_EVP_CipherInit() done");
}
#ifdef WOLFSSL_AES_COUNTER
else if (ctx->cipherType == AES_128_CTR_TYPE ||
(type && XSTRNCMP(type, EVP_AES_128_CTR, EVP_AES_SIZE) == 0)) {
WOLFSSL_MSG("EVP_AES_128_CTR");
ctx->cipherType = AES_128_CTR_TYPE;
ctx->flags = WOLFSSL_EVP_CIPH_CTR_MODE;
ctx->keyLen = 16;
ctx->block_size = AES_BLOCK_SIZE;
if (enc == 0 || enc == 1)
ctx->enc = enc ? 1 : 0;
if (key) {
ret = wc_AesSetKey(&ctx->cipher.aes, key, ctx->keyLen, iv,
AES_ENCRYPTION);
if (ret != 0)
return ret;
}
if (iv && key == NULL) {
ret = wc_AesSetIV(&ctx->cipher.aes, iv);
if (ret != 0)
return ret;
}
}
else if (ctx->cipherType == AES_192_CTR_TYPE ||
(type && XSTRNCMP(type, EVP_AES_192_CTR, EVP_AES_SIZE) == 0)) {
WOLFSSL_MSG("EVP_AES_192_CTR");
ctx->cipherType = AES_192_CTR_TYPE;
ctx->flags = WOLFSSL_EVP_CIPH_CTR_MODE;
ctx->keyLen = 24;
ctx->block_size = AES_BLOCK_SIZE;
if (enc == 0 || enc == 1)
ctx->enc = enc ? 1 : 0;
if (key) {
ret = wc_AesSetKey(&ctx->cipher.aes, key, ctx->keyLen, iv,
AES_ENCRYPTION);
if (ret != 0)
return ret;
}
if (iv && key == NULL) {
ret = wc_AesSetIV(&ctx->cipher.aes, iv);
if (ret != 0)
return ret;
}
}
else if (ctx->cipherType == AES_256_CTR_TYPE ||
(type && XSTRNCMP(type, EVP_AES_256_CTR, EVP_AES_SIZE) == 0)) {
WOLFSSL_MSG("EVP_AES_256_CTR");
ctx->cipherType = AES_256_CTR_TYPE;
ctx->flags = WOLFSSL_EVP_CIPH_CTR_MODE;
ctx->keyLen = 32;
ctx->block_size = AES_BLOCK_SIZE;
if (enc == 0 || enc == 1)
ctx->enc = enc ? 1 : 0;
if (key) {
ret = wc_AesSetKey(&ctx->cipher.aes, key, ctx->keyLen, iv,
AES_ENCRYPTION);
if (ret != 0)
return ret;
}
if (iv && key == NULL) {
ret = wc_AesSetIV(&ctx->cipher.aes, iv);
if (ret != 0)
return ret;
}
}
#endif /* WOLFSSL_AES_CTR */
else if (ctx->cipherType == AES_128_ECB_TYPE ||
(type && XSTRNCMP(type, EVP_AES_128_ECB, EVP_AES_SIZE) == 0)) {
WOLFSSL_MSG("EVP_AES_128_ECB");
ctx->cipherType = AES_128_ECB_TYPE;
ctx->flags = WOLFSSL_EVP_CIPH_ECB_MODE;
ctx->keyLen = 16;
ctx->block_size = AES_BLOCK_SIZE;
if (enc == 0 || enc == 1)
ctx->enc = enc ? 1 : 0;
if (key) {
ret = wc_AesSetKey(&ctx->cipher.aes, key, ctx->keyLen, NULL,
ctx->enc ? AES_ENCRYPTION : AES_DECRYPTION);
}
if (ret != 0)
return ret;
}
else if (ctx->cipherType == AES_192_ECB_TYPE ||
(type && XSTRNCMP(type, EVP_AES_192_ECB, EVP_AES_SIZE) == 0)) {
WOLFSSL_MSG("EVP_AES_192_ECB");
ctx->cipherType = AES_192_ECB_TYPE;
ctx->flags = WOLFSSL_EVP_CIPH_ECB_MODE;
ctx->keyLen = 24;
ctx->block_size = AES_BLOCK_SIZE;
if (enc == 0 || enc == 1)
ctx->enc = enc ? 1 : 0;
if (key) {
if(ctx->enc)
ret = wc_AesSetKey(&ctx->cipher.aes, key, ctx->keyLen, NULL,
ctx->enc ? AES_ENCRYPTION : AES_DECRYPTION);
}
if (ret != 0)
return ret;
}
else if (ctx->cipherType == AES_256_ECB_TYPE ||
(type && XSTRNCMP(type, EVP_AES_256_ECB, EVP_AES_SIZE) == 0)) {
WOLFSSL_MSG("EVP_AES_256_ECB");
ctx->cipherType = AES_256_ECB_TYPE;
ctx->flags = WOLFSSL_EVP_CIPH_ECB_MODE;
ctx->keyLen = 32;
ctx->block_size = AES_BLOCK_SIZE;
if (enc == 0 || enc == 1)
ctx->enc = enc ? 1 : 0;
if (key) {
ret = wc_AesSetKey(&ctx->cipher.aes, key, ctx->keyLen, NULL,
ctx->enc ? AES_ENCRYPTION : AES_DECRYPTION);
}
if (ret != 0)
return ret;
}
#endif /* NO_AES */
#ifndef NO_DES3
if (ctx->cipherType == DES_CBC_TYPE ||
(type && XSTRNCMP(type, EVP_DES_CBC, EVP_DES_SIZE) == 0)) {
WOLFSSL_MSG("EVP_DES_CBC");
ctx->cipherType = DES_CBC_TYPE;
ctx->flags = WOLFSSL_EVP_CIPH_CBC_MODE;
ctx->keyLen = 8;
ctx->block_size = DES_BLOCK_SIZE;
if (enc == 0 || enc == 1)
ctx->enc = enc ? 1 : 0;
if (key) {
ret = wc_Des_SetKey(&ctx->cipher.des, key, iv,
ctx->enc ? DES_ENCRYPTION : DES_DECRYPTION);
if (ret != 0)
return ret;
}
if (iv && key == NULL)
wc_Des_SetIV(&ctx->cipher.des, iv);
}
#ifdef WOLFSSL_DES_ECB
else if (ctx->cipherType == DES_ECB_TYPE ||
(type && XSTRNCMP(type, EVP_DES_ECB, EVP_DES_SIZE) == 0)) {
WOLFSSL_MSG("EVP_DES_ECB");
ctx->cipherType = DES_ECB_TYPE;
ctx->flags = WOLFSSL_EVP_CIPH_ECB_MODE;
ctx->keyLen = 8;
ctx->block_size = DES_BLOCK_SIZE;
if (enc == 0 || enc == 1)
ctx->enc = enc ? 1 : 0;
if (key) {
ret = wc_Des_SetKey(&ctx->cipher.des, key, NULL,
ctx->enc ? DES_ENCRYPTION : DES_DECRYPTION);
if (ret != 0)
return ret;
}
}
#endif
else if (ctx->cipherType == DES_EDE3_CBC_TYPE ||
(type &&
XSTRNCMP(type, EVP_DES_EDE3_CBC, EVP_DES_EDE3_SIZE) == 0)) {
WOLFSSL_MSG("EVP_DES_EDE3_CBC");
ctx->cipherType = DES_EDE3_CBC_TYPE;
ctx->flags = WOLFSSL_EVP_CIPH_CBC_MODE;
ctx->keyLen = 24;
ctx->block_size = DES_BLOCK_SIZE;
if (enc == 0 || enc == 1)
ctx->enc = enc ? 1 : 0;
if (key) {
ret = wc_Des3_SetKey(&ctx->cipher.des3, key, iv,
ctx->enc ? DES_ENCRYPTION : DES_DECRYPTION);
if (ret != 0)
return ret;
}
if (iv && key == NULL) {
ret = wc_Des3_SetIV(&ctx->cipher.des3, iv);
if (ret != 0)
return ret;
}
}
else if (ctx->cipherType == DES_EDE3_ECB_TYPE ||
(type &&
XSTRNCMP(type, EVP_DES_EDE3_ECB, EVP_DES_EDE3_SIZE) == 0)) {
WOLFSSL_MSG("EVP_DES_EDE3_ECB");
ctx->cipherType = DES_EDE3_ECB_TYPE;
ctx->flags = WOLFSSL_EVP_CIPH_ECB_MODE;
ctx->keyLen = 24;
ctx->block_size = DES_BLOCK_SIZE;
if (enc == 0 || enc == 1)
ctx->enc = enc ? 1 : 0;
if (key) {
ret = wc_Des3_SetKey(&ctx->cipher.des3, key, NULL,
ctx->enc ? DES_ENCRYPTION : DES_DECRYPTION);
if (ret != 0)
return ret;
}
}
#endif /* NO_DES3 */
#ifndef NO_RC4
if (ctx->cipherType == ARC4_TYPE || (type &&
XSTRNCMP(type, "ARC4", 4) == 0)) {
WOLFSSL_MSG("ARC4");
ctx->cipherType = ARC4_TYPE;
ctx->flags = WOLFSSL_EVP_CIPH_STREAM_CIPHER;
if (ctx->keyLen == 0) /* user may have already set */
ctx->keyLen = 16; /* default to 128 */
if (key)
wc_Arc4SetKey(&ctx->cipher.arc4, key, ctx->keyLen);
ret = 0; /* success */
}
#endif /* NO_RC4 */
#ifdef HAVE_IDEA
if (ctx->cipherType == IDEA_CBC_TYPE ||
(type && XSTRNCMP(type, EVP_IDEA_CBC, EVP_IDEA_SIZE) == 0)) {
WOLFSSL_MSG("EVP_IDEA_CBC");
ctx->cipherType = IDEA_CBC_TYPE;
ctx->flags = WOLFSSL_EVP_CIPH_CBC_MODE;
ctx->keyLen = IDEA_KEY_SIZE;
if (enc == 0 || enc == 1)
ctx->enc = enc ? 1 : 0;
if (key) {
ret = wc_IdeaSetKey(&ctx->cipher.idea, key, (word16)ctx->keyLen,
iv, ctx->enc ? IDEA_ENCRYPTION :
IDEA_DECRYPTION);
if (ret != 0)
return ret;
}
if (iv && key == NULL)
wc_IdeaSetIV(&ctx->cipher.idea, iv);
}
#endif /* HAVE_IDEA */
if (ctx->cipherType == NULL_CIPHER_TYPE || (type &&
XSTRNCMP(type, "NULL", 4) == 0)) {
WOLFSSL_MSG("NULL cipher");
ctx->cipherType = NULL_CIPHER_TYPE;
ctx->keyLen = 0;
ret = 0; /* success */
}
if (ret == 0)
return WOLFSSL_SUCCESS;
else
return 0; /* overall failure */
}
/* WOLFSSL_SUCCESS on ok */
int wolfSSL_EVP_CIPHER_CTX_key_length(WOLFSSL_EVP_CIPHER_CTX* ctx)
{
WOLFSSL_ENTER("wolfSSL_EVP_CIPHER_CTX_key_length");
if (ctx)
return ctx->keyLen;
return 0; /* failure */
}
/* WOLFSSL_SUCCESS on ok */
int wolfSSL_EVP_CIPHER_CTX_set_key_length(WOLFSSL_EVP_CIPHER_CTX* ctx,
int keylen)
{
WOLFSSL_ENTER("wolfSSL_EVP_CIPHER_CTX_set_key_length");
if (ctx)
ctx->keyLen = keylen;
else
return 0; /* failure */
return WOLFSSL_SUCCESS;
}
/* WOLFSSL_SUCCESS on ok */
int wolfSSL_EVP_Cipher(WOLFSSL_EVP_CIPHER_CTX* ctx, byte* dst, byte* src,
word32 len)
{
int ret = 0;
WOLFSSL_ENTER("wolfSSL_EVP_Cipher");
if (ctx == NULL || dst == NULL || src == NULL) {
WOLFSSL_MSG("Bad function argument");
return 0; /* failure */
}
if (ctx->cipherType == 0xff) {
WOLFSSL_MSG("no init");
return 0; /* failure */
}
switch (ctx->cipherType) {
#ifndef NO_AES
#ifdef HAVE_AES_CBC
case AES_128_CBC_TYPE :
case AES_192_CBC_TYPE :
case AES_256_CBC_TYPE :
WOLFSSL_MSG("AES CBC");
if (ctx->enc)
ret = wc_AesCbcEncrypt(&ctx->cipher.aes, dst, src, len);
else
ret = wc_AesCbcDecrypt(&ctx->cipher.aes, dst, src, len);
break;
#endif /* HAVE_AES_CBC */
#ifdef HAVE_AES_ECB
case AES_128_ECB_TYPE :
case AES_192_ECB_TYPE :
case AES_256_ECB_TYPE :
WOLFSSL_MSG("AES ECB");
if (ctx->enc)
ret = wc_AesEcbEncrypt(&ctx->cipher.aes, dst, src, len);
else
ret = wc_AesEcbDecrypt(&ctx->cipher.aes, dst, src, len);
break;
#endif
#ifdef WOLFSSL_AES_COUNTER
case AES_128_CTR_TYPE :
case AES_192_CTR_TYPE :
case AES_256_CTR_TYPE :
WOLFSSL_MSG("AES CTR");
wc_AesCtrEncrypt(&ctx->cipher.aes, dst, src, len);
break;
#endif /* WOLFSSL_AES_COUNTER */
#endif /* NO_AES */
#ifndef NO_DES3
case DES_CBC_TYPE :
if (ctx->enc)
wc_Des_CbcEncrypt(&ctx->cipher.des, dst, src, len);
else
wc_Des_CbcDecrypt(&ctx->cipher.des, dst, src, len);
break;
case DES_EDE3_CBC_TYPE :
if (ctx->enc)
ret = wc_Des3_CbcEncrypt(&ctx->cipher.des3, dst, src, len);
else
ret = wc_Des3_CbcDecrypt(&ctx->cipher.des3, dst, src, len);
break;
#ifdef WOLFSSL_DES_ECB
case DES_ECB_TYPE :
ret = wc_Des_EcbEncrypt(&ctx->cipher.des, dst, src, len);
break;
case DES_EDE3_ECB_TYPE :
ret = wc_Des3_EcbEncrypt(&ctx->cipher.des3, dst, src, len);
break;
#endif
#endif /* !NO_DES3 */
#ifndef NO_RC4
case ARC4_TYPE :
wc_Arc4Process(&ctx->cipher.arc4, dst, src, len);
break;
#endif
#ifdef HAVE_IDEA
case IDEA_CBC_TYPE :
if (ctx->enc)
wc_IdeaCbcEncrypt(&ctx->cipher.idea, dst, src, len);
else
wc_IdeaCbcDecrypt(&ctx->cipher.idea, dst, src, len);
break;
#endif
case NULL_CIPHER_TYPE :
XMEMCPY(dst, src, len);
break;
default: {
WOLFSSL_MSG("bad type");
return 0; /* failure */
}
}
if (ret != 0) {
WOLFSSL_MSG("wolfSSL_EVP_Cipher failure");
return 0; /* failure */
}
WOLFSSL_MSG("wolfSSL_EVP_Cipher success");
return WOLFSSL_SUCCESS; /* success */
}
#define WOLFSSL_EVP_INCLUDED
#include "wolfcrypt/src/evp.c"
/* store for external read of iv, WOLFSSL_SUCCESS on success */
int wolfSSL_StoreExternalIV(WOLFSSL_EVP_CIPHER_CTX* ctx)
{
WOLFSSL_ENTER("wolfSSL_StoreExternalIV");
if (ctx == NULL) {
WOLFSSL_MSG("Bad function argument");
return WOLFSSL_FATAL_ERROR;
}
switch (ctx->cipherType) {
#ifndef NO_AES
case AES_128_CBC_TYPE :
case AES_192_CBC_TYPE :
case AES_256_CBC_TYPE :
WOLFSSL_MSG("AES CBC");
XMEMCPY(ctx->iv, &ctx->cipher.aes.reg, AES_BLOCK_SIZE);
break;
#ifdef WOLFSSL_AES_COUNTER
case AES_128_CTR_TYPE :
case AES_192_CTR_TYPE :
case AES_256_CTR_TYPE :
WOLFSSL_MSG("AES CTR");
XMEMCPY(ctx->iv, &ctx->cipher.aes.reg, AES_BLOCK_SIZE);
break;
#endif /* WOLFSSL_AES_COUNTER */
#endif /* NO_AES */
#ifndef NO_DES3
case DES_CBC_TYPE :
WOLFSSL_MSG("DES CBC");
XMEMCPY(ctx->iv, &ctx->cipher.des.reg, DES_BLOCK_SIZE);
break;
case DES_EDE3_CBC_TYPE :
WOLFSSL_MSG("DES EDE3 CBC");
XMEMCPY(ctx->iv, &ctx->cipher.des3.reg, DES_BLOCK_SIZE);
break;
#endif
#ifdef HAVE_IDEA
case IDEA_CBC_TYPE :
WOLFSSL_MSG("IDEA CBC");
XMEMCPY(ctx->iv, &ctx->cipher.idea.reg, IDEA_BLOCK_SIZE);
break;
#endif
case ARC4_TYPE :
WOLFSSL_MSG("ARC4");
break;
case NULL_CIPHER_TYPE :
WOLFSSL_MSG("NULL");
break;
default: {
WOLFSSL_MSG("bad type");
return WOLFSSL_FATAL_ERROR;
}
}
return WOLFSSL_SUCCESS;
}
/* set internal IV from external, WOLFSSL_SUCCESS on success */
int wolfSSL_SetInternalIV(WOLFSSL_EVP_CIPHER_CTX* ctx)
{
WOLFSSL_ENTER("wolfSSL_SetInternalIV");
if (ctx == NULL) {
WOLFSSL_MSG("Bad function argument");
return WOLFSSL_FATAL_ERROR;
}
switch (ctx->cipherType) {
#ifndef NO_AES
case AES_128_CBC_TYPE :
case AES_192_CBC_TYPE :
case AES_256_CBC_TYPE :
WOLFSSL_MSG("AES CBC");
XMEMCPY(&ctx->cipher.aes.reg, ctx->iv, AES_BLOCK_SIZE);
break;
#ifdef WOLFSSL_AES_COUNTER
case AES_128_CTR_TYPE :
case AES_192_CTR_TYPE :
case AES_256_CTR_TYPE :
WOLFSSL_MSG("AES CTR");
XMEMCPY(&ctx->cipher.aes.reg, ctx->iv, AES_BLOCK_SIZE);
break;
#endif
#endif /* NO_AES */
#ifndef NO_DES3
case DES_CBC_TYPE :
WOLFSSL_MSG("DES CBC");
XMEMCPY(&ctx->cipher.des.reg, ctx->iv, DES_BLOCK_SIZE);
break;
case DES_EDE3_CBC_TYPE :
WOLFSSL_MSG("DES EDE3 CBC");
XMEMCPY(&ctx->cipher.des3.reg, ctx->iv, DES_BLOCK_SIZE);
break;
#endif
#ifdef HAVE_IDEA
case IDEA_CBC_TYPE :
WOLFSSL_MSG("IDEA CBC");
XMEMCPY(&ctx->cipher.idea.reg, ctx->iv, IDEA_BLOCK_SIZE);
break;
#endif
case ARC4_TYPE :
WOLFSSL_MSG("ARC4");
break;
case NULL_CIPHER_TYPE :
WOLFSSL_MSG("NULL");
break;
default: {
WOLFSSL_MSG("bad type");
return WOLFSSL_FATAL_ERROR;
}
}
return WOLFSSL_SUCCESS;
}
/* WOLFSSL_SUCCESS on ok */
int wolfSSL_EVP_DigestInit(WOLFSSL_EVP_MD_CTX* ctx,
const WOLFSSL_EVP_MD* type)
{
int ret = WOLFSSL_SUCCESS;
WOLFSSL_ENTER("EVP_DigestInit");
if (ctx == NULL || type == NULL) {
return BAD_FUNC_ARG;
}
#ifdef WOLFSSL_ASYNC_CRYPT
/* compile-time validation of ASYNC_CTX_SIZE */
typedef char async_test[WC_ASYNC_DEV_SIZE >= sizeof(WC_ASYNC_DEV) ?
1 : -1];
(void)sizeof(async_test);
#endif
if (XSTRNCMP(type, "SHA256", 6) == 0) {
ctx->macType = WC_SHA256;
ret = wolfSSL_SHA256_Init(&(ctx->hash.digest.sha256));
}
#ifdef WOLFSSL_SHA224
else if (XSTRNCMP(type, "SHA224", 6) == 0) {
ctx->macType = WC_SHA224;
ret = wolfSSL_SHA224_Init(&(ctx->hash.digest.sha224));
}
#endif
#ifdef WOLFSSL_SHA384
else if (XSTRNCMP(type, "SHA384", 6) == 0) {
ctx->macType = WC_SHA384;
ret = wolfSSL_SHA384_Init(&(ctx->hash.digest.sha384));
}
#endif
#ifdef WOLFSSL_SHA512
else if (XSTRNCMP(type, "SHA512", 6) == 0) {
ctx->macType = WC_SHA512;
ret = wolfSSL_SHA512_Init(&(ctx->hash.digest.sha512));
}
#endif
#ifndef NO_MD5
else if (XSTRNCMP(type, "MD5", 3) == 0) {
ctx->macType = WC_MD5;
ret = wolfSSL_MD5_Init(&(ctx->hash.digest.md5));
}
#endif
#ifndef NO_SHA
/* has to be last since would pick or 224, 256, 384, or 512 too */
else if (XSTRNCMP(type, "SHA", 3) == 0) {
ctx->macType = WC_SHA;
ret = wolfSSL_SHA_Init(&(ctx->hash.digest.sha));
}
#endif /* NO_SHA */
else
return BAD_FUNC_ARG;
return ret;
}
/* WOLFSSL_SUCCESS on ok */
int wolfSSL_EVP_DigestUpdate(WOLFSSL_EVP_MD_CTX* ctx, const void* data,
unsigned long sz)
{
WOLFSSL_ENTER("EVP_DigestUpdate");
switch (ctx->macType) {
#ifndef NO_MD5
case WC_MD5:
wolfSSL_MD5_Update((MD5_CTX*)&ctx->hash, data,
(unsigned long)sz);
break;
#endif
#ifndef NO_SHA
case WC_SHA:
wolfSSL_SHA_Update((SHA_CTX*)&ctx->hash, data,
(unsigned long)sz);
break;
#endif
#ifdef WOLFSSL_SHA224
case WC_SHA224:
wolfSSL_SHA224_Update((SHA224_CTX*)&ctx->hash, data,
(unsigned long)sz);
break;
#endif
#ifndef NO_SHA256
case WC_SHA256:
wolfSSL_SHA256_Update((SHA256_CTX*)&ctx->hash, data,
(unsigned long)sz);
break;
#endif /* !NO_SHA256 */
#ifdef WOLFSSL_SHA384
case WC_SHA384:
wolfSSL_SHA384_Update((SHA384_CTX*)&ctx->hash, data,
(unsigned long)sz);
break;
#endif
#ifdef WOLFSSL_SHA512
case WC_SHA512:
wolfSSL_SHA512_Update((SHA512_CTX*)&ctx->hash, data,
(unsigned long)sz);
break;
#endif /* WOLFSSL_SHA512 */
default:
return BAD_FUNC_ARG;
}
return WOLFSSL_SUCCESS;
}
/* WOLFSSL_SUCCESS on ok */
int wolfSSL_EVP_DigestFinal(WOLFSSL_EVP_MD_CTX* ctx, unsigned char* md,
unsigned int* s)
{
WOLFSSL_ENTER("EVP_DigestFinal");
switch (ctx->macType) {
#ifndef NO_MD5
case WC_MD5:
wolfSSL_MD5_Final(md, (MD5_CTX*)&ctx->hash);
if (s) *s = WC_MD5_DIGEST_SIZE;
break;
#endif
#ifndef NO_SHA
case WC_SHA:
wolfSSL_SHA_Final(md, (SHA_CTX*)&ctx->hash);
if (s) *s = WC_SHA_DIGEST_SIZE;
break;
#endif
#ifdef WOLFSSL_SHA224
case WC_SHA224:
wolfSSL_SHA224_Final(md, (SHA224_CTX*)&ctx->hash);
if (s) *s = WC_SHA224_DIGEST_SIZE;
break;
#endif
#ifndef NO_SHA256
case WC_SHA256:
wolfSSL_SHA256_Final(md, (SHA256_CTX*)&ctx->hash);
if (s) *s = WC_SHA256_DIGEST_SIZE;
break;
#endif /* !NO_SHA256 */
#ifdef WOLFSSL_SHA384
case WC_SHA384:
wolfSSL_SHA384_Final(md, (SHA384_CTX*)&ctx->hash);
if (s) *s = WC_SHA384_DIGEST_SIZE;
break;
#endif
#ifdef WOLFSSL_SHA512
case WC_SHA512:
wolfSSL_SHA512_Final(md, (SHA512_CTX*)&ctx->hash);
if (s) *s = WC_SHA512_DIGEST_SIZE;
break;
#endif /* WOLFSSL_SHA512 */
default:
return BAD_FUNC_ARG;
}
return WOLFSSL_SUCCESS;
}
/* WOLFSSL_SUCCESS on ok */
int wolfSSL_EVP_DigestFinal_ex(WOLFSSL_EVP_MD_CTX* ctx, unsigned char* md,
unsigned int* s)
{
WOLFSSL_ENTER("EVP_DigestFinal_ex");
return EVP_DigestFinal(ctx, md, s);
}
unsigned char* wolfSSL_HMAC(const WOLFSSL_EVP_MD* evp_md, const void* key,
int key_len, const unsigned char* d, int n,
unsigned char* md, unsigned int* md_len)
{
int type;
unsigned char* ret = NULL;
#ifdef WOLFSSL_SMALL_STACK
Hmac* hmac = NULL;
#else
Hmac hmac[1];
#endif
void* heap = NULL;
WOLFSSL_ENTER("HMAC");
if (!md)
return NULL; /* no static buffer support */
if (XSTRNCMP(evp_md, "MD5", 3) == 0)
type = WC_MD5;
else if (XSTRNCMP(evp_md, "SHA", 3) == 0)
type = WC_SHA;
else
return NULL;
#ifdef WOLFSSL_SMALL_STACK
hmac = (Hmac*)XMALLOC(sizeof(Hmac), heap, DYNAMIC_TYPE_HMAC);
if (hmac == NULL)
return NULL;
#endif
if (wc_HmacInit(hmac, heap, INVALID_DEVID) == 0) {
if (wc_HmacSetKey(hmac, type, (const byte*)key, key_len) == 0) {
if (wc_HmacUpdate(hmac, d, n) == 0) {
if (wc_HmacFinal(hmac, md) == 0) {
if (md_len)
*md_len = (type == WC_MD5) ? (int)WC_MD5_DIGEST_SIZE
: (int)WC_SHA_DIGEST_SIZE;
ret = md;
}
}
}
wc_HmacFree(hmac);
}
#ifdef WOLFSSL_SMALL_STACK
XFREE(hmac, heap, DYNAMIC_TYPE_HMAC);
#endif
return ret;
}
void wolfSSL_ERR_clear_error(void)
{
WOLFSSL_ENTER("wolfSSL_ERR_clear_error");
#if defined(WOLFSSL_NGINX) || defined(WOLFSSL_HAPROXY)
wc_ClearErrorNodes();
#endif
}
int wolfSSL_RAND_status(void)
{
return WOLFSSL_SUCCESS; /* wolfCrypt provides enough seed internally */
}
void wolfSSL_RAND_add(const void* add, int len, double entropy)
{
(void)add;
(void)len;
(void)entropy;
/* wolfSSL seeds/adds internally, use explicit RNG if you want
to take control */
}
#ifndef NO_DES3
/* WOLFSSL_SUCCESS on ok */
int wolfSSL_DES_key_sched(WOLFSSL_const_DES_cblock* key,
WOLFSSL_DES_key_schedule* schedule)
{
WOLFSSL_ENTER("DES_key_sched");
XMEMCPY(schedule, key, sizeof(const_DES_cblock));
return WOLFSSL_SUCCESS;
}
void wolfSSL_DES_cbc_encrypt(const unsigned char* input,
unsigned char* output, long length,
WOLFSSL_DES_key_schedule* schedule,
WOLFSSL_DES_cblock* ivec, int enc)
{
Des myDes;
WOLFSSL_ENTER("DES_cbc_encrypt");
/* OpenSSL compat, no ret */
wc_Des_SetKey(&myDes, (const byte*)schedule, (const byte*)ivec, !enc);
if (enc)
wc_Des_CbcEncrypt(&myDes, output, input, (word32)length);
else
wc_Des_CbcDecrypt(&myDes, output, input, (word32)length);
}
/* WOLFSSL_DES_key_schedule is a unsigned char array of size 8 */
void wolfSSL_DES_ede3_cbc_encrypt(const unsigned char* input,
unsigned char* output, long sz,
WOLFSSL_DES_key_schedule* ks1,
WOLFSSL_DES_key_schedule* ks2,
WOLFSSL_DES_key_schedule* ks3,
WOLFSSL_DES_cblock* ivec, int enc)
{
Des3 des;
byte key[24];/* EDE uses 24 size key */
WOLFSSL_ENTER("wolfSSL_DES_ede3_cbc_encrypt");
XMEMSET(key, 0, sizeof(key));
XMEMCPY(key, *ks1, DES_BLOCK_SIZE);
XMEMCPY(&key[DES_BLOCK_SIZE], *ks2, DES_BLOCK_SIZE);
XMEMCPY(&key[DES_BLOCK_SIZE * 2], *ks3, DES_BLOCK_SIZE);
if (enc) {
wc_Des3_SetKey(&des, key, (const byte*)ivec, DES_ENCRYPTION);
wc_Des3_CbcEncrypt(&des, output, input, (word32)sz);
}
else {
wc_Des3_SetKey(&des, key, (const byte*)ivec, DES_DECRYPTION);
wc_Des3_CbcDecrypt(&des, output, input, (word32)sz);
}
}
/* correctly sets ivec for next call */
void wolfSSL_DES_ncbc_encrypt(const unsigned char* input,
unsigned char* output, long length,
WOLFSSL_DES_key_schedule* schedule, WOLFSSL_DES_cblock* ivec,
int enc)
{
Des myDes;
WOLFSSL_ENTER("DES_ncbc_encrypt");
/* OpenSSL compat, no ret */
wc_Des_SetKey(&myDes, (const byte*)schedule, (const byte*)ivec, !enc);
if (enc)
wc_Des_CbcEncrypt(&myDes, output, input, (word32)length);
else
wc_Des_CbcDecrypt(&myDes, output, input, (word32)length);
XMEMCPY(ivec, output + length - sizeof(DES_cblock), sizeof(DES_cblock));
}
#endif /* NO_DES3 */
void wolfSSL_ERR_free_strings(void)
{
/* handled internally */
}
void wolfSSL_ERR_remove_state(unsigned long state)
{
/* TODO: GetErrors().Remove(); */
(void)state;
}
void wolfSSL_EVP_cleanup(void)
{
/* nothing to do here */
}
void wolfSSL_cleanup_all_ex_data(void)
{
/* nothing to do here */
}
int wolfSSL_clear(WOLFSSL* ssl)
{
if (ssl == NULL) {
return WOLFSSL_FAILURE;
}
ssl->options.isClosed = 0;
ssl->options.connReset = 0;
ssl->options.sentNotify = 0;
ssl->options.serverState = NULL_STATE;
ssl->options.clientState = NULL_STATE;
ssl->options.connectState = CONNECT_BEGIN;
ssl->options.acceptState = ACCEPT_BEGIN;
ssl->options.handShakeState = NULL_STATE;
ssl->options.handShakeDone = 0;
/* ssl->options.processReply = doProcessInit; */
ssl->keys.encryptionOn = 0;
XMEMSET(&ssl->msgsReceived, 0, sizeof(ssl->msgsReceived));
if (ssl->hsHashes != NULL) {
#ifndef NO_OLD_TLS
#ifndef NO_MD5
wc_InitMd5(&ssl->hsHashes->hashMd5);
#endif
#ifndef NO_SHA
if (wc_InitSha(&ssl->hsHashes->hashSha) != 0)
return WOLFSSL_FAILURE;
#endif
#endif
#ifndef NO_SHA256
if (wc_InitSha256(&ssl->hsHashes->hashSha256) != 0)
return WOLFSSL_FAILURE;
#endif
#ifdef WOLFSSL_SHA384
if (wc_InitSha384(&ssl->hsHashes->hashSha384) != 0)
return WOLFSSL_FAILURE;
#endif
#ifdef WOLFSSL_SHA512
if (wc_InitSha512(&ssl->hsHashes->hashSha512) != 0)
return WOLFSSL_FAILURE;
#endif
}
#ifdef KEEP_PEER_CERT
FreeX509(&ssl->peerCert);
InitX509(&ssl->peerCert, 0, ssl->heap);
#endif
return WOLFSSL_SUCCESS;
}
long wolfSSL_SSL_SESSION_set_timeout(WOLFSSL_SESSION* ses, long t)
{
word32 tmptime;
if (!ses || t < 0)
return BAD_FUNC_ARG;
tmptime = t & 0xFFFFFFFF;
ses->timeout = tmptime;
return WOLFSSL_SUCCESS;
}
long wolfSSL_CTX_set_mode(WOLFSSL_CTX* ctx, long mode)
{
/* WOLFSSL_MODE_ACCEPT_MOVING_WRITE_BUFFER is wolfSSL default mode */
WOLFSSL_ENTER("SSL_CTX_set_mode");
if (mode == SSL_MODE_ENABLE_PARTIAL_WRITE)
ctx->partialWrite = 1;
return mode;
}
long wolfSSL_SSL_get_mode(WOLFSSL* ssl)
{
/* TODO: */
(void)ssl;
return 0;
}
long wolfSSL_CTX_get_mode(WOLFSSL_CTX* ctx)
{
/* TODO: */
(void)ctx;
return 0;
}
void wolfSSL_CTX_set_default_read_ahead(WOLFSSL_CTX* ctx, int m)
{
/* TODO: maybe? */
(void)ctx;
(void)m;
}
int wolfSSL_CTX_set_session_id_context(WOLFSSL_CTX* ctx,
const unsigned char* sid_ctx,
unsigned int sid_ctx_len)
{
/* No application specific context needed for wolfSSL */
(void)ctx;
(void)sid_ctx;
(void)sid_ctx_len;
return WOLFSSL_SUCCESS;
}
long wolfSSL_CTX_sess_get_cache_size(WOLFSSL_CTX* ctx)
{
(void)ctx;
#ifndef NO_SESSION_CACHE
return SESSIONS_PER_ROW * SESSION_ROWS;
#else
return 0;
#endif
}
unsigned long wolfSSL_ERR_get_error_line_data(const char** file, int* line,
const char** data, int *flags)
{
/* Not implemented */
(void)file;
(void)line;
(void)data;
(void)flags;
return 0;
}
WOLFSSL_API pem_password_cb* wolfSSL_CTX_get_default_passwd_cb(
WOLFSSL_CTX *ctx)
{
if (ctx == NULL || ctx->passwd_cb == NULL) {
return NULL;
}
return ctx->passwd_cb;
}
WOLFSSL_API void *wolfSSL_CTX_get_default_passwd_cb_userdata(
WOLFSSL_CTX *ctx)
{
if (ctx == NULL) {
return NULL;
}
return ctx->userdata;
}
#endif /* OPENSSL_EXTRA */
#if defined(KEEP_PEER_CERT)
#ifdef SESSION_CERTS
/* Decode the X509 DER encoded certificate into a WOLFSSL_X509 object.
*
* x509 WOLFSSL_X509 object to decode into.
* in X509 DER data.
* len Length of the X509 DER data.
* returns the new certificate on success, otherwise NULL.
*/
static int DecodeToX509(WOLFSSL_X509* x509, const byte* in, int len)
{
int ret;
#ifdef WOLFSSL_SMALL_STACK
DecodedCert* cert = NULL;
#else
DecodedCert cert[1];
#endif
#ifdef WOLFSSL_SMALL_STACK
cert = (DecodedCert*)XMALLOC(sizeof(DecodedCert), NULL,
DYNAMIC_TYPE_DCERT);
if (cert == NULL)
return MEMORY_E;
#endif
/* Create a DecodedCert object and copy fields into WOLFSSL_X509 object.
*/
InitDecodedCert(cert, (byte*)in, len, NULL);
if ((ret = ParseCertRelative(cert, CERT_TYPE, 0, NULL)) == 0) {
InitX509(x509, 0, NULL);
ret = CopyDecodedToX509(x509, cert);
FreeDecodedCert(cert);
}
#ifdef WOLFSSL_SMALL_STACK
XFREE(cert, NULL, DYNAMIC_TYPE_DCERT);
#endif
return ret;
}
#endif
WOLFSSL_X509* wolfSSL_get_peer_certificate(WOLFSSL* ssl)
{
WOLFSSL_ENTER("SSL_get_peer_certificate");
if (ssl->peerCert.issuer.sz)
return &ssl->peerCert;
#ifdef SESSION_CERTS
else if (ssl->session.chain.count > 0) {
if (DecodeToX509(&ssl->peerCert, ssl->session.chain.certs[0].buffer,
ssl->session.chain.certs[0].length) == 0) {
return &ssl->peerCert;
}
}
#endif
return 0;
}
#endif /* KEEP_PEER_CERT */
#ifndef NO_CERTS
#if defined(KEEP_PEER_CERT) || defined(SESSION_CERTS) || defined(OPENSSL_EXTRA)
/* user externally called free X509, if dynamic go ahead with free, otherwise
* don't */
static void ExternalFreeX509(WOLFSSL_X509* x509)
{
WOLFSSL_ENTER("ExternalFreeX509");
if (x509) {
if (x509->dynamicMemory) {
FreeX509(x509);
XFREE(x509, x509->heap, DYNAMIC_TYPE_X509);
} else {
WOLFSSL_MSG("free called on non dynamic object, not freeing");
}
}
}
#endif /* KEEP_PEER_CERT || SESSION_CERTS || OPENSSSL_EXTRA */
#if defined(KEEP_PEER_CERT) || defined(SESSION_CERTS)
void wolfSSL_FreeX509(WOLFSSL_X509* x509)
{
WOLFSSL_ENTER("wolfSSL_FreeX509");
ExternalFreeX509(x509);
}
/* return the next, if any, altname from the peer cert */
char* wolfSSL_X509_get_next_altname(WOLFSSL_X509* cert)
{
char* ret = NULL;
WOLFSSL_ENTER("wolfSSL_X509_get_next_altname");
/* don't have any to work with */
if (cert == NULL || cert->altNames == NULL)
return NULL;
/* already went through them */
if (cert->altNamesNext == NULL)
return NULL;
ret = cert->altNamesNext->name;
cert->altNamesNext = cert->altNamesNext->next;
return ret;
}
WOLFSSL_X509_NAME* wolfSSL_X509_get_issuer_name(WOLFSSL_X509* cert)
{
WOLFSSL_ENTER("X509_get_issuer_name");
if (cert && cert->issuer.sz != 0)
return &cert->issuer;
return NULL;
}
WOLFSSL_X509_NAME* wolfSSL_X509_get_subject_name(WOLFSSL_X509* cert)
{
WOLFSSL_ENTER("wolfSSL_X509_get_subject_name");
if (cert && cert->subject.sz != 0)
return &cert->subject;
return NULL;
}
int wolfSSL_X509_get_isCA(WOLFSSL_X509* x509)
{
int isCA = 0;
WOLFSSL_ENTER("wolfSSL_X509_get_isCA");
if (x509 != NULL)
isCA = x509->isCa;
WOLFSSL_LEAVE("wolfSSL_X509_get_isCA", isCA);
return isCA;
}
#ifdef OPENSSL_EXTRA
int wolfSSL_X509_ext_isSet_by_NID(WOLFSSL_X509* x509, int nid)
{
int isSet = 0;
WOLFSSL_ENTER("wolfSSL_X509_ext_isSet_by_NID");
if (x509 != NULL) {
switch (nid) {
case BASIC_CA_OID: isSet = x509->basicConstSet; break;
case ALT_NAMES_OID: isSet = x509->subjAltNameSet; break;
case AUTH_KEY_OID: isSet = x509->authKeyIdSet; break;
case SUBJ_KEY_OID: isSet = x509->subjKeyIdSet; break;
case KEY_USAGE_OID: isSet = x509->keyUsageSet; break;
#ifdef WOLFSSL_SEP
case CERT_POLICY_OID: isSet = x509->certPolicySet; break;
#endif /* WOLFSSL_SEP */
}
}
WOLFSSL_LEAVE("wolfSSL_X509_ext_isSet_by_NID", isSet);
return isSet;
}
int wolfSSL_X509_ext_get_critical_by_NID(WOLFSSL_X509* x509, int nid)
{
int crit = 0;
WOLFSSL_ENTER("wolfSSL_X509_ext_get_critical_by_NID");
if (x509 != NULL) {
switch (nid) {
case BASIC_CA_OID: crit = x509->basicConstCrit; break;
case ALT_NAMES_OID: crit = x509->subjAltNameCrit; break;
case AUTH_KEY_OID: crit = x509->authKeyIdCrit; break;
case SUBJ_KEY_OID: crit = x509->subjKeyIdCrit; break;
case KEY_USAGE_OID: crit = x509->keyUsageCrit; break;
#ifdef WOLFSSL_SEP
case CERT_POLICY_OID: crit = x509->certPolicyCrit; break;
#endif /* WOLFSSL_SEP */
}
}
WOLFSSL_LEAVE("wolfSSL_X509_ext_get_critical_by_NID", crit);
return crit;
}
int wolfSSL_X509_get_isSet_pathLength(WOLFSSL_X509* x509)
{
int isSet = 0;
WOLFSSL_ENTER("wolfSSL_X509_get_isSet_pathLength");
if (x509 != NULL)
isSet = x509->basicConstPlSet;
WOLFSSL_LEAVE("wolfSSL_X509_get_isSet_pathLength", isSet);
return isSet;
}
word32 wolfSSL_X509_get_pathLength(WOLFSSL_X509* x509)
{
word32 pathLength = 0;
WOLFSSL_ENTER("wolfSSL_X509_get_pathLength");
if (x509 != NULL)
pathLength = x509->pathLength;
WOLFSSL_LEAVE("wolfSSL_X509_get_pathLength", pathLength);
return pathLength;
}
unsigned int wolfSSL_X509_get_keyUsage(WOLFSSL_X509* x509)
{
word16 usage = 0;
WOLFSSL_ENTER("wolfSSL_X509_get_keyUsage");
if (x509 != NULL)
usage = x509->keyUsage;
WOLFSSL_LEAVE("wolfSSL_X509_get_keyUsage", usage);
return usage;
}
byte* wolfSSL_X509_get_authorityKeyID(WOLFSSL_X509* x509,
byte* dst, int* dstLen)
{
byte *id = NULL;
int copySz = 0;
WOLFSSL_ENTER("wolfSSL_X509_get_authorityKeyID");
if (x509 != NULL) {
if (x509->authKeyIdSet) {
copySz = min(dstLen != NULL ? *dstLen : 0,
(int)x509->authKeyIdSz);
id = x509->authKeyId;
}
if (dst != NULL && dstLen != NULL && id != NULL && copySz > 0) {
XMEMCPY(dst, id, copySz);
id = dst;
*dstLen = copySz;
}
}
WOLFSSL_LEAVE("wolfSSL_X509_get_authorityKeyID", copySz);
return id;
}
byte* wolfSSL_X509_get_subjectKeyID(WOLFSSL_X509* x509,
byte* dst, int* dstLen)
{
byte *id = NULL;
int copySz = 0;
WOLFSSL_ENTER("wolfSSL_X509_get_subjectKeyID");
if (x509 != NULL) {
if (x509->subjKeyIdSet) {
copySz = min(dstLen != NULL ? *dstLen : 0,
(int)x509->subjKeyIdSz);
id = x509->subjKeyId;
}
if (dst != NULL && dstLen != NULL && id != NULL && copySz > 0) {
XMEMCPY(dst, id, copySz);
id = dst;
*dstLen = copySz;
}
}
WOLFSSL_LEAVE("wolfSSL_X509_get_subjectKeyID", copySz);
return id;
}
int wolfSSL_X509_NAME_entry_count(WOLFSSL_X509_NAME* name)
{
int count = 0;
WOLFSSL_ENTER("wolfSSL_X509_NAME_entry_count");
if (name != NULL)
count = name->fullName.entryCount;
WOLFSSL_LEAVE("wolfSSL_X509_NAME_entry_count", count);
return count;
}
/* Used to get a string from the WOLFSSL_X509_NAME structure that
* corresponds with the NID value passed in.
*
* name structure to get string from
* nid NID value to search for
* buf [out] buffer to hold results. If NULL then the buffer size minus the
* null char is returned.
* len size of "buf" passed in
*
* returns the length of string found, not including the NULL terminator.
* It's possible the function could return a negative value in the
* case that len is less than or equal to 0. A negative value is
* considered an error case.
*/
int wolfSSL_X509_NAME_get_text_by_NID(WOLFSSL_X509_NAME* name,
int nid, char* buf, int len)
{
char *text = NULL;
int textSz = 0;
WOLFSSL_ENTER("wolfSSL_X509_NAME_get_text_by_NID");
switch (nid) {
case ASN_COMMON_NAME:
text = name->fullName.fullName + name->fullName.cnIdx;
textSz = name->fullName.cnLen;
break;
case ASN_SUR_NAME:
text = name->fullName.fullName + name->fullName.snIdx;
textSz = name->fullName.snLen;
break;
case ASN_SERIAL_NUMBER:
text = name->fullName.fullName + name->fullName.serialIdx;
textSz = name->fullName.serialLen;
break;
case ASN_COUNTRY_NAME:
text = name->fullName.fullName + name->fullName.cIdx;
textSz = name->fullName.cLen;
break;
case ASN_LOCALITY_NAME:
text = name->fullName.fullName + name->fullName.lIdx;
textSz = name->fullName.lLen;
break;
case ASN_STATE_NAME:
text = name->fullName.fullName + name->fullName.stIdx;
textSz = name->fullName.stLen;
break;
case ASN_ORG_NAME:
text = name->fullName.fullName + name->fullName.oIdx;
textSz = name->fullName.oLen;
break;
case ASN_ORGUNIT_NAME:
text = name->fullName.fullName + name->fullName.ouIdx;
textSz = name->fullName.ouLen;
break;
default:
WOLFSSL_MSG("Unknown NID value");
return -1;
}
/* if buf is NULL return size of buffer needed (minus null char) */
if (buf == NULL) {
return textSz;
}
if (buf != NULL && text != NULL) {
textSz = min(textSz + 1, len); /* + 1 to account for null char */
if (textSz > 0) {
XMEMCPY(buf, text, textSz - 1);
buf[textSz - 1] = '\0';
}
}
WOLFSSL_LEAVE("wolfSSL_X509_NAME_get_text_by_NID", textSz);
return (textSz - 1); /* do not include null character in size */
}
int wolfSSL_X509_NAME_get_index_by_NID(WOLFSSL_X509_NAME* name,
int nid, int pos)
{
int ret = -1;
WOLFSSL_ENTER("wolfSSL_X509_NAME_get_index_by_NID");
if (name == NULL) {
return BAD_FUNC_ARG;
}
/* these index values are already stored in DecodedName
use those when available */
if (name->fullName.fullName && name->fullName.fullNameLen > 0) {
switch (nid) {
case ASN_COMMON_NAME:
if (pos != name->fullName.cnIdx)
ret = name->fullName.cnIdx;
break;
default:
WOLFSSL_MSG("NID not yet implemented");
break;
}
}
WOLFSSL_LEAVE("wolfSSL_X509_NAME_get_index_by_NID", ret);
(void)pos;
(void)nid;
return ret;
}
WOLFSSL_ASN1_STRING* wolfSSL_X509_NAME_ENTRY_get_data(
WOLFSSL_X509_NAME_ENTRY* in)
{
WOLFSSL_ENTER("wolfSSL_X509_NAME_ENTRY_get_data");
return in->value;
}
char* wolfSSL_ASN1_STRING_data(WOLFSSL_ASN1_STRING* asn)
{
WOLFSSL_ENTER("wolfSSL_ASN1_STRING_data");
if (asn) {
return asn->data;
}
else {
return NULL;
}
}
int wolfSSL_ASN1_STRING_length(WOLFSSL_ASN1_STRING* asn)
{
WOLFSSL_ENTER("wolfSSL_ASN1_STRING_length");
if (asn) {
return asn->length;
}
else {
return 0;
}
}
#endif
/* copy name into in buffer, at most sz bytes, if buffer is null will
malloc buffer, call responsible for freeing */
char* wolfSSL_X509_NAME_oneline(WOLFSSL_X509_NAME* name, char* in, int sz)
{
int copySz;
if (name == NULL) {
WOLFSSL_MSG("WOLFSSL_X509_NAME pointer was NULL");
return NULL;
}
copySz = min(sz, name->sz);
WOLFSSL_ENTER("wolfSSL_X509_NAME_oneline");
if (!name->sz) return in;
if (!in) {
#ifdef WOLFSSL_STATIC_MEMORY
WOLFSSL_MSG("Using static memory -- please pass in a buffer");
return NULL;
#else
in = (char*)XMALLOC(name->sz, NULL, DYNAMIC_TYPE_OPENSSL);
if (!in ) return in;
copySz = name->sz;
#endif
}
if (copySz <= 0)
return in;
XMEMCPY(in, name->name, copySz - 1);
in[copySz - 1] = 0;
return in;
}
int wolfSSL_X509_get_signature_type(WOLFSSL_X509* x509)
{
int type = 0;
WOLFSSL_ENTER("wolfSSL_X509_get_signature_type");
if (x509 != NULL)
type = x509->sigOID;
return type;
}
int wolfSSL_X509_get_signature(WOLFSSL_X509* x509,
unsigned char* buf, int* bufSz)
{
WOLFSSL_ENTER("wolfSSL_X509_get_signature");
if (x509 == NULL || bufSz == NULL || *bufSz < (int)x509->sig.length)
return WOLFSSL_FATAL_ERROR;
if (buf != NULL)
XMEMCPY(buf, x509->sig.buffer, x509->sig.length);
*bufSz = x509->sig.length;
return WOLFSSL_SUCCESS;
}
/* write X509 serial number in unsigned binary to buffer
buffer needs to be at least EXTERNAL_SERIAL_SIZE (32) for all cases
return WOLFSSL_SUCCESS on success */
int wolfSSL_X509_get_serial_number(WOLFSSL_X509* x509,
byte* in, int* inOutSz)
{
WOLFSSL_ENTER("wolfSSL_X509_get_serial_number");
if (x509 == NULL || in == NULL ||
inOutSz == NULL || *inOutSz < x509->serialSz)
return BAD_FUNC_ARG;
XMEMCPY(in, x509->serial, x509->serialSz);
*inOutSz = x509->serialSz;
return WOLFSSL_SUCCESS;
}
const byte* wolfSSL_X509_get_der(WOLFSSL_X509* x509, int* outSz)
{
WOLFSSL_ENTER("wolfSSL_X509_get_der");
if (x509 == NULL || outSz == NULL)
return NULL;
*outSz = (int)x509->derCert->length;
return x509->derCert->buffer;
}
int wolfSSL_X509_version(WOLFSSL_X509* x509)
{
WOLFSSL_ENTER("wolfSSL_X509_version");
if (x509 == NULL)
return 0;
return x509->version;
}
const byte* wolfSSL_X509_notBefore(WOLFSSL_X509* x509)
{
WOLFSSL_ENTER("wolfSSL_X509_notBefore");
if (x509 == NULL)
return NULL;
return x509->notBefore;
}
const byte* wolfSSL_X509_notAfter(WOLFSSL_X509* x509)
{
WOLFSSL_ENTER("wolfSSL_X509_notAfter");
if (x509 == NULL)
return NULL;
return x509->notAfter;
}
#ifdef WOLFSSL_SEP
/* copy oid into in buffer, at most *inOutSz bytes, if buffer is null will
malloc buffer, call responsible for freeing. Actual size returned in
*inOutSz. Requires inOutSz be non-null */
byte* wolfSSL_X509_get_device_type(WOLFSSL_X509* x509, byte* in, int *inOutSz)
{
int copySz;
WOLFSSL_ENTER("wolfSSL_X509_get_dev_type");
if (inOutSz == NULL) return NULL;
if (!x509->deviceTypeSz) return in;
copySz = min(*inOutSz, x509->deviceTypeSz);
if (!in) {
#ifdef WOLFSSL_STATIC_MEMORY
WOLFSSL_MSG("Using static memory -- please pass in a buffer");
return NULL;
#else
in = (byte*)XMALLOC(x509->deviceTypeSz, 0, DYNAMIC_TYPE_OPENSSL);
if (!in) return in;
copySz = x509->deviceTypeSz;
#endif
}
XMEMCPY(in, x509->deviceType, copySz);
*inOutSz = copySz;
return in;
}
byte* wolfSSL_X509_get_hw_type(WOLFSSL_X509* x509, byte* in, int* inOutSz)
{
int copySz;
WOLFSSL_ENTER("wolfSSL_X509_get_hw_type");
if (inOutSz == NULL) return NULL;
if (!x509->hwTypeSz) return in;
copySz = min(*inOutSz, x509->hwTypeSz);
if (!in) {
#ifdef WOLFSSL_STATIC_MEMORY
WOLFSSL_MSG("Using static memory -- please pass in a buffer");
return NULL;
#else
in = (byte*)XMALLOC(x509->hwTypeSz, 0, DYNAMIC_TYPE_OPENSSL);
if (!in) return in;
copySz = x509->hwTypeSz;
#endif
}
XMEMCPY(in, x509->hwType, copySz);
*inOutSz = copySz;
return in;
}
byte* wolfSSL_X509_get_hw_serial_number(WOLFSSL_X509* x509,byte* in,
int* inOutSz)
{
int copySz;
WOLFSSL_ENTER("wolfSSL_X509_get_hw_serial_number");
if (inOutSz == NULL) return NULL;
if (!x509->hwTypeSz) return in;
copySz = min(*inOutSz, x509->hwSerialNumSz);
if (!in) {
#ifdef WOLFSSL_STATIC_MEMORY
WOLFSSL_MSG("Using static memory -- please pass in a buffer");
return NULL;
#else
in = (byte*)XMALLOC(x509->hwSerialNumSz, 0, DYNAMIC_TYPE_OPENSSL);
if (!in) return in;
copySz = x509->hwSerialNumSz;
#endif
}
XMEMCPY(in, x509->hwSerialNum, copySz);
*inOutSz = copySz;
return in;
}
#endif /* WOLFSSL_SEP */
/* require OPENSSL_EXTRA since wolfSSL_X509_free is wrapped by OPENSSL_EXTRA */
#if !defined(NO_CERTS) && defined(OPENSSL_EXTRA)
/* return 1 on success 0 on fail */
int wolfSSL_sk_X509_push(WOLF_STACK_OF(WOLFSSL_X509_NAME)* sk, WOLFSSL_X509* x509)
{
WOLFSSL_STACK* node;
if (sk == NULL || x509 == NULL) {
return WOLFSSL_FAILURE;
}
/* no previous values in stack */
if (sk->data.x509 == NULL) {
sk->data.x509 = x509;
sk->num += 1;
return WOLFSSL_SUCCESS;
}
/* stack already has value(s) create a new node and add more */
node = (WOLFSSL_STACK*)XMALLOC(sizeof(WOLFSSL_STACK), NULL,
DYNAMIC_TYPE_X509);
if (node == NULL) {
WOLFSSL_MSG("Memory error");
return WOLFSSL_FAILURE;
}
XMEMSET(node, 0, sizeof(WOLFSSL_STACK));
/* push new x509 onto head of stack */
node->data.x509 = sk->data.x509;
node->next = sk->next;
sk->next = node;
sk->data.x509 = x509;
sk->num += 1;
return WOLFSSL_SUCCESS;
}
WOLFSSL_X509* wolfSSL_sk_X509_pop(WOLF_STACK_OF(WOLFSSL_X509_NAME)* sk) {
WOLFSSL_STACK* node;
WOLFSSL_X509* x509;
if (sk == NULL) {
return NULL;
}
node = sk->next;
x509 = sk->data.x509;
if (node != NULL) { /* update sk and remove node from stack */
sk->data.x509 = node->data.x509;
sk->next = node->next;
XFREE(node, NULL, DYNAMIC_TYPE_X509);
}
else { /* last x509 in stack */
sk->data.x509 = NULL;
}
if (sk->num > 0) {
sk->num -= 1;
}
return x509;
}
/* free structure for x509 stack */
void wolfSSL_sk_X509_free(WOLF_STACK_OF(WOLFSSL_X509_NAME)* sk) {
WOLFSSL_STACK* node;
if (sk == NULL) {
return;
}
/* parse through stack freeing each node */
node = sk->next;
while (sk->num > 1) {
WOLFSSL_STACK* tmp = node;
node = node->next;
wolfSSL_X509_free(tmp->data.x509);
XFREE(tmp, NULL, DYNAMIC_TYPE_X509);
sk->num -= 1;
}
/* free head of stack */
if (sk->num == 1) {
wolfSSL_X509_free(sk->data.x509);
}
XFREE(sk, NULL, DYNAMIC_TYPE_X509);
}
#endif /* NO_CERTS && OPENSSL_EXTRA */
WOLFSSL_X509* wolfSSL_X509_d2i(WOLFSSL_X509** x509, const byte* in, int len)
{
WOLFSSL_X509 *newX509 = NULL;
WOLFSSL_ENTER("wolfSSL_X509_d2i");
if (in != NULL && len != 0) {
#ifdef WOLFSSL_SMALL_STACK
DecodedCert* cert = NULL;
#else
DecodedCert cert[1];
#endif
#ifdef WOLFSSL_SMALL_STACK
cert = (DecodedCert*)XMALLOC(sizeof(DecodedCert), NULL,
DYNAMIC_TYPE_DCERT);
if (cert == NULL)
return NULL;
#endif
InitDecodedCert(cert, (byte*)in, len, NULL);
if (ParseCertRelative(cert, CERT_TYPE, 0, NULL) == 0) {
newX509 = (WOLFSSL_X509*)XMALLOC(sizeof(WOLFSSL_X509), NULL,
DYNAMIC_TYPE_X509);
if (newX509 != NULL) {
InitX509(newX509, 1, NULL);
if (CopyDecodedToX509(newX509, cert) != 0) {
XFREE(newX509, NULL, DYNAMIC_TYPE_X509);
newX509 = NULL;
}
}
}
FreeDecodedCert(cert);
#ifdef WOLFSSL_SMALL_STACK
XFREE(cert, NULL, DYNAMIC_TYPE_DCERT);
#endif
}
if (x509 != NULL)
*x509 = newX509;
return newX509;
}
#ifndef NO_FILESYSTEM
#ifndef NO_STDIO_FILESYSTEM
WOLFSSL_X509* wolfSSL_X509_d2i_fp(WOLFSSL_X509** x509, XFILE file)
{
WOLFSSL_X509* newX509 = NULL;
WOLFSSL_ENTER("wolfSSL_X509_d2i_fp");
if (file != XBADFILE) {
byte* fileBuffer = NULL;
long sz = 0;
XFSEEK(file, 0, XSEEK_END);
sz = XFTELL(file);
XREWIND(file);
if (sz < 0) {
WOLFSSL_MSG("Bad tell on FILE");
return NULL;
}
fileBuffer = (byte*)XMALLOC(sz, NULL, DYNAMIC_TYPE_FILE);
if (fileBuffer != NULL) {
int ret = (int)XFREAD(fileBuffer, 1, sz, file);
if (ret == sz) {
newX509 = wolfSSL_X509_d2i(NULL, fileBuffer, (int)sz);
}
XFREE(fileBuffer, NULL, DYNAMIC_TYPE_FILE);
}
}
if (x509 != NULL)
*x509 = newX509;
return newX509;
}
#endif /* NO_STDIO_FILESYSTEM */
WOLFSSL_X509* wolfSSL_X509_load_certificate_file(const char* fname, int format)
{
#ifdef WOLFSSL_SMALL_STACK
byte staticBuffer[1]; /* force heap usage */
#else
byte staticBuffer[FILE_BUFFER_SIZE];
#endif
byte* fileBuffer = staticBuffer;
int dynamic = 0;
int ret;
long sz = 0;
XFILE file;
WOLFSSL_X509* x509 = NULL;
/* Check the inputs */
if ((fname == NULL) ||
(format != WOLFSSL_FILETYPE_ASN1 && format != WOLFSSL_FILETYPE_PEM))
return NULL;
file = XFOPEN(fname, "rb");
if (file == XBADFILE)
return NULL;
XFSEEK(file, 0, XSEEK_END);
sz = XFTELL(file);
XREWIND(file);
if (sz > (long)sizeof(staticBuffer)) {
fileBuffer = (byte*)XMALLOC(sz, NULL, DYNAMIC_TYPE_FILE);
if (fileBuffer == NULL) {
XFCLOSE(file);
return NULL;
}
dynamic = 1;
}
else if (sz < 0) {
XFCLOSE(file);
return NULL;
}
ret = (int)XFREAD(fileBuffer, 1, sz, file);
if (ret != sz) {
XFCLOSE(file);
if (dynamic)
XFREE(fileBuffer, NULL, DYNAMIC_TYPE_FILE);
return NULL;
}
XFCLOSE(file);
x509 = wolfSSL_X509_load_certificate_buffer(fileBuffer, (int)sz, format);
if (dynamic)
XFREE(fileBuffer, NULL, DYNAMIC_TYPE_FILE);
return x509;
}
#endif /* NO_FILESYSTEM */
WOLFSSL_X509* wolfSSL_X509_load_certificate_buffer(
const unsigned char* buf, int sz, int format)
{
int ret;
WOLFSSL_X509* x509 = NULL;
DerBuffer* der = NULL;
WOLFSSL_ENTER("wolfSSL_X509_load_certificate_ex");
if (format == WOLFSSL_FILETYPE_PEM) {
int ecc = 0;
#ifdef WOLFSSL_SMALL_STACK
EncryptedInfo* info = NULL;
#else
EncryptedInfo info[1];
#endif
#ifdef WOLFSSL_SMALL_STACK
info = (EncryptedInfo*)XMALLOC(sizeof(EncryptedInfo), NULL,
DYNAMIC_TYPE_ENCRYPTEDINFO);
if (info == NULL) {
return NULL;
}
#endif
info->set = 0;
info->ctx = NULL;
info->consumed = 0;
if (PemToDer(buf, sz, CERT_TYPE, &der, NULL, info, &ecc) != 0) {
FreeDer(&der);
}
#ifdef WOLFSSL_SMALL_STACK
XFREE(info, NULL, DYNAMIC_TYPE_ENCRYPTEDINFO);
#endif
}
else {
ret = AllocDer(&der, (word32)sz, CERT_TYPE, NULL);
if (ret == 0) {
XMEMCPY(der->buffer, buf, sz);
}
}
/* At this point we want `der` to have the certificate in DER format */
/* ready to be decoded. */
if (der != NULL && der->buffer != NULL) {
#ifdef WOLFSSL_SMALL_STACK
DecodedCert* cert = NULL;
#else
DecodedCert cert[1];
#endif
#ifdef WOLFSSL_SMALL_STACK
cert = (DecodedCert*)XMALLOC(sizeof(DecodedCert), NULL,
DYNAMIC_TYPE_DCERT);
if (cert != NULL)
#endif
{
InitDecodedCert(cert, der->buffer, der->length, NULL);
if (ParseCertRelative(cert, CERT_TYPE, 0, NULL) == 0) {
x509 = (WOLFSSL_X509*)XMALLOC(sizeof(WOLFSSL_X509), NULL,
DYNAMIC_TYPE_X509);
if (x509 != NULL) {
InitX509(x509, 1, NULL);
if (CopyDecodedToX509(x509, cert) != 0) {
XFREE(x509, NULL, DYNAMIC_TYPE_X509);
x509 = NULL;
}
}
}
FreeDecodedCert(cert);
#ifdef WOLFSSL_SMALL_STACK
XFREE(cert, NULL, DYNAMIC_TYPE_DCERT);
#endif
}
FreeDer(&der);
}
return x509;
}
#endif /* KEEP_PEER_CERT || SESSION_CERTS */
/* OPENSSL_EXTRA is needed for wolfSSL_X509_d21 function
KEEP_OUR_CERT is to insure ability for returning ssl certificate */
#if defined(OPENSSL_EXTRA) && defined(KEEP_OUR_CERT)
WOLFSSL_X509* wolfSSL_get_certificate(WOLFSSL* ssl)
{
if (ssl == NULL) {
return NULL;
}
if (ssl->buffers.weOwnCert) {
if (ssl->ourCert == NULL) {
if (ssl->buffers.certificate == NULL) {
WOLFSSL_MSG("Certificate buffer not set!");
return NULL;
}
ssl->ourCert = wolfSSL_X509_d2i(NULL,
ssl->buffers.certificate->buffer,
ssl->buffers.certificate->length);
}
return ssl->ourCert;
}
else { /* if cert not owned get parent ctx cert or return null */
if (ssl->ctx) {
if (ssl->ctx->ourCert == NULL) {
if (ssl->ctx->certificate == NULL) {
WOLFSSL_MSG("Ctx Certificate buffer not set!");
return NULL;
}
ssl->ctx->ourCert = wolfSSL_X509_d2i(NULL,
ssl->ctx->certificate->buffer,
ssl->ctx->certificate->length);
ssl->ctx->ownOurCert = 1;
}
return ssl->ctx->ourCert;
}
}
return NULL;
}
#endif /* OPENSSL_EXTRA && KEEP_OUR_CERT */
#endif /* NO_CERTS */
#ifdef OPENSSL_EXTRA
/* return 1 on success 0 on fail */
int wolfSSL_sk_ASN1_OBJECT_push(WOLF_STACK_OF(WOLFSSL_ASN1_OBJEXT)* sk,
WOLFSSL_ASN1_OBJECT* obj)
{
WOLFSSL_STACK* node;
if (sk == NULL || obj == NULL) {
return WOLFSSL_FAILURE;
}
/* no previous values in stack */
if (sk->data.obj == NULL) {
sk->data.obj = obj;
sk->num += 1;
return WOLFSSL_SUCCESS;
}
/* stack already has value(s) create a new node and add more */
node = (WOLFSSL_STACK*)XMALLOC(sizeof(WOLFSSL_STACK), NULL,
DYNAMIC_TYPE_ASN1);
if (node == NULL) {
WOLFSSL_MSG("Memory error");
return WOLFSSL_FAILURE;
}
XMEMSET(node, 0, sizeof(WOLFSSL_STACK));
/* push new obj onto head of stack */
node->data.obj = sk->data.obj;
node->next = sk->next;
sk->next = node;
sk->data.obj = obj;
sk->num += 1;
return WOLFSSL_SUCCESS;
}
WOLFSSL_ASN1_OBJECT* wolfSSL_sk_ASN1_OBJCET_pop(
WOLF_STACK_OF(WOLFSSL_ASN1_OBJECT)* sk)
{
WOLFSSL_STACK* node;
WOLFSSL_ASN1_OBJECT* obj;
if (sk == NULL) {
return NULL;
}
node = sk->next;
obj = sk->data.obj;
if (node != NULL) { /* update sk and remove node from stack */
sk->data.obj = node->data.obj;
sk->next = node->next;
XFREE(node, NULL, DYNAMIC_TYPE_ASN1);
}
else { /* last obj in stack */
sk->data.obj = NULL;
}
if (sk->num > 0) {
sk->num -= 1;
}
return obj;
}
#ifndef NO_ASN
WOLFSSL_ASN1_OBJECT* wolfSSL_ASN1_OBJECT_new(void)
{
WOLFSSL_ASN1_OBJECT* obj;
obj = (WOLFSSL_ASN1_OBJECT*)XMALLOC(sizeof(WOLFSSL_ASN1_OBJECT), NULL,
DYNAMIC_TYPE_ASN1);
if (obj == NULL) {
return NULL;
}
XMEMSET(obj, 0, sizeof(WOLFSSL_ASN1_OBJECT));
return obj;
}
void wolfSSL_ASN1_OBJECT_free(WOLFSSL_ASN1_OBJECT* obj)
{
if (obj == NULL) {
return;
}
if (obj->dynamic == 1) {
if (obj->obj != NULL) {
WOLFSSL_MSG("Freeing ASN1 OBJECT data");
XFREE(obj->obj, obj->heap, DYNAMIC_TYPE_ASN1);
}
}
XFREE(obj, NULL, DYNAMIC_TYPE_ASN1);
}
/* free structure for x509 stack */
void wolfSSL_sk_ASN1_OBJECT_free(WOLF_STACK_OF(WOLFSSL_ASN1_OBJECT)* sk)
{
WOLFSSL_STACK* node;
if (sk == NULL) {
return;
}
/* parse through stack freeing each node */
node = sk->next;
while (sk->num > 1) {
WOLFSSL_STACK* tmp = node;
node = node->next;
wolfSSL_ASN1_OBJECT_free(tmp->data.obj);
XFREE(tmp, NULL, DYNAMIC_TYPE_ASN1);
sk->num -= 1;
}
/* free head of stack */
if (sk->num == 1) {
wolfSSL_ASN1_OBJECT_free(sk->data.obj);
}
XFREE(sk, NULL, DYNAMIC_TYPE_ASN1);
}
int wolfSSL_ASN1_STRING_to_UTF8(unsigned char **out, WOLFSSL_ASN1_STRING *in)
{
/*
ASN1_STRING_to_UTF8() converts the string in to UTF8 format,
the converted data is allocated in a buffer in *out.
The length of out is returned or a negative error code.
The buffer *out should be free using OPENSSL_free().
*/
(void)out;
(void)in;
WOLFSSL_STUB("ASN1_STRING_to_UTF8");
return -1;
}
#endif /* NO_ASN */
int wolfSSL_set_session_id_context(WOLFSSL* ssl, const unsigned char* id,
unsigned int len)
{
(void)ssl;
(void)id;
(void)len;
return 0;
}
void wolfSSL_set_connect_state(WOLFSSL* ssl)
{
word16 haveRSA = 1;
word16 havePSK = 0;
if (ssl == NULL) {
WOLFSSL_MSG("WOLFSSL struct pointer passed in was null");
return;
}
#ifndef NO_DH
/* client creates its own DH parameters on handshake */
if (ssl->buffers.serverDH_P.buffer && ssl->buffers.weOwnDH) {
XFREE(ssl->buffers.serverDH_P.buffer, ssl->heap,
DYNAMIC_TYPE_PUBLIC_KEY);
}
ssl->buffers.serverDH_P.buffer = NULL;
if (ssl->buffers.serverDH_G.buffer && ssl->buffers.weOwnDH) {
XFREE(ssl->buffers.serverDH_G.buffer, ssl->heap,
DYNAMIC_TYPE_PUBLIC_KEY);
}
ssl->buffers.serverDH_G.buffer = NULL;
#endif
if (ssl->options.side == WOLFSSL_SERVER_END) {
#ifdef NO_RSA
haveRSA = 0;
#endif
#ifndef NO_PSK
havePSK = ssl->options.havePSK;
#endif
InitSuites(ssl->suites, ssl->version, ssl->buffers.keySz, haveRSA,
havePSK, ssl->options.haveDH, ssl->options.haveNTRU,
ssl->options.haveECDSAsig, ssl->options.haveECC,
ssl->options.haveStaticECC, ssl->options.side);
}
ssl->options.side = WOLFSSL_CLIENT_END;
}
#endif
int wolfSSL_get_shutdown(const WOLFSSL* ssl)
{
WOLFSSL_ENTER("wolfSSL_get_shutdown");
/* in OpenSSL, WOLFSSL_SENT_SHUTDOWN = 1, when closeNotifySent *
* WOLFSSL_RECEIVED_SHUTDOWN = 2, from close notify or fatal err */
return ((ssl->options.closeNotify||ssl->options.connReset) << 1)
| (ssl->options.sentNotify);
}
int wolfSSL_session_reused(WOLFSSL* ssl)
{
return ssl->options.resuming;
}
#ifdef OPENSSL_EXTRA
void wolfSSL_SESSION_free(WOLFSSL_SESSION* session)
{
if (session == NULL)
return;
#ifdef HAVE_EXT_CACHE
if (session->isAlloced) {
#ifdef HAVE_SESSION_TICKET
if (session->isDynamic)
XFREE(session->ticket, NULL, DYNAMIC_TYPE_SESSION_TICK);
#endif
XFREE(session, NULL, DYNAMIC_TYPE_OPENSSL);
}
#else
/* No need to free since cache is static */
(void)session;
#endif
}
#endif
const char* wolfSSL_get_version(WOLFSSL* ssl)
{
WOLFSSL_ENTER("SSL_get_version");
if (ssl->version.major == SSLv3_MAJOR) {
switch (ssl->version.minor) {
case SSLv3_MINOR :
return "SSLv3";
case TLSv1_MINOR :
return "TLSv1";
case TLSv1_1_MINOR :
return "TLSv1.1";
case TLSv1_2_MINOR :
return "TLSv1.2";
case TLSv1_3_MINOR :
return "TLSv1.3";
default:
return "unknown";
}
}
else if (ssl->version.major == DTLS_MAJOR) {
switch (ssl->version.minor) {
case DTLS_MINOR :
return "DTLS";
case DTLSv1_2_MINOR :
return "DTLSv1.2";
default:
return "unknown";
}
}
return "unknown";
}
/* current library version */
const char* wolfSSL_lib_version(void)
{
return LIBWOLFSSL_VERSION_STRING;
}
/* current library version in hex */
word32 wolfSSL_lib_version_hex(void)
{
return LIBWOLFSSL_VERSION_HEX;
}
int wolfSSL_get_current_cipher_suite(WOLFSSL* ssl)
{
WOLFSSL_ENTER("SSL_get_current_cipher_suite");
if (ssl)
return (ssl->options.cipherSuite0 << 8) | ssl->options.cipherSuite;
return 0;
}
WOLFSSL_CIPHER* wolfSSL_get_current_cipher(WOLFSSL* ssl)
{
WOLFSSL_ENTER("SSL_get_current_cipher");
if (ssl)
return &ssl->cipher;
else
return NULL;
}
const char* wolfSSL_CIPHER_get_name(const WOLFSSL_CIPHER* cipher)
{
WOLFSSL_ENTER("SSL_CIPHER_get_name");
if (cipher == NULL || cipher->ssl == NULL) {
return NULL;
}
return wolfSSL_get_cipher_name_from_suite(cipher->ssl->options.cipherSuite,
cipher->ssl->options.cipherSuite0);
}
const char* wolfSSL_SESSION_CIPHER_get_name(WOLFSSL_SESSION* session)
{
if (session == NULL) {
return NULL;
}
#ifdef SESSION_CERTS
return wolfSSL_get_cipher_name_from_suite(session->cipherSuite,
session->cipherSuite0);
#else
return NULL;
#endif
}
const char* wolfSSL_get_cipher(WOLFSSL* ssl)
{
WOLFSSL_ENTER("wolfSSL_get_cipher");
return wolfSSL_CIPHER_get_name(wolfSSL_get_current_cipher(ssl));
}
/* gets cipher name in the format DHE-RSA-... rather then TLS_DHE... */
const char* wolfSSL_get_cipher_name(WOLFSSL* ssl)
{
/* get access to cipher_name_idx in internal.c */
return wolfSSL_get_cipher_name_internal(ssl);
}
#ifdef HAVE_ECC
/* Return the name of the curve used for key exchange as a printable string.
*
* ssl The SSL/TLS object.
* returns NULL if ECDH was not used, otherwise the name as a string.
*/
const char* wolfSSL_get_curve_name(WOLFSSL* ssl)
{
if (ssl == NULL)
return NULL;
if (!IsAtLeastTLSv1_3(ssl->version) && ssl->specs.kea != ecdhe_psk_kea &&
ssl->specs.kea != ecc_diffie_hellman_kea)
return NULL;
if (ssl->ecdhCurveOID == 0)
return NULL;
if (ssl->ecdhCurveOID == ECC_X25519_OID)
return "X25519";
return wc_ecc_get_name(wc_ecc_get_oid(ssl->ecdhCurveOID, NULL, NULL));
}
#endif
#ifdef OPENSSL_EXTRA
char* wolfSSL_CIPHER_description(const WOLFSSL_CIPHER* cipher, char* in,
int len)
{
char *ret = in;
const char *keaStr, *authStr, *encStr, *macStr;
size_t strLen;
if (cipher == NULL || in == NULL)
return NULL;
switch (cipher->ssl->specs.kea) {
case no_kea:
keaStr = "None";
break;
#ifndef NO_RSA
case rsa_kea:
keaStr = "RSA";
break;
#endif
#ifndef NO_DH
case diffie_hellman_kea:
keaStr = "DHE";
break;
#endif
case fortezza_kea:
keaStr = "FZ";
break;
#ifndef NO_PSK
case psk_kea:
keaStr = "PSK";
break;
#ifndef NO_DH
case dhe_psk_kea:
keaStr = "DHEPSK";
break;
#endif
#ifdef HAVE_ECC
case ecdhe_psk_kea:
keaStr = "ECDHEPSK";
break;
#endif
#endif
#ifdef HAVE_NTRU
case ntru_kea:
keaStr = "NTRU";
break;
#endif
#ifdef HAVE_ECC
case ecc_diffie_hellman_kea:
keaStr = "ECDHE";
break;
case ecc_static_diffie_hellman_kea:
keaStr = "ECDH";
break;
#endif
default:
keaStr = "unknown";
break;
}
switch (cipher->ssl->specs.sig_algo) {
case anonymous_sa_algo:
authStr = "None";
break;
#ifndef NO_RSA
case rsa_sa_algo:
authStr = "RSA";
break;
#endif
#ifndef NO_DSA
case dsa_sa_algo:
authStr = "DSA";
break;
#endif
#ifdef HAVE_ECC
case ecc_dsa_sa_algo:
authStr = "ECDSA";
break;
#endif
default:
authStr = "unknown";
break;
}
switch (cipher->ssl->specs.bulk_cipher_algorithm) {
case wolfssl_cipher_null:
encStr = "None";
break;
#ifndef NO_RC4
case wolfssl_rc4:
encStr = "RC4(128)";
break;
#endif
#ifndef NO_DES3
case wolfssl_triple_des:
encStr = "3DES(168)";
break;
#endif
#ifdef HAVE_IDEA
case wolfssl_idea:
encStr = "IDEA(128)";
break;
#endif
#ifndef NO_AES
case wolfssl_aes:
if (cipher->ssl->specs.key_size == 128)
encStr = "AES(128)";
else if (cipher->ssl->specs.key_size == 256)
encStr = "AES(256)";
else
encStr = "AES(?)";
break;
#ifdef HAVE_AESGCM
case wolfssl_aes_gcm:
if (cipher->ssl->specs.key_size == 128)
encStr = "AESGCM(128)";
else if (cipher->ssl->specs.key_size == 256)
encStr = "AESGCM(256)";
else
encStr = "AESGCM(?)";
break;
#endif
#ifdef HAVE_AESCCM
case wolfssl_aes_ccm:
if (cipher->ssl->specs.key_size == 128)
encStr = "AESCCM(128)";
else if (cipher->ssl->specs.key_size == 256)
encStr = "AESCCM(256)";
else
encStr = "AESCCM(?)";
break;
#endif
#endif
#ifdef HAVE_CHACHA
case wolfssl_chacha:
encStr = "CHACHA20/POLY1305(256)";
break;
#endif
#ifdef HAVE_CAMELLIA
case wolfssl_camellia:
if (cipher->ssl->specs.key_size == 128)
encStr = "Camellia(128)";
else if (cipher->ssl->specs.key_size == 256)
encStr = "Camellia(256)";
else
encStr = "Camellia(?)";
break;
#endif
#if defined(HAVE_HC128) && !defined(NO_HC128)
case wolfssl_hc128:
encStr = "HC128(128)";
break;
#endif
#if defined(HAVE_RABBIT) && !defined(NO_RABBIT)
case wolfssl_rabbit:
encStr = "RABBIT(128)";
break;
#endif
default:
encStr = "unknown";
break;
}
switch (cipher->ssl->specs.mac_algorithm) {
case no_mac:
macStr = "None";
break;
#ifndef NO_MD5
case md5_mac:
macStr = "MD5";
break;
#endif
#ifndef NO_SHA
case sha_mac:
macStr = "SHA1";
break;
#endif
#ifdef HAVE_SHA224
case sha224_mac:
macStr = "SHA224";
break;
#endif
#ifndef NO_SHA256
case sha256_mac:
macStr = "SHA256";
break;
#endif
#ifdef HAVE_SHA384
case sha384_mac:
macStr = "SHA384";
break;
#endif
#ifdef HAVE_SHA512
case sha512_mac:
macStr = "SHA512";
break;
#endif
#ifdef HAVE_BLAKE2
case blake2b_mac:
macStr = "BLAKE2b";
break;
#endif
default:
macStr = "unknown";
break;
}
/* Build up the string by copying onto the end. */
XSTRNCPY(in, wolfSSL_CIPHER_get_name(cipher), len);
in[len-1] = '\0'; strLen = XSTRLEN(in); len -= (int)strLen; in += strLen;
XSTRNCPY(in, " ", len);
in[len-1] = '\0'; strLen = XSTRLEN(in); len -= (int)strLen; in += strLen;
XSTRNCPY(in, wolfSSL_get_version(cipher->ssl), len);
in[len-1] = '\0'; strLen = XSTRLEN(in); len -= (int)strLen; in += strLen;
XSTRNCPY(in, " Kx=", len);
in[len-1] = '\0'; strLen = XSTRLEN(in); len -= (int)strLen; in += strLen;
XSTRNCPY(in, keaStr, len);
in[len-1] = '\0'; strLen = XSTRLEN(in); len -= (int)strLen; in += strLen;
XSTRNCPY(in, " Au=", len);
in[len-1] = '\0'; strLen = XSTRLEN(in); len -= (int)strLen; in += strLen;
XSTRNCPY(in, authStr, len);
in[len-1] = '\0'; strLen = XSTRLEN(in); len -= (int)strLen; in += strLen;
XSTRNCPY(in, " Enc=", len);
in[len-1] = '\0'; strLen = XSTRLEN(in); len -= (int)strLen; in += strLen;
XSTRNCPY(in, encStr, len);
in[len-1] = '\0'; strLen = XSTRLEN(in); len -= (int)strLen; in += strLen;
XSTRNCPY(in, " Mac=", len);
in[len-1] = '\0'; strLen = XSTRLEN(in); len -= (int)strLen; in += strLen;
XSTRNCPY(in, macStr, len);
in[len-1] = '\0';
return ret;
}
#ifndef NO_SESSION_CACHE
WOLFSSL_SESSION* wolfSSL_get1_session(WOLFSSL* ssl)
{
if (ssl == NULL) {
return NULL;
}
/* sessions are stored statically, no need for reference count */
return wolfSSL_get_session(ssl);
}
#endif /* NO_SESSION_CACHE */
#ifndef NO_CERTS
void wolfSSL_X509_free(WOLFSSL_X509* x509)
{
WOLFSSL_ENTER("wolfSSL_X509_free");
ExternalFreeX509(x509);
}
#endif /* NO_CERTS */
int wolfSSL_OCSP_parse_url(char* url, char** host, char** port, char** path,
int* ssl)
{
(void)url;
(void)host;
(void)port;
(void)path;
(void)ssl;
return 0;
}
WOLFSSL_METHOD* wolfSSLv2_client_method(void)
{
return 0;
}
WOLFSSL_METHOD* wolfSSLv2_server_method(void)
{
return 0;
}
#ifndef NO_MD4
void wolfSSL_MD4_Init(WOLFSSL_MD4_CTX* md4)
{
/* make sure we have a big enough buffer */
typedef char ok[sizeof(md4->buffer) >= sizeof(Md4) ? 1 : -1];
(void) sizeof(ok);
WOLFSSL_ENTER("MD4_Init");
wc_InitMd4((Md4*)md4);
}
void wolfSSL_MD4_Update(WOLFSSL_MD4_CTX* md4, const void* data,
unsigned long len)
{
WOLFSSL_ENTER("MD4_Update");
wc_Md4Update((Md4*)md4, (const byte*)data, (word32)len);
}
void wolfSSL_MD4_Final(unsigned char* digest, WOLFSSL_MD4_CTX* md4)
{
WOLFSSL_ENTER("MD4_Final");
wc_Md4Final((Md4*)md4, digest);
}
#endif /* NO_MD4 */
WOLFSSL_BIO* wolfSSL_BIO_pop(WOLFSSL_BIO* top)
{
(void)top;
return 0;
}
int wolfSSL_BIO_pending(WOLFSSL_BIO* bio)
{
if (bio && bio->type == BIO_MEMORY)
return bio->memLen;
return 0;
}
WOLFSSL_BIO_METHOD* wolfSSL_BIO_s_mem(void)
{
static WOLFSSL_BIO_METHOD meth;
WOLFSSL_ENTER("BIO_s_mem");
meth.type = BIO_MEMORY;
return &meth;
}
WOLFSSL_BIO_METHOD* wolfSSL_BIO_f_base64(void)
{
return 0;
}
void wolfSSL_BIO_set_flags(WOLFSSL_BIO* bio, int flags)
{
(void)bio;
(void)flags;
}
void wolfSSL_RAND_screen(void)
{
}
const char* wolfSSL_RAND_file_name(char* fname, unsigned long len)
{
(void)fname;
(void)len;
return 0;
}
int wolfSSL_RAND_write_file(const char* fname)
{
(void)fname;
return 0;
}
int wolfSSL_RAND_load_file(const char* fname, long len)
{
(void)fname;
/* wolfCrypt provides enough entropy internally or will report error */
if (len == -1)
return 1024;
else
return (int)len;
}
int wolfSSL_RAND_egd(const char* path)
{
(void)path;
return 0;
}
WOLFSSL_COMP_METHOD* wolfSSL_COMP_zlib(void)
{
return 0;
}
WOLFSSL_COMP_METHOD* wolfSSL_COMP_rle(void)
{
return 0;
}
int wolfSSL_COMP_add_compression_method(int method, void* data)
{
(void)method;
(void)data;
return 0;
}
void wolfSSL_set_dynlock_create_callback(WOLFSSL_dynlock_value* (*f)(
const char*, int))
{
(void)f;
}
void wolfSSL_set_dynlock_lock_callback(
void (*f)(int, WOLFSSL_dynlock_value*, const char*, int))
{
(void)f;
}
void wolfSSL_set_dynlock_destroy_callback(
void (*f)(WOLFSSL_dynlock_value*, const char*, int))
{
(void)f;
}
const char* wolfSSL_X509_verify_cert_error_string(long err)
{
return wolfSSL_ERR_reason_error_string(err);
}
int wolfSSL_X509_LOOKUP_add_dir(WOLFSSL_X509_LOOKUP* lookup, const char* dir,
long len)
{
(void)lookup;
(void)dir;
(void)len;
return 0;
}
int wolfSSL_X509_LOOKUP_load_file(WOLFSSL_X509_LOOKUP* lookup,
const char* file, long type)
{
#ifndef NO_FILESYSTEM
int ret = WOLFSSL_FAILURE;
XFILE fp;
long sz;
byte* pem = NULL;
byte* curr = NULL;
byte* prev = NULL;
WOLFSSL_X509* x509;
if (type != X509_FILETYPE_PEM)
return BAD_FUNC_ARG;
fp = XFOPEN(file, "r");
if (fp == NULL)
return BAD_FUNC_ARG;
XFSEEK(fp, 0, XSEEK_END);
sz = XFTELL(fp);
XREWIND(fp);
if (sz <= 0)
goto end;
pem = (byte*)XMALLOC(sz, 0, DYNAMIC_TYPE_PEM);
if (pem == NULL) {
ret = MEMORY_ERROR;
goto end;
}
/* Read in file which may be CRLs or certificates. */
if (XFREAD(pem, (size_t)sz, 1, fp) != 1)
goto end;
prev = curr = pem;
do {
if (XSTRNSTR((char*)curr, BEGIN_X509_CRL, (unsigned int)sz) != NULL) {
#ifdef HAVE_CRL
WOLFSSL_CERT_MANAGER* cm = lookup->store->cm;
if (cm->crl == NULL) {
if (wolfSSL_CertManagerEnableCRL(cm, 0) != WOLFSSL_SUCCESS) {
WOLFSSL_MSG("Enable CRL failed");
goto end;
}
}
ret = BufferLoadCRL(cm->crl, curr, sz, WOLFSSL_FILETYPE_PEM, 1);
if (ret != WOLFSSL_SUCCESS)
goto end;
#endif
curr = (byte*)XSTRNSTR((char*)curr, END_X509_CRL, (unsigned int)sz);
}
else if (XSTRNSTR((char*)curr, BEGIN_CERT, (unsigned int)sz) != NULL) {
x509 = wolfSSL_X509_load_certificate_buffer(curr, (int)sz,
WOLFSSL_FILETYPE_PEM);
if (x509 == NULL)
goto end;
ret = wolfSSL_X509_STORE_add_cert(lookup->store, x509);
wolfSSL_X509_free(x509);
if (ret != WOLFSSL_SUCCESS)
goto end;
curr = (byte*)XSTRNSTR((char*)curr, END_CERT, (unsigned int)sz);
}
else
goto end;
if (curr == NULL)
goto end;
curr++;
sz -= (long)(curr - prev);
prev = curr;
}
while (ret == WOLFSSL_SUCCESS);
end:
if (pem != NULL)
XFREE(pem, 0, DYNAMIC_TYPE_PEM);
XFCLOSE(fp);
return ret;
#else
(void)lookup;
(void)file;
(void)type;
return WOLFSSL_FAILURE;
#endif
}
WOLFSSL_X509_LOOKUP_METHOD* wolfSSL_X509_LOOKUP_hash_dir(void)
{
/* Method implementation in functions. */
static WOLFSSL_X509_LOOKUP_METHOD meth = { 1 };
return &meth;
}
WOLFSSL_X509_LOOKUP_METHOD* wolfSSL_X509_LOOKUP_file(void)
{
/* Method implementation in functions. */
static WOLFSSL_X509_LOOKUP_METHOD meth = { 0 };
return &meth;
}
WOLFSSL_X509_LOOKUP* wolfSSL_X509_STORE_add_lookup(WOLFSSL_X509_STORE* store,
WOLFSSL_X509_LOOKUP_METHOD* m)
{
/* Method is a dummy value and is not needed. */
(void)m;
/* Make sure the lookup has a back reference to the store. */
store->lookup.store = store;
return &store->lookup;
}
#ifndef NO_CERTS
WOLFSSL_X509* wolfSSL_d2i_X509_bio(WOLFSSL_BIO* bio, WOLFSSL_X509** x509)
{
WOLFSSL_X509* localX509 = NULL;
unsigned char* mem = NULL;
int ret;
word32 size;
WOLFSSL_ENTER("wolfSSL_d2i_X509_bio");
if (bio == NULL) {
WOLFSSL_MSG("Bad Function Argument bio is NULL");
return NULL;
}
ret = wolfSSL_BIO_get_mem_data(bio, &mem);
if (mem == NULL || ret <= 0) {
WOLFSSL_MSG("Failed to get data from bio struct");
return NULL;
}
size = ret;
localX509 = wolfSSL_X509_d2i(NULL, mem, size);
if (localX509 == NULL) {
return NULL;
}
if (x509 != NULL) {
*x509 = localX509;
}
return localX509;
}
#if !defined(NO_ASN) && !defined(NO_PWDBASED)
WC_PKCS12* wolfSSL_d2i_PKCS12_bio(WOLFSSL_BIO* bio, WC_PKCS12** pkcs12)
{
WC_PKCS12* localPkcs12 = NULL;
unsigned char* mem = NULL;
int ret;
word32 size;
WOLFSSL_ENTER("wolfSSL_d2i_PKCS12_bio");
if (bio == NULL) {
WOLFSSL_MSG("Bad Function Argument bio is NULL");
return NULL;
}
localPkcs12 = wc_PKCS12_new();
if (localPkcs12 == NULL) {
WOLFSSL_MSG("Memory error");
return NULL;
}
if (pkcs12 != NULL) {
*pkcs12 = localPkcs12;
}
ret = wolfSSL_BIO_get_mem_data(bio, &mem);
if (mem == NULL || ret <= 0) {
WOLFSSL_MSG("Failed to get data from bio struct");
wc_PKCS12_free(localPkcs12);
if (pkcs12 != NULL) {
*pkcs12 = NULL;
}
return NULL;
}
size = ret;
ret = wc_d2i_PKCS12(mem, size, localPkcs12);
if (ret < 0) {
WOLFSSL_MSG("Failed to get PKCS12 sequence");
wc_PKCS12_free(localPkcs12);
if (pkcs12 != NULL) {
*pkcs12 = NULL;
}
return NULL;
}
return localPkcs12;
}
/* return 1 on success, 0 on failure */
int wolfSSL_PKCS12_parse(WC_PKCS12* pkcs12, const char* psw,
WOLFSSL_EVP_PKEY** pkey, WOLFSSL_X509** cert, WOLF_STACK_OF(WOLFSSL_X509)** ca)
{
DecodedCert DeCert;
void* heap = NULL;
int ret;
byte* certData = NULL;
word32 certDataSz;
byte* pk = NULL;
word32 pkSz;
WC_DerCertList* certList = NULL;
WOLFSSL_ENTER("wolfSSL_PKCS12_parse");
if (pkcs12 == NULL || psw == NULL || pkey == NULL || cert == NULL) {
WOLFSSL_MSG("Bad argument value");
return 0;
}
heap = wc_PKCS12_GetHeap(pkcs12);
*pkey = NULL;
*cert = NULL;
if (ca == NULL) {
ret = wc_PKCS12_parse(pkcs12, psw, &pk, &pkSz, &certData, &certDataSz,
NULL);
}
else {
*ca = NULL;
ret = wc_PKCS12_parse(pkcs12, psw, &pk, &pkSz, &certData, &certDataSz,
&certList);
}
if (ret < 0) {
WOLFSSL_LEAVE("wolfSSL_PKCS12_parse", ret);
return 0;
}
/* Decode cert and place in X509 stack struct */
if (certList != NULL) {
WC_DerCertList* current = certList;
*ca = (WOLF_STACK_OF(WOLFSSL_X509)*)XMALLOC(sizeof(WOLF_STACK_OF(WOLFSSL_X509)),
heap, DYNAMIC_TYPE_X509);
if (*ca == NULL) {
if (pk != NULL) {
XFREE(pk, heap, DYNAMIC_TYPE_PUBLIC_KEY);
}
if (certData != NULL) {
XFREE(*cert, heap, DYNAMIC_TYPE_PKCS); *cert = NULL;
}
/* Free up WC_DerCertList and move on */
while (current != NULL) {
WC_DerCertList* next = current->next;
XFREE(current->buffer, heap, DYNAMIC_TYPE_PKCS);
XFREE(current, heap, DYNAMIC_TYPE_PKCS);
current = next;
}
return 0;
}
XMEMSET(*ca, 0, sizeof(WOLF_STACK_OF(WOLFSSL_X509)));
/* add list of DER certs as X509's to stack */
while (current != NULL) {
WC_DerCertList* toFree = current;
WOLFSSL_X509* x509;
x509 = (WOLFSSL_X509*)XMALLOC(sizeof(WOLFSSL_X509), heap,
DYNAMIC_TYPE_X509);
InitX509(x509, 1, heap);
InitDecodedCert(&DeCert, current->buffer, current->bufferSz, heap);
if (ParseCertRelative(&DeCert, CERT_TYPE, NO_VERIFY, NULL) != 0) {
WOLFSSL_MSG("Issue with parsing certificate");
FreeDecodedCert(&DeCert);
wolfSSL_X509_free(x509);
}
else {
if ((ret = CopyDecodedToX509(x509, &DeCert)) != 0) {
WOLFSSL_MSG("Failed to copy decoded cert");
FreeDecodedCert(&DeCert);
wolfSSL_X509_free(x509);
wolfSSL_sk_X509_free(*ca); *ca = NULL;
if (pk != NULL) {
XFREE(pk, heap, DYNAMIC_TYPE_PUBLIC_KEY);
}
if (certData != NULL) {
XFREE(certData, heap, DYNAMIC_TYPE_PKCS);
}
/* Free up WC_DerCertList */
while (current != NULL) {
WC_DerCertList* next = current->next;
XFREE(current->buffer, heap, DYNAMIC_TYPE_PKCS);
XFREE(current, heap, DYNAMIC_TYPE_PKCS);
current = next;
}
return 0;
}
FreeDecodedCert(&DeCert);
if (wolfSSL_sk_X509_push(*ca, x509) != 1) {
WOLFSSL_MSG("Failed to push x509 onto stack");
wolfSSL_X509_free(x509);
wolfSSL_sk_X509_free(*ca); *ca = NULL;
if (pk != NULL) {
XFREE(pk, heap, DYNAMIC_TYPE_PUBLIC_KEY);
}
if (certData != NULL) {
XFREE(certData, heap, DYNAMIC_TYPE_PKCS);
}
/* Free up WC_DerCertList */
while (current != NULL) {
WC_DerCertList* next = current->next;
XFREE(current->buffer, heap, DYNAMIC_TYPE_PKCS);
XFREE(current, heap, DYNAMIC_TYPE_PKCS);
current = next;
}
return 0;
}
}
current = current->next;
XFREE(toFree->buffer, heap, DYNAMIC_TYPE_PKCS);
XFREE(toFree, heap, DYNAMIC_TYPE_PKCS);
}
}
/* Decode cert and place in X509 struct */
if (certData != NULL) {
*cert = (WOLFSSL_X509*)XMALLOC(sizeof(WOLFSSL_X509), heap,
DYNAMIC_TYPE_X509);
if (*cert == NULL) {
if (pk != NULL) {
XFREE(pk, heap, DYNAMIC_TYPE_PUBLIC_KEY);
}
if (ca != NULL) {
wolfSSL_sk_X509_free(*ca); *ca = NULL;
}
XFREE(certData, heap, DYNAMIC_TYPE_PKCS);
return 0;
}
InitX509(*cert, 1, heap);
InitDecodedCert(&DeCert, certData, certDataSz, heap);
if (ParseCertRelative(&DeCert, CERT_TYPE, NO_VERIFY, NULL) != 0) {
WOLFSSL_MSG("Issue with parsing certificate");
}
if ((ret = CopyDecodedToX509(*cert, &DeCert)) != 0) {
WOLFSSL_MSG("Failed to copy decoded cert");
FreeDecodedCert(&DeCert);
if (pk != NULL) {
XFREE(pk, heap, DYNAMIC_TYPE_PUBLIC_KEY);
}
if (ca != NULL) {
wolfSSL_sk_X509_free(*ca); *ca = NULL;
}
wolfSSL_X509_free(*cert); *cert = NULL;
return 0;
}
FreeDecodedCert(&DeCert);
XFREE(certData, heap, DYNAMIC_TYPE_PKCS);
}
/* get key type */
ret = BAD_STATE_E;
if (pk != NULL) { /* decode key if present */
/* using dynamic type public key because of wolfSSL_EVP_PKEY_free */
*pkey = (WOLFSSL_EVP_PKEY*)XMALLOC(sizeof(WOLFSSL_EVP_PKEY),
heap, DYNAMIC_TYPE_PUBLIC_KEY);
if (*pkey == NULL) {
wolfSSL_X509_free(*cert); *cert = NULL;
if (ca != NULL) {
wolfSSL_sk_X509_free(*ca); *ca = NULL;
}
XFREE(pk, heap, DYNAMIC_TYPE_PUBLIC_KEY);
return 0;
}
#ifndef NO_RSA
{
word32 keyIdx = 0;
RsaKey key;
if (wc_InitRsaKey(&key, heap) != 0) {
ret = BAD_STATE_E;
}
else {
if ((ret = wc_RsaPrivateKeyDecode(pk, &keyIdx, &key, pkSz))
== 0) {
(*pkey)->type = RSAk;
WOLFSSL_MSG("Found PKCS12 RSA key");
}
wc_FreeRsaKey(&key);
}
}
#endif /* NO_RSA */
#ifdef HAVE_ECC
{
word32 keyIdx = 0;
ecc_key key;
if (ret != 0) { /* if is in fail state check if ECC key */
if (wc_ecc_init(&key) != 0) {
wolfSSL_X509_free(*cert); *cert = NULL;
if (ca != NULL) {
wolfSSL_sk_X509_free(*ca); *ca = NULL;
}
XFREE(*pkey, heap, DYNAMIC_TYPE_PUBLIC_KEY); *pkey = NULL;
XFREE(pk, heap, DYNAMIC_TYPE_PUBLIC_KEY);
return 0;
}
if ((ret = wc_EccPrivateKeyDecode(pk, &keyIdx, &key, pkSz))
!= 0) {
wolfSSL_X509_free(*cert); *cert = NULL;
if (ca != NULL) {
wolfSSL_sk_X509_free(*ca); *ca = NULL;
}
XFREE(*pkey, heap, DYNAMIC_TYPE_PUBLIC_KEY); *pkey = NULL;
XFREE(pk, heap, DYNAMIC_TYPE_PUBLIC_KEY);
WOLFSSL_MSG("Bad PKCS12 key format");
return 0;
}
(*pkey)->type = ECDSAk;
(*pkey)->pkey_curve = key.dp->oidSum;
wc_ecc_free(&key);
WOLFSSL_MSG("Found PKCS12 ECC key");
}
}
#else
if (ret != 0) { /* if is in fail state and no ECC then fail */
wolfSSL_X509_free(*cert); *cert = NULL;
if (ca != NULL) {
wolfSSL_sk_X509_free(*ca); *ca = NULL;
}
XFREE(*pkey, heap, DYNAMIC_TYPE_PUBLIC_KEY); *pkey = NULL;
XFREE(pk, heap, DYNAMIC_TYPE_PUBLIC_KEY);
WOLFSSL_MSG("Bad PKCS12 key format");
return 0;
}
#endif /* HAVE_ECC */
(*pkey)->save_type = 0;
(*pkey)->pkey_sz = pkSz;
(*pkey)->pkey.ptr = (char*)pk;
}
(void)ret;
(void)ca;
return 1;
}
#endif /* !defined(NO_ASN) && !defined(NO_PWDBASED) */
/* no-op function. Was initially used for adding encryption algorithms available
* for PKCS12 */
void wolfSSL_PKCS12_PBE_add(void)
{
WOLFSSL_ENTER("wolfSSL_PKCS12_PBE_add");
}
WOLFSSL_STACK* wolfSSL_X509_STORE_CTX_get_chain(WOLFSSL_X509_STORE_CTX* ctx)
{
if (ctx == NULL) {
return NULL;
}
return ctx->chain;
}
int wolfSSL_X509_STORE_add_cert(WOLFSSL_X509_STORE* store, WOLFSSL_X509* x509)
{
int result = WOLFSSL_FATAL_ERROR;
WOLFSSL_ENTER("wolfSSL_X509_STORE_add_cert");
if (store != NULL && store->cm != NULL && x509 != NULL
&& x509->derCert != NULL) {
DerBuffer* derCert = NULL;
result = AllocDer(&derCert, x509->derCert->length,
x509->derCert->type, NULL);
if (result == 0) {
/* AddCA() frees the buffer. */
XMEMCPY(derCert->buffer,
x509->derCert->buffer, x509->derCert->length);
result = AddCA(store->cm, &derCert, WOLFSSL_USER_CA, 1);
}
}
WOLFSSL_LEAVE("wolfSSL_X509_STORE_add_cert", result);
if (result != WOLFSSL_SUCCESS) {
result = WOLFSSL_FATAL_ERROR;
}
return result;
}
WOLFSSL_X509_STORE* wolfSSL_X509_STORE_new(void)
{
WOLFSSL_X509_STORE* store = NULL;
store = (WOLFSSL_X509_STORE*)XMALLOC(sizeof(WOLFSSL_X509_STORE), NULL,
DYNAMIC_TYPE_X509_STORE);
if (store != NULL) {
store->cm = wolfSSL_CertManagerNew();
if (store->cm == NULL) {
XFREE(store, NULL, DYNAMIC_TYPE_X509_STORE);
store = NULL;
}
else
store->isDynamic = 1;
}
return store;
}
void wolfSSL_X509_STORE_free(WOLFSSL_X509_STORE* store)
{
if (store != NULL && store->isDynamic) {
if (store->cm != NULL)
wolfSSL_CertManagerFree(store->cm);
XFREE(store, NULL, DYNAMIC_TYPE_X509_STORE);
}
}
int wolfSSL_X509_STORE_set_flags(WOLFSSL_X509_STORE* store, unsigned long flag)
{
int ret = WOLFSSL_SUCCESS;
WOLFSSL_ENTER("wolfSSL_X509_STORE_set_flags");
if ((flag & WOLFSSL_CRL_CHECKALL) || (flag & WOLFSSL_CRL_CHECK)) {
ret = wolfSSL_CertManagerEnableCRL(store->cm, (int)flag);
}
(void)store;
(void)flag;
return ret;
}
int wolfSSL_X509_STORE_set_default_paths(WOLFSSL_X509_STORE* store)
{
(void)store;
return WOLFSSL_SUCCESS;
}
int wolfSSL_X509_STORE_get_by_subject(WOLFSSL_X509_STORE_CTX* ctx, int idx,
WOLFSSL_X509_NAME* name, WOLFSSL_X509_OBJECT* obj)
{
(void)ctx;
(void)idx;
(void)name;
(void)obj;
return 0;
}
WOLFSSL_X509_STORE_CTX* wolfSSL_X509_STORE_CTX_new(void)
{
WOLFSSL_X509_STORE_CTX* ctx = (WOLFSSL_X509_STORE_CTX*)XMALLOC(
sizeof(WOLFSSL_X509_STORE_CTX), NULL,
DYNAMIC_TYPE_X509_CTX);
if (ctx != NULL)
wolfSSL_X509_STORE_CTX_init(ctx, NULL, NULL, NULL);
return ctx;
}
int wolfSSL_X509_STORE_CTX_init(WOLFSSL_X509_STORE_CTX* ctx,
WOLFSSL_X509_STORE* store, WOLFSSL_X509* x509, WOLF_STACK_OF(WOLFSSL_X509)* sk)
{
(void)sk;
WOLFSSL_ENTER("wolfSSL_X509_STORE_CTX_init");
if (ctx != NULL) {
ctx->store = store;
ctx->current_cert = x509;
ctx->chain = sk;
ctx->domain = NULL;
#ifdef HAVE_EX_DATA
ctx->ex_data = NULL;
#endif
ctx->userCtx = NULL;
ctx->error = 0;
ctx->error_depth = 0;
ctx->discardSessionCerts = 0;
#ifdef OPENSSL_EXTRA
ctx->param = (WOLFSSL_X509_VERIFY_PARAM*)XMALLOC(
sizeof(WOLFSSL_X509_VERIFY_PARAM),
NULL,DYNAMIC_TYPE_OPENSSL);
if (ctx->param == NULL){
WOLFSSL_MSG("wolfSSL_X509_STORE_CTX_init failed");
return SSL_FATAL_ERROR;
}
#endif
return SSL_SUCCESS;
}
return WOLFSSL_FATAL_ERROR;
}
void wolfSSL_X509_STORE_CTX_free(WOLFSSL_X509_STORE_CTX* ctx)
{
if (ctx != NULL) {
if (ctx->store != NULL)
wolfSSL_X509_STORE_free(ctx->store);
if (ctx->current_cert != NULL)
wolfSSL_FreeX509(ctx->current_cert);
if (ctx->chain != NULL)
wolfSSL_sk_X509_free(ctx->chain);
#ifdef OPENSSL_EXTRA
if (ctx->param != NULL){
XFREE(ctx->param,NULL,DYNAMIC_TYPE_OPENSSL);
}
#endif
XFREE(ctx, NULL, DYNAMIC_TYPE_X509_CTX);
}
}
void wolfSSL_X509_STORE_CTX_cleanup(WOLFSSL_X509_STORE_CTX* ctx)
{
(void)ctx;
}
int wolfSSL_X509_verify_cert(WOLFSSL_X509_STORE_CTX* ctx)
{
if (ctx != NULL && ctx->store != NULL && ctx->store->cm != NULL
&& ctx->current_cert != NULL && ctx->current_cert->derCert != NULL) {
return wolfSSL_CertManagerVerifyBuffer(ctx->store->cm,
ctx->current_cert->derCert->buffer,
ctx->current_cert->derCert->length,
WOLFSSL_FILETYPE_ASN1);
}
return WOLFSSL_FATAL_ERROR;
}
#endif /* NO_CERTS */
WOLFSSL_ASN1_TIME* wolfSSL_X509_CRL_get_lastUpdate(WOLFSSL_X509_CRL* crl)
{
(void)crl;
return 0;
}
WOLFSSL_ASN1_TIME* wolfSSL_X509_CRL_get_nextUpdate(WOLFSSL_X509_CRL* crl)
{
(void)crl;
return 0;
}
WOLFSSL_EVP_PKEY* wolfSSL_X509_get_pubkey(WOLFSSL_X509* x509)
{
WOLFSSL_EVP_PKEY* key = NULL;
if (x509 != NULL) {
key = (WOLFSSL_EVP_PKEY*)XMALLOC(
sizeof(WOLFSSL_EVP_PKEY), x509->heap,
DYNAMIC_TYPE_PUBLIC_KEY);
if (key != NULL) {
key->type = x509->pubKeyOID;
key->save_type = 0;
key->pkey.ptr = (char*)XMALLOC(
x509->pubKey.length, x509->heap,
DYNAMIC_TYPE_PUBLIC_KEY);
if (key->pkey.ptr == NULL) {
XFREE(key, x509->heap, DYNAMIC_TYPE_PUBLIC_KEY);
return NULL;
}
XMEMCPY(key->pkey.ptr,
x509->pubKey.buffer, x509->pubKey.length);
key->pkey_sz = x509->pubKey.length;
#ifdef HAVE_ECC
key->pkey_curve = (int)x509->pkCurveOID;
#endif /* HAVE_ECC */
}
}
return key;
}
int wolfSSL_X509_CRL_verify(WOLFSSL_X509_CRL* crl, WOLFSSL_EVP_PKEY* key)
{
(void)crl;
(void)key;
return 0;
}
void wolfSSL_X509_STORE_CTX_set_error(WOLFSSL_X509_STORE_CTX* ctx, int err)
{
(void)ctx;
(void)err;
}
#ifdef OPENSSL_EXTRA
void wolfSSL_X509_STORE_CTX_set_time(WOLFSSL_X509_STORE_CTX* ctx,
unsigned long flags,
time_t t)
{
(void)flags;
if (ctx == NULL)
return;
ctx->param->check_time = t;
ctx->param->flags |= WOLFSSL_USE_CHECK_TIME;
}
#endif
void wolfSSL_X509_OBJECT_free_contents(WOLFSSL_X509_OBJECT* obj)
{
(void)obj;
}
WOLFSSL_EVP_PKEY* wolfSSL_PKEY_new()
{
WOLFSSL_EVP_PKEY* pkey;
pkey = (WOLFSSL_EVP_PKEY*)XMALLOC(sizeof(WOLFSSL_EVP_PKEY), NULL,
DYNAMIC_TYPE_PUBLIC_KEY);
if (pkey != NULL) {
XMEMSET(pkey, 0, sizeof(WOLFSSL_EVP_PKEY));
}
return pkey;
}
void wolfSSL_EVP_PKEY_free(WOLFSSL_EVP_PKEY* key)
{
if (key != NULL) {
if (key->pkey.ptr != NULL)
XFREE(key->pkey.ptr, NULL, DYNAMIC_TYPE_PUBLIC_KEY);
XFREE(key, NULL, DYNAMIC_TYPE_PUBLIC_KEY);
}
}
int wolfSSL_X509_cmp_current_time(const WOLFSSL_ASN1_TIME* asnTime)
{
(void)asnTime;
return 0;
}
int wolfSSL_sk_X509_REVOKED_num(WOLFSSL_X509_REVOKED* revoked)
{
(void)revoked;
return 0;
}
WOLFSSL_X509_REVOKED* wolfSSL_X509_CRL_get_REVOKED(WOLFSSL_X509_CRL* crl)
{
(void)crl;
return 0;
}
WOLFSSL_X509_REVOKED* wolfSSL_sk_X509_REVOKED_value(
WOLFSSL_X509_REVOKED* revoked, int value)
{
(void)revoked;
(void)value;
return 0;
}
WOLFSSL_ASN1_INTEGER* wolfSSL_X509_get_serialNumber(WOLFSSL_X509* x509)
{
WOLFSSL_ASN1_INTEGER* a;
int i = 0;
WOLFSSL_ENTER("wolfSSL_X509_get_serialNumber");
a = (WOLFSSL_ASN1_INTEGER*)XMALLOC(sizeof(WOLFSSL_ASN1_INTEGER), NULL,
DYNAMIC_TYPE_OPENSSL);
if (a == NULL)
return NULL;
/* Make sure there is space for the data, ASN.1 type and length. */
if (x509->serialSz > (int)(sizeof(WOLFSSL_ASN1_INTEGER) - 2)) {
XFREE(a, NULL, DYNAMIC_TYPE_OPENSSL);
return NULL;
}
a->data[i++] = ASN_INTEGER;
a->data[i++] = (unsigned char)x509->serialSz;
XMEMCPY(&a->data[i], x509->serial, x509->serialSz);
return a;
}
#if defined(WOLFSSL_MYSQL_COMPATIBLE) || defined(WOLFSSL_NGINX) || \
defined(WOLFSSL_HAPROXY)
int wolfSSL_ASN1_TIME_print(WOLFSSL_BIO* bio, const WOLFSSL_ASN1_TIME* asnTime)
{
char buf[MAX_TIME_STRING_SZ];
int ret = WOLFSSL_SUCCESS;
WOLFSSL_ENTER("wolfSSL_ASN1_TIME_print");
if (bio == NULL || asnTime == NULL) {
WOLFSSL_MSG("NULL function argument");
return WOLFSSL_FAILURE;
}
if (wolfSSL_ASN1_TIME_to_string((WOLFSSL_ASN1_TIME*)asnTime, buf,
sizeof(buf)) == NULL) {
XMEMSET(buf, 0, MAX_TIME_STRING_SZ);
XMEMCPY(buf, "Bad time value", 14);
ret = WOLFSSL_FAILURE;
}
if (wolfSSL_BIO_write(bio, buf, (int)XSTRLEN(buf)) <= 0) {
WOLFSSL_MSG("Unable to write to bio");
return WOLFSSL_FAILURE;
}
return ret;
}
char* wolfSSL_ASN1_TIME_to_string(WOLFSSL_ASN1_TIME* t, char* buf, int len)
{
int format;
int dateLen;
byte* date = (byte*)t;
WOLFSSL_ENTER("wolfSSL_ASN1_TIME_to_string");
if (t == NULL || buf == NULL || len < 5) {
WOLFSSL_MSG("Bad argument");
return NULL;
}
format = *date; date++;
dateLen = *date; date++;
if (dateLen > len) {
WOLFSSL_MSG("Length of date is longer then buffer");
return NULL;
}
if (!GetTimeString(date, format, buf, len)) {
return NULL;
}
return buf;
}
#endif /* WOLFSSL_MYSQL_COMPATIBLE */
#if defined(OPENSSL_EXTRA) && !defined(NO_ASN_TIME) \
&& !defined(USER_TIME) && !defined(TIME_OVERRIDES) && !defined(NO_FILESYSTEM)
WOLFSSL_ASN1_TIME* wolfSSL_ASN1_TIME_adj(WOLFSSL_ASN1_TIME *s, time_t t,
int offset_day, long offset_sec)
{
const int sec_per_day = 24*60*60;
struct tm* ts = NULL;
struct tm* tmpTime = NULL;
time_t t_adj = 0;
time_t offset_day_sec = 0;
#if defined(NEED_TMP_TIME)
struct tm tmpTimeStorage;
tmpTime = &tmpTimeStorage;
#else
(void)tmpTime;
#endif
WOLFSSL_ENTER("wolfSSL_ASN1_TIME_adj");
if (s == NULL){
s = (WOLFSSL_ASN1_TIME*)XMALLOC(sizeof(WOLFSSL_ASN1_TIME), NULL,
DYNAMIC_TYPE_OPENSSL);
if (s == NULL){
return NULL;
}
}
/* compute GMT time with offset */
offset_day_sec = offset_day * sec_per_day;
t_adj = t + offset_day_sec + offset_sec;
ts = (struct tm *)XGMTIME(&t_adj, tmpTime);
if (ts == NULL){
WOLFSSL_MSG("failed to get time data.");
XFREE(s, NULL, DYNAMIC_TYPE_OPENSSL);
return NULL;
}
/* create ASN1 time notation */
/* UTC Time */
if (ts->tm_year >= 50 && ts->tm_year < 150){
char utc_str[ASN_UTC_TIME_SIZE];
int utc_year = 0,utc_mon,utc_day,utc_hour,utc_min,utc_sec;
byte *data_ptr = NULL;
if (ts->tm_year >= 50 && ts->tm_year < 100){
utc_year = ts->tm_year;
} else if (ts->tm_year >= 100 && ts->tm_year < 150){
utc_year = ts->tm_year - 100;
}
utc_mon = ts->tm_mon + 1;
utc_day = ts->tm_mday;
utc_hour = ts->tm_hour;
utc_min = ts->tm_min;
utc_sec = ts->tm_sec;
XSNPRINTF((char *)utc_str, ASN_UTC_TIME_SIZE,
"%02d%02d%02d%02d%02d%02dZ",
utc_year, utc_mon, utc_day, utc_hour, utc_min, utc_sec);
data_ptr = s->data;
*data_ptr = (byte) ASN_UTC_TIME; data_ptr++;
*data_ptr = (byte) ASN_UTC_TIME_SIZE; data_ptr++;
XMEMCPY(data_ptr,(byte *)utc_str, ASN_UTC_TIME_SIZE);
/* GeneralizedTime */
} else {
char gt_str[ASN_GENERALIZED_TIME_SIZE];
int gt_year,gt_mon,gt_day,gt_hour,gt_min,gt_sec;
byte *data_ptr = NULL;
gt_year = ts->tm_year + 1900;
gt_mon = ts->tm_mon + 1;
gt_day = ts->tm_mday;
gt_hour = ts->tm_hour;
gt_min = ts->tm_min;
gt_sec = ts->tm_sec;
XSNPRINTF((char *)gt_str, ASN_GENERALIZED_TIME_SIZE,
"%4d%02d%02d%02d%02d%02dZ",
gt_year, gt_mon, gt_day, gt_hour, gt_min,gt_sec);
data_ptr = s->data;
*data_ptr = (byte) ASN_GENERALIZED_TIME; data_ptr++;
*data_ptr = (byte) ASN_GENERALIZED_TIME_SIZE; data_ptr++;
XMEMCPY(data_ptr,(byte *)gt_str, ASN_GENERALIZED_TIME_SIZE);
}
return s;
}
#endif /* OPENSSL_EXTRA && !NO_ASN_TIME && !USER_TIME */
/* && !TIME_OVERRIDES && !NO_FILESYSTEM */
int wolfSSL_ASN1_INTEGER_cmp(const WOLFSSL_ASN1_INTEGER* a,
const WOLFSSL_ASN1_INTEGER* b)
{
(void)a;
(void)b;
return 0;
}
long wolfSSL_ASN1_INTEGER_get(const WOLFSSL_ASN1_INTEGER* i)
{
(void)i;
return 0;
}
void* wolfSSL_X509_STORE_CTX_get_ex_data(WOLFSSL_X509_STORE_CTX* ctx, int idx)
{
WOLFSSL_ENTER("wolfSSL_X509_STORE_CTX_get_ex_data");
#if defined(HAVE_EX_DATA) || defined(FORTRESS)
if (ctx != NULL && idx == 0)
return ctx->ex_data;
#else
(void)ctx;
(void)idx;
#endif
return 0;
}
int wolfSSL_get_ex_data_X509_STORE_CTX_idx(void)
{
WOLFSSL_ENTER("wolfSSL_get_ex_data_X509_STORE_CTX_idx");
return 0;
}
void wolfSSL_CTX_set_info_callback(WOLFSSL_CTX* ctx,
void (*f)(const WOLFSSL* ssl, int type, int val))
{
(void)ctx;
(void)f;
}
unsigned long wolfSSL_ERR_peek_error(void)
{
WOLFSSL_ENTER("wolfSSL_ERR_peek_error");
#ifdef OPENSSL_EXTRA
return wolfSSL_ERR_peek_error_line_data(NULL, NULL, NULL, NULL);
#else
return 0;
#endif
}
int wolfSSL_ERR_GET_REASON(unsigned long err)
{
#if defined(WOLFSSL_NGINX) || defined(WOLFSSL_HAPROXY)
/* Nginx looks for this error to know to stop parsing certificates. */
if (err == ((ERR_LIB_PEM << 24) | PEM_R_NO_START_LINE))
return PEM_R_NO_START_LINE;
#endif
(void)err;
return 0;
}
char* wolfSSL_alert_type_string_long(int alertID)
{
(void)alertID;
return 0;
}
char* wolfSSL_alert_desc_string_long(int alertID)
{
(void)alertID;
return 0;
}
char* wolfSSL_state_string_long(const WOLFSSL* ssl)
{
(void)ssl;
return 0;
}
int wolfSSL_PEM_def_callback(char* name, int num, int w, void* key)
{
(void)name;
(void)num;
(void)w;
(void)key;
return 0;
}
unsigned long wolfSSL_set_options(WOLFSSL* ssl, unsigned long op)
{
word16 haveRSA = 1;
word16 havePSK = 0;
int keySz = 0;
WOLFSSL_ENTER("wolfSSL_set_options");
if (ssl == NULL) {
return 0;
}
/* if SSL_OP_ALL then turn all bug workarounds one */
if ((op & SSL_OP_ALL) == SSL_OP_ALL) {
WOLFSSL_MSG("\tSSL_OP_ALL");
op |= SSL_OP_MICROSOFT_SESS_ID_BUG;
op |= SSL_OP_NETSCAPE_CHALLENGE_BUG;
op |= SSL_OP_NETSCAPE_REUSE_CIPHER_CHANGE_BUG;
op |= SSL_OP_SSLREF2_REUSE_CERT_TYPE_BUG;
op |= SSL_OP_MICROSOFT_BIG_SSLV3_BUFFER;
op |= SSL_OP_MSIE_SSLV2_RSA_PADDING;
op |= SSL_OP_SSLEAY_080_CLIENT_DH_BUG;
op |= SSL_OP_TLS_D5_BUG;
op |= SSL_OP_TLS_BLOCK_PADDING_BUG;
op |= SSL_OP_TLS_ROLLBACK_BUG;
op |= SSL_OP_DONT_INSERT_EMPTY_FRAGMENTS;
}
ssl->options.mask |= op;
/* by default cookie exchange is on with DTLS */
if ((ssl->options.mask & SSL_OP_COOKIE_EXCHANGE) == SSL_OP_COOKIE_EXCHANGE) {
WOLFSSL_MSG("\tSSL_OP_COOKIE_EXCHANGE : on by default");
}
if ((ssl->options.mask & WOLFSSL_OP_NO_SSLv2) == WOLFSSL_OP_NO_SSLv2) {
WOLFSSL_MSG("\tWOLFSSL_OP_NO_SSLv2 : wolfSSL does not support SSLv2");
}
if ((ssl->options.mask & SSL_OP_NO_TLSv1_3) == SSL_OP_NO_TLSv1_3) {
WOLFSSL_MSG("\tSSL_OP_NO_TLSv1_3");
if (ssl->version.minor == TLSv1_3_MINOR)
ssl->version.minor = TLSv1_2_MINOR;
}
if ((ssl->options.mask & SSL_OP_NO_TLSv1_2) == SSL_OP_NO_TLSv1_2) {
WOLFSSL_MSG("\tSSL_OP_NO_TLSv1_2");
if (ssl->version.minor == TLSv1_2_MINOR)
ssl->version.minor = TLSv1_1_MINOR;
}
if ((ssl->options.mask & SSL_OP_NO_TLSv1_1) == SSL_OP_NO_TLSv1_1) {
WOLFSSL_MSG("\tSSL_OP_NO_TLSv1_1");
if (ssl->version.minor == TLSv1_1_MINOR)
ssl->version.minor = TLSv1_MINOR;
}
if ((ssl->options.mask & SSL_OP_NO_TLSv1) == SSL_OP_NO_TLSv1) {
WOLFSSL_MSG("\tSSL_OP_NO_TLSv1");
if (ssl->version.minor == TLSv1_MINOR)
ssl->version.minor = SSLv3_MINOR;
}
if ((ssl->options.mask & SSL_OP_NO_SSLv3) == SSL_OP_NO_SSLv3) {
WOLFSSL_MSG("\tSSL_OP_NO_SSLv3");
}
if ((ssl->options.mask & SSL_OP_NO_COMPRESSION) == SSL_OP_NO_COMPRESSION) {
#ifdef HAVE_LIBZ
WOLFSSL_MSG("SSL_OP_NO_COMPRESSION");
ssl->options.usingCompression = 0;
#else
WOLFSSL_MSG("SSL_OP_NO_COMPRESSION: compression not compiled in");
#endif
}
/* in the case of a version change the cipher suites should be reset */
#ifndef NO_PSK
havePSK = ssl->options.havePSK;
#endif
#ifdef NO_RSA
haveRSA = 0;
#endif
#ifndef NO_CERTS
keySz = ssl->buffers.keySz;
#endif
InitSuites(ssl->suites, ssl->version, keySz, haveRSA, havePSK,
ssl->options.haveDH, ssl->options.haveNTRU,
ssl->options.haveECDSAsig, ssl->options.haveECC,
ssl->options.haveStaticECC, ssl->options.side);
return ssl->options.mask;
}
unsigned long wolfSSL_get_options(const WOLFSSL* ssl)
{
WOLFSSL_ENTER("wolfSSL_get_options");
return ssl->options.mask;
}
/*** TBD ***/
WOLFSSL_API long wolfSSL_clear_num_renegotiations(WOLFSSL *s)
{
(void)s;
return 0;
}
/*** TBD ***/
WOLFSSL_API long wolfSSL_total_renegotiations(WOLFSSL *s)
{
(void)s;
return 0;
}
#ifndef NO_DH
long wolfSSL_set_tmp_dh(WOLFSSL *ssl, WOLFSSL_DH *dh)
{
int pSz, gSz;
byte *p, *g;
int ret = 0;
WOLFSSL_ENTER("wolfSSL_set_tmp_dh");
if (!ssl || !dh)
return BAD_FUNC_ARG;
/* Get needed size for p and g */
pSz = wolfSSL_BN_bn2bin(dh->p, NULL);
gSz = wolfSSL_BN_bn2bin(dh->g, NULL);
if (pSz <= 0 || gSz <= 0)
return WOLFSSL_FATAL_ERROR;
p = (byte*)XMALLOC(pSz, ssl->heap, DYNAMIC_TYPE_PUBLIC_KEY);
if (!p)
return MEMORY_E;
g = (byte*)XMALLOC(gSz, ssl->heap, DYNAMIC_TYPE_PUBLIC_KEY);
if (!g) {
XFREE(p, ssl->heap, DYNAMIC_TYPE_PUBLIC_KEY);
return MEMORY_E;
}
pSz = wolfSSL_BN_bn2bin(dh->p, p);
gSz = wolfSSL_BN_bn2bin(dh->g, g);
if (pSz >= 0 && gSz >= 0) /* Conversion successful */
ret = wolfSSL_SetTmpDH(ssl, p, pSz, g, gSz);
XFREE(p, ssl->heap, DYNAMIC_TYPE_PUBLIC_KEY);
XFREE(g, ssl->heap, DYNAMIC_TYPE_PUBLIC_KEY);
return pSz > 0 && gSz > 0 ? ret : WOLFSSL_FATAL_ERROR;
}
#endif /* !NO_DH */
#ifdef HAVE_PK_CALLBACKS
long wolfSSL_set_tlsext_debug_arg(WOLFSSL* ssl, void *arg)
{
if (ssl == NULL) {
return WOLFSSL_FAILURE;
}
ssl->loggingCtx = arg;
return WOLFSSL_SUCCESS;
}
#endif /* HAVE_PK_CALLBACKS */
#ifdef WOLFSSL_HAPROXY
const unsigned char *SSL_SESSION_get0_id_context(const SSL_SESSION *sess, unsigned int *sid_ctx_length)
{
const byte *c = wolfSSL_SESSION_get_id((SSL_SESSION *)sess, sid_ctx_length);
return c;
}
#endif
/*** TBD ***/
WOLFSSL_API int wolfSSL_sk_SSL_COMP_zero(WOLFSSL_STACK* st)
{
(void)st;
WOLFSSL_STUB("wolfSSL_sk_SSL_COMP_zero");
//wolfSSL_set_options(ssl, SSL_OP_NO_COMPRESSION);
return WOLFSSL_FAILURE;
}
#ifdef OPENSSL_EXTRA
#ifdef HAVE_CERTIFICATE_STATUS_REQUEST
long wolfSSL_set_tlsext_status_type(WOLFSSL *s, int type)
{
WOLFSSL_ENTER("wolfSSL_set_tlsext_status_type");
if (s == NULL){
return BAD_FUNC_ARG;
}
if (type == TLSEXT_STATUSTYPE_ocsp){
int r = 0;
r = TLSX_UseCertificateStatusRequest(&s->extensions, type,
0, s->heap, s->devId);
return (long)r;
} else {
WOLFSSL_MSG(
"SSL_set_tlsext_status_type only supports TLSEXT_STATUSTYPE_ocsp type.");
return SSL_FAILURE;
}
}
#endif /* HAVE_CERTIFICATE_STATUS_REQUEST */
#endif /* OPENSSL_EXTRA */
WOLFSSL_API long wolfSSL_get_tlsext_status_exts(WOLFSSL *s, void *arg)
{
(void)s;
(void)arg;
WOLFSSL_STUB("wolfSSL_get_tlsext_status_exts");
return WOLFSSL_FAILURE;
}
/*** TBD ***/
WOLFSSL_API long wolfSSL_set_tlsext_status_exts(WOLFSSL *s, void *arg)
{
(void)s;
(void)arg;
WOLFSSL_STUB("wolfSSL_set_tlsext_status_exts");
return WOLFSSL_FAILURE;
}
/*** TBD ***/
WOLFSSL_API long wolfSSL_get_tlsext_status_ids(WOLFSSL *s, void *arg)
{
(void)s;
(void)arg;
WOLFSSL_STUB("wolfSSL_get_tlsext_status_ids");
return WOLFSSL_FAILURE;
}
/*** TBD ***/
WOLFSSL_API long wolfSSL_set_tlsext_status_ids(WOLFSSL *s, void *arg)
{
(void)s;
(void)arg;
WOLFSSL_STUB("wolfSSL_set_tlsext_status_ids");
return WOLFSSL_FAILURE;
}
/*** TBD ***/
WOLFSSL_API int SSL_SESSION_set1_id(WOLFSSL_SESSION *s, const unsigned char *sid, unsigned int sid_len)
{
(void)s;
(void)sid;
(void)sid_len;
WOLFSSL_STUB("SSL_SESSION_set1_id");
return WOLFSSL_FAILURE;
}
/*** TBD ***/
WOLFSSL_API int SSL_SESSION_set1_id_context(WOLFSSL_SESSION *s, const unsigned char *sid_ctx, unsigned int sid_ctx_len)
{
(void)s;
(void)sid_ctx;
(void)sid_ctx_len;
WOLFSSL_STUB("SSL_SESSION_set1_id_context");
return WOLFSSL_FAILURE;
}
/*** TBD ***/
WOLFSSL_API void *X509_get0_tbs_sigalg(const WOLFSSL_X509 *x)
{
(void)x;
WOLFSSL_STUB("X509_get0_tbs_sigalg");
return NULL;
}
/*** TBD ***/
WOLFSSL_API void X509_ALGOR_get0(WOLFSSL_ASN1_OBJECT **paobj, int *pptype, const void **ppval, const void *algor)
{
(void)paobj;
(void)pptype;
(void)ppval;
(void)algor;
WOLFSSL_STUB("X509_ALGOR_get0");
}
/*** TBD ***/
WOLFSSL_API void *X509_get_X509_PUBKEY(void * x)
{
(void)x;
WOLFSSL_STUB("X509_get_X509_PUBKEY");
return NULL;
}
/*** TBD ***/
WOLFSSL_API int X509_PUBKEY_get0_param(WOLFSSL_ASN1_OBJECT **ppkalg, const unsigned char **pk, int *ppklen, void **pa, WOLFSSL_EVP_PKEY *pub)
{
(void)ppkalg;
(void)pk;
(void)ppklen;
(void)pa;
(void)pub;
WOLFSSL_STUB("X509_PUBKEY_get0_param");
return WOLFSSL_FAILURE;
}
/*** TBD ***/
WOLFSSL_API WOLFSSL_EVP_PKEY *wolfSSL_get_privatekey(const WOLFSSL *ssl)
{
(void)ssl;
WOLFSSL_STUB("SSL_get_privatekey");
return NULL;
}
/*** TBD ***/
WOLFSSL_API int EVP_PKEY_bits(WOLFSSL_EVP_PKEY *pkey)
{
(void)pkey;
WOLFSSL_STUB("EVP_PKEY_bits");
return WOLFSSL_FAILURE;
}
/*** TBD ***/
WOLFSSL_API int i2d_X509(WOLFSSL_X509 *x, unsigned char **out)
{
(void)x;
(void)out;
WOLFSSL_STUB("i2d_X509");
return -1;
}
/*** TBD ***/
WOLFSSL_API int i2t_ASN1_OBJECT(char *buf, int buf_len, WOLFSSL_ASN1_OBJECT *a)
{
(void)buf;
(void)buf_len;
(void)a;
WOLFSSL_STUB("i2t_ASN1_OBJECT");
return -1;
}
#ifdef WOLFSSL_HAPROXY
/*** TBD ***/
WOLFSSL_API size_t SSL_get_finished(const WOLFSSL *s, void *buf, size_t count)
{
(void)s;
(void)buf;
(void)count;
WOLFSSL_STUB("SSL_get_finished");
return WOLFSSL_FAILURE;
}
/*** TBD ***/
WOLFSSL_API size_t SSL_get_peer_finished(const WOLFSSL *s, void *buf, size_t count)
{
(void)s;
(void)buf;
(void)count;
WOLFSSL_STUB("SSL_get_peer_finished");
return WOLFSSL_FAILURE;
}
#endif /* WOLFSSL_HAPROXY */
/*** TBD ***/
WOLFSSL_API void SSL_CTX_set_tmp_dh_callback(WOLFSSL_CTX *ctx, WOLFSSL_DH *(*dh) (WOLFSSL *ssl, int is_export, int keylength))
{
(void)ctx;
(void)dh;
WOLFSSL_STUB("SSL_CTX_set_tmp_dh_callback");
}
/*** TBD ***/
WOLFSSL_API WOLF_STACK_OF(SSL_COMP) *SSL_COMP_get_compression_methods(void)
{
WOLFSSL_STUB("SSL_COMP_get_compression_methods");
return NULL;
}
/*** TBD ***/
WOLFSSL_API int wolfSSL_sk_SSL_CIPHER_num(const void * p)
{
(void)p;
WOLFSSL_STUB("wolfSSL_sk_SSL_CIPHER_num");
return -1;
}
#if !defined(NO_FILESYSTEM)
/*** TBD ***/
WOLFSSL_API WOLFSSL_X509 *wolfSSL_PEM_read_X509(FILE *fp, WOLFSSL_X509 **x, pem_password_cb *cb, void *u)
{
(void)fp;
(void)x;
(void)cb;
(void)u;
WOLFSSL_STUB("PEM_read_X509");
return NULL;
}
/*** TBD ***/
WOLFSSL_API WOLFSSL_EVP_PKEY *wolfSSL_PEM_read_PrivateKey(FILE *fp, WOLFSSL_EVP_PKEY **x, pem_password_cb *cb, void *u)
{
(void)fp;
(void)x;
(void)cb;
(void)u;
WOLFSSL_STUB("PEM_read_PrivateKey");
return NULL;
}
#endif
/*** TBD ***/
WOLFSSL_API int X509_STORE_load_locations(WOLFSSL_X509_STORE *ctx, const char *file, const char *dir)
{
(void)ctx;
(void)file;
(void)dir;
WOLFSSL_STUB("X509_STORE_load_locations");
return WOLFSSL_FAILURE;
}
/*** TBD ***/
WOLFSSL_API WOLFSSL_CIPHER* wolfSSL_sk_SSL_CIPHER_value(void *ciphers, int idx)
{
(void)ciphers;
(void)idx;
WOLFSSL_STUB("wolfSSL_sk_SSL_CIPHER_value");
return NULL;
}
WOLFSSL_API void ERR_load_SSL_strings(void)
{
}
#ifdef HAVE_OCSP
WOLFSSL_API long wolfSSL_get_tlsext_status_ocsp_resp(WOLFSSL *s, unsigned char **resp)
{
if (s == NULL || resp == NULL)
return 0;
*resp = s->ocspResp;
return s->ocspRespSz;
}
WOLFSSL_API long wolfSSL_set_tlsext_status_ocsp_resp(WOLFSSL *s,
unsigned char *resp, int len)
{
if (s == NULL)
return WOLFSSL_FAILURE;
s->ocspResp = resp;
s->ocspRespSz = len;
return WOLFSSL_SUCCESS;
}
#endif
long wolfSSL_get_verify_result(const WOLFSSL *ssl)
{
if (ssl == NULL) {
return WOLFSSL_FAILURE;
}
return ssl->peerVerifyRet;
}
long wolfSSL_CTX_sess_accept(WOLFSSL_CTX* ctx)
{
(void)ctx;
return 0;
}
long wolfSSL_CTX_sess_connect(WOLFSSL_CTX* ctx)
{
(void)ctx;
return 0;
}
long wolfSSL_CTX_sess_accept_good(WOLFSSL_CTX* ctx)
{
(void)ctx;
return 0;
}
long wolfSSL_CTX_sess_connect_good(WOLFSSL_CTX* ctx)
{
(void)ctx;
return 0;
}
long wolfSSL_CTX_sess_accept_renegotiate(WOLFSSL_CTX* ctx)
{
(void)ctx;
return 0;
}
long wolfSSL_CTX_sess_connect_renegotiate(WOLFSSL_CTX* ctx)
{
(void)ctx;
return 0;
}
long wolfSSL_CTX_sess_hits(WOLFSSL_CTX* ctx)
{
(void)ctx;
return 0;
}
long wolfSSL_CTX_sess_cb_hits(WOLFSSL_CTX* ctx)
{
(void)ctx;
return 0;
}
long wolfSSL_CTX_sess_cache_full(WOLFSSL_CTX* ctx)
{
(void)ctx;
return 0;
}
long wolfSSL_CTX_sess_misses(WOLFSSL_CTX* ctx)
{
(void)ctx;
return 0;
}
long wolfSSL_CTX_sess_timeouts(WOLFSSL_CTX* ctx)
{
(void)ctx;
return 0;
}
long wolfSSL_CTX_sess_number(WOLFSSL_CTX* ctx)
{
(void)ctx;
return 0;
}
#ifndef NO_CERTS
long wolfSSL_CTX_add_extra_chain_cert(WOLFSSL_CTX* ctx, WOLFSSL_X509* x509)
{
byte* chain = NULL;
long chainSz = 0;
int derSz;
const byte* der;
int ret;
int idx = 0;
DerBuffer *derBuffer = NULL;
WOLFSSL_ENTER("wolfSSL_CTX_add_extra_chain_cert");
if (ctx == NULL || x509 == NULL) {
WOLFSSL_MSG("Bad Argument");
return WOLFSSL_FAILURE;
}
der = wolfSSL_X509_get_der(x509, &derSz);
if (der == NULL || derSz <= 0) {
WOLFSSL_MSG("Error getting X509 DER");
return WOLFSSL_FAILURE;
}
if (ctx->certificate == NULL) {
/* Process buffer makes first certificate the leaf. */
ret = ProcessBuffer(ctx, der, derSz, WOLFSSL_FILETYPE_ASN1, CERT_TYPE,
NULL, NULL, 1);
if (ret != WOLFSSL_SUCCESS) {
WOLFSSL_LEAVE("wolfSSL_CTX_add_extra_chain_cert", ret);
return WOLFSSL_FAILURE;
}
}
else {
/* TODO: Do this elsewhere. */
ret = AllocDer(&derBuffer, derSz, CERT_TYPE, ctx->heap);
if (ret != 0) {
WOLFSSL_MSG("Memory Error");
return WOLFSSL_FAILURE;
}
XMEMCPY(derBuffer->buffer, der, derSz);
ret = AddCA(ctx->cm, &derBuffer, WOLFSSL_USER_CA, !ctx->verifyNone);
if (ret != WOLFSSL_SUCCESS) {
WOLFSSL_LEAVE("wolfSSL_CTX_add_extra_chain_cert", ret);
return WOLFSSL_FAILURE;
}
/* adding cert to existing chain */
if (ctx->certChain != NULL && ctx->certChain->length > 0) {
chainSz += ctx->certChain->length;
}
chainSz += OPAQUE24_LEN + derSz;
chain = (byte*)XMALLOC(chainSz, ctx->heap, DYNAMIC_TYPE_DER);
if (chain == NULL) {
WOLFSSL_MSG("Memory Error");
return WOLFSSL_FAILURE;
}
if (ctx->certChain != NULL && ctx->certChain->length > 0) {
XMEMCPY(chain, ctx->certChain->buffer, ctx->certChain->length);
idx = ctx->certChain->length;
}
c32to24(derSz, chain + idx);
idx += OPAQUE24_LEN,
XMEMCPY(chain + idx, der, derSz);
idx += derSz;
#ifdef WOLFSSL_TLS13
ctx->certChainCnt++;
#endif
FreeDer(&ctx->certChain);
ret = AllocDer(&ctx->certChain, idx, CERT_TYPE, ctx->heap);
if (ret == 0) {
XMEMCPY(ctx->certChain->buffer, chain, idx);
}
}
/* on success WOLFSSL_X509 memory is responsibility of ctx */
wolfSSL_X509_free(x509);
if (chain != NULL)
XFREE(chain, ctx->heap, DYNAMIC_TYPE_DER);
return WOLFSSL_SUCCESS;
}
long wolfSSL_CTX_set_tlsext_status_arg(WOLFSSL_CTX* ctx, void* arg)
{
if (ctx == NULL || ctx->cm == NULL) {
return WOLFSSL_FAILURE;
}
ctx->cm->ocspIOCtx = arg;
return WOLFSSL_SUCCESS;
}
#endif /* NO_CERTS */
/*** TBC ***/
WOLFSSL_API long wolfSSL_CTX_get_session_cache_mode(WOLFSSL_CTX* ctx)
{
(void)ctx;
return 0;
}
int wolfSSL_CTX_get_read_ahead(WOLFSSL_CTX* ctx)
{
if (ctx == NULL) {
return WOLFSSL_FAILURE;
}
return ctx->readAhead;
}
int wolfSSL_CTX_set_read_ahead(WOLFSSL_CTX* ctx, int v)
{
if (ctx == NULL) {
return WOLFSSL_FAILURE;
}
ctx->readAhead = (byte)v;
return WOLFSSL_SUCCESS;
}
long wolfSSL_CTX_set_tlsext_opaque_prf_input_callback_arg(WOLFSSL_CTX* ctx,
void* arg)
{
if (ctx == NULL) {
return WOLFSSL_FAILURE;
}
ctx->userPRFArg = arg;
return WOLFSSL_SUCCESS;
}
#ifndef NO_DES3
/* 0 on success */
int wolfSSL_DES_set_key(WOLFSSL_const_DES_cblock* myDes,
WOLFSSL_DES_key_schedule* key)
{
#ifdef WOLFSSL_CHECK_DESKEY
return wolfSSL_DES_set_key_checked(myDes, key);
#else
wolfSSL_DES_set_key_unchecked(myDes, key);
return 0;
#endif
}
/* return true in fail case (1) */
static int DES_check(word32 mask, word32 mask2, unsigned char* key)
{
word32 value[2];
/* sanity check on length made in wolfSSL_DES_set_key_checked */
value[0] = mask;
value[1] = mask2;
return (XMEMCMP(value, key, sizeof(value)) == 0)? 1: 0;
}
/* check that the key is odd parity and is not a weak key
* returns -1 if parity is wrong, -2 if weak/null key and 0 on success */
int wolfSSL_DES_set_key_checked(WOLFSSL_const_DES_cblock* myDes,
WOLFSSL_DES_key_schedule* key)
{
if (myDes == NULL || key == NULL) {
WOLFSSL_MSG("Bad argument passed to wolfSSL_DES_set_key_checked");
return -2;
}
else {
word32 i, mask, mask2;
word32 sz = sizeof(WOLFSSL_DES_key_schedule);
/* sanity check before call to DES_check */
if (sz != (sizeof(word32) * 2)) {
WOLFSSL_MSG("Unexpected WOLFSSL_DES_key_schedule size");
return -2;
}
/* check odd parity */
for (i = 0; i < sz; i++) {
unsigned char c = *((unsigned char*)key + i);
if (((c & 0x01) ^
((c >> 1) & 0x01) ^
((c >> 2) & 0x01) ^
((c >> 3) & 0x01) ^
((c >> 4) & 0x01) ^
((c >> 5) & 0x01) ^
((c >> 6) & 0x01) ^
((c >> 7) & 0x01)) != 1) {
WOLFSSL_MSG("Odd parity test fail");
return -1;
}
}
/* check is not weak. Weak key list from Nist
"Recommendation for the Triple
Data Encryption Algorithm
(TDEA) Block Cipher" */
mask = 0x01010101; mask2 = 0x01010101;
if (DES_check(mask, mask2, *key)) {
WOLFSSL_MSG("Weak key found");
return -2;
}
mask = 0xFEFEFEFE; mask2 = 0xFEFEFEFE;
if (DES_check(mask, mask2, *key)) {
WOLFSSL_MSG("Weak key found");
return -2;
}
mask = 0xE0E0E0E0; mask2 = 0xF1F1F1F1;
if (DES_check(mask, mask2, *key)) {
WOLFSSL_MSG("Weak key found");
return -2;
}
mask = 0x1F1F1F1F; mask2 = 0x0E0E0E0E;
if (DES_check(mask, mask2, *key)) {
WOLFSSL_MSG("Weak key found");
return -2;
}
/* semi-weak *key check (list from same Nist paper) */
mask = 0x011F011F; mask2 = 0x010E010E;
if (DES_check(mask, mask2, *key) ||
DES_check(ByteReverseWord32(mask), ByteReverseWord32(mask2), *key)) {
WOLFSSL_MSG("Weak key found");
return -2;
}
mask = 0x01E001E0; mask2 = 0x01F101F1;
if (DES_check(mask, mask2, *key) ||
DES_check(ByteReverseWord32(mask), ByteReverseWord32(mask2), *key)) {
WOLFSSL_MSG("Weak key found");
return -2;
}
mask = 0x01FE01FE; mask2 = 0x01FE01FE;
if (DES_check(mask, mask2, *key) ||
DES_check(ByteReverseWord32(mask), ByteReverseWord32(mask2), *key)) {
WOLFSSL_MSG("Weak key found");
return -2;
}
mask = 0x1FE01FE0; mask2 = 0x0EF10EF1;
if (DES_check(mask, mask2, *key) ||
DES_check(ByteReverseWord32(mask), ByteReverseWord32(mask2), *key)) {
WOLFSSL_MSG("Weak key found");
return -2;
}
mask = 0x1FFE1FFE; mask2 = 0x0EFE0EFE;
if (DES_check(mask, mask2, *key) ||
DES_check(ByteReverseWord32(mask), ByteReverseWord32(mask2), *key)) {
WOLFSSL_MSG("Weak key found");
return -2;
}
/* passed tests, now copy over key */
XMEMCPY(key, myDes, sizeof(WOLFSSL_const_DES_cblock));
return 0;
}
}
void wolfSSL_DES_set_key_unchecked(WOLFSSL_const_DES_cblock* myDes,
WOLFSSL_DES_key_schedule* key)
{
if (myDes != NULL && key != NULL) {
XMEMCPY(key, myDes, sizeof(WOLFSSL_const_DES_cblock));
}
}
void wolfSSL_DES_set_odd_parity(WOLFSSL_DES_cblock* myDes)
{
(void)myDes;
WOLFSSL_STUB("wolfSSL_DES_set_odd_parity");
}
#ifdef WOLFSSL_DES_ECB
/* Encrpyt or decrypt input message desa with key and get output in desb.
* if enc is DES_ENCRYPT,input message is encrypted or
* if enc is DES_DECRYPT,input message is decrypted.
* */
void wolfSSL_DES_ecb_encrypt(WOLFSSL_DES_cblock* desa,
WOLFSSL_DES_cblock* desb, WOLFSSL_DES_key_schedule* key, int enc)
{
Des myDes;
WOLFSSL_ENTER("wolfSSL_DES_ecb_encrypt");
if (desa == NULL || key == NULL || desb == NULL ||
(enc != DES_ENCRYPT && enc != DES_DECRYPT)) {
WOLFSSL_MSG("Bad argument passed to wolfSSL_DES_ecb_encrypt");
} else {
if (wc_Des_SetKey(&myDes, (const byte*) key,
(const byte*) NULL, !enc) != 0) {
WOLFSSL_MSG("wc_Des_SetKey return error.");
return;
}
if (wc_Des_EcbEncrypt(&myDes, (byte*) desb,
(const byte*)desa, sizeof(WOLFSSL_DES_cblock)) != 0){
WOLFSSL_MSG("wc_Des_EcbEncrypt return error.");
}
}
}
#endif
#endif /* NO_DES3 */
int wolfSSL_BIO_printf(WOLFSSL_BIO* bio, const char* format, ...)
{
(void)bio;
(void)format;
return 0;
}
int wolfSSL_ASN1_UTCTIME_print(WOLFSSL_BIO* bio, const WOLFSSL_ASN1_UTCTIME* a)
{
(void)bio;
(void)a;
return 0;
}
/* Return the month as a string.
*
* n The number of the month as a two characters (1 based).
* returns the month as a string.
*/
static INLINE const char* MonthStr(const char* n)
{
static const char monthStr[12][4] = {
"Jan", "Feb", "Mar", "Apr", "May", "Jun",
"Jul", "Aug", "Sep", "Oct", "Nov", "Dec" };
return monthStr[(n[0] - '0') * 10 + (n[1] - '0') - 1];
}
int wolfSSL_ASN1_GENERALIZEDTIME_print(WOLFSSL_BIO* bio,
const WOLFSSL_ASN1_GENERALIZEDTIME* asnTime)
{
const char* p = (const char *)(asnTime->data + 2);
WOLFSSL_ENTER("wolfSSL_ASN1_GENERALIZEDTIME_print");
if (bio == NULL || asnTime == NULL)
return BAD_FUNC_ARG;
/* GetTimeString not always available. */
wolfSSL_BIO_write(bio, MonthStr(p + 4), 3);
wolfSSL_BIO_write(bio, " ", 1);
/* Day */
wolfSSL_BIO_write(bio, p + 6, 2);
wolfSSL_BIO_write(bio, " ", 1);
/* Hour */
wolfSSL_BIO_write(bio, p + 8, 2);
wolfSSL_BIO_write(bio, ":", 1);
/* Min */
wolfSSL_BIO_write(bio, p + 10, 2);
wolfSSL_BIO_write(bio, ":", 1);
/* Secs */
wolfSSL_BIO_write(bio, p + 12, 2);
wolfSSL_BIO_write(bio, " ", 1);
wolfSSL_BIO_write(bio, p, 4);
return 0;
}
int wolfSSL_sk_num(WOLFSSL_X509_REVOKED* rev)
{
(void)rev;
return 0;
}
void* wolfSSL_sk_value(WOLFSSL_X509_REVOKED* rev, int i)
{
(void)rev;
(void)i;
return 0;
}
/* stunnel 4.28 needs */
void wolfSSL_CTX_sess_set_get_cb(WOLFSSL_CTX* ctx,
WOLFSSL_SESSION*(*f)(WOLFSSL*, unsigned char*, int, int*))
{
#ifdef HAVE_EXT_CACHE
ctx->get_sess_cb = f;
#else
(void)ctx;
(void)f;
#endif
}
void wolfSSL_CTX_sess_set_new_cb(WOLFSSL_CTX* ctx,
int (*f)(WOLFSSL*, WOLFSSL_SESSION*))
{
#ifdef HAVE_EXT_CACHE
ctx->new_sess_cb = f;
#else
(void)ctx;
(void)f;
#endif
}
void wolfSSL_CTX_sess_set_remove_cb(WOLFSSL_CTX* ctx, void (*f)(WOLFSSL_CTX*,
WOLFSSL_SESSION*))
{
#ifdef HAVE_EXT_CACHE
ctx->rem_sess_cb = f;
#else
(void)ctx;
(void)f;
#endif
}
int wolfSSL_i2d_SSL_SESSION(WOLFSSL_SESSION* sess, unsigned char** p)
{
int size = 0;
#ifdef HAVE_EXT_CACHE
int idx = 0;
#ifdef SESSION_CERTS
int i;
#endif
unsigned char *data;
/* bornOn | timeout | sessionID len | sessionID | masterSecret | haveEMS */
size += OPAQUE32_LEN + OPAQUE32_LEN + OPAQUE8_LEN + sess->sessionIDSz +
SECRET_LEN + OPAQUE8_LEN;
#ifdef SESSION_CERTS
/* Peer chain */
size += OPAQUE8_LEN;
for (i = 0; i < sess->chain.count; i++)
size += OPAQUE16_LEN + sess->chain.certs[i].length;
/* Protocol version + cipher suite */
size += OPAQUE16_LEN + OPAQUE16_LEN;
#endif
#ifndef NO_CLIENT_CACHE
/* ServerID len | ServerID */
size += OPAQUE16_LEN + sess->idLen;
#endif
#ifdef HAVE_SESSION_TICKET
/* ticket len | ticket */
size += OPAQUE16_LEN + sess->ticketLen;
#endif
if (p != NULL) {
if (*p == NULL)
*p = (unsigned char*)XMALLOC(size, NULL, DYNAMIC_TYPE_OPENSSL);
if (*p == NULL)
return 0;
data = *p;
c32toa(sess->bornOn, data + idx); idx += OPAQUE32_LEN;
c32toa(sess->timeout, data + idx); idx += OPAQUE32_LEN;
data[idx++] = sess->sessionIDSz;
XMEMCPY(data + idx, sess->sessionID, sess->sessionIDSz);
idx += sess->sessionIDSz;
XMEMCPY(data + idx, sess->masterSecret, SECRET_LEN); idx += SECRET_LEN;
data[idx++] = (byte)sess->haveEMS;
#ifdef SESSION_CERTS
data[idx++] = (byte)sess->chain.count;
for (i = 0; i < sess->chain.count; i++) {
c16toa((word16)sess->chain.certs[i].length, data + idx);
idx += OPAQUE16_LEN;
XMEMCPY(data + idx, sess->chain.certs[i].buffer,
sess->chain.certs[i].length);
idx += sess->chain.certs[i].length;
}
data[idx++] = sess->version.major;
data[idx++] = sess->version.minor;
data[idx++] = sess->cipherSuite0;
data[idx++] = sess->cipherSuite;
#endif
#ifndef NO_CLIENT_CACHE
c16toa(sess->idLen, data + idx); idx += OPAQUE16_LEN;
XMEMCPY(data + idx, sess->serverID, sess->idLen);
idx += sess->idLen;
#endif
#ifdef HAVE_SESSION_TICKET
c16toa(sess->ticketLen, data + idx); idx += OPAQUE16_LEN;
XMEMCPY(data + idx, sess->ticket, sess->ticketLen);
idx += sess->ticketLen;
#endif
}
#endif
(void)sess;
(void)p;
#ifdef HAVE_EXT_CACHE
(void)idx;
#endif
return size;
}
/* TODO: no function to free new session. */
WOLFSSL_SESSION* wolfSSL_d2i_SSL_SESSION(WOLFSSL_SESSION** sess,
const unsigned char** p, long i)
{
WOLFSSL_SESSION* s = NULL;
int ret = 0;
#if defined(HAVE_EXT_CACHE)
int idx;
byte* data;
#ifdef SESSION_CERTS
int j;
word16 length;
#endif
#endif
(void)p;
(void)i;
(void)ret;
if (sess != NULL)
s = *sess;
#ifdef HAVE_EXT_CACHE
if (p == NULL || *p == NULL)
return NULL;
if (s == NULL) {
s = (WOLFSSL_SESSION*)XMALLOC(sizeof(WOLFSSL_SESSION), NULL,
DYNAMIC_TYPE_OPENSSL);
if (s == NULL)
return NULL;
s->isAlloced = 1;
s->isDynamic = 0;
}
idx = 0;
data = (byte*)*p;
/* bornOn | timeout | sessionID len */
if (i < OPAQUE32_LEN + OPAQUE32_LEN + OPAQUE8_LEN) {
ret = BUFFER_ERROR;
goto end;
}
ato32(data + idx, &s->bornOn); idx += OPAQUE32_LEN;
ato32(data + idx, &s->timeout); idx += OPAQUE32_LEN;
s->sessionIDSz = data[idx++];
/* sessionID | secret | haveEMS */
if (i - idx < s->sessionIDSz + SECRET_LEN + OPAQUE8_LEN) {
ret = BUFFER_ERROR;
goto end;
}
XMEMCPY(s->sessionID, data + idx, s->sessionIDSz);
idx += s->sessionIDSz;
XMEMCPY(s->masterSecret, data + idx, SECRET_LEN); idx += SECRET_LEN;
s->haveEMS = data[idx++];
#ifdef SESSION_CERTS
/* Certificate chain */
if (i - idx == 0) {
ret = BUFFER_ERROR;
goto end;
}
s->chain.count = data[idx++];
for (j = 0; j < s->chain.count; j++) {
if (i - idx < OPAQUE16_LEN) {
ret = BUFFER_ERROR;
goto end;
}
ato16(data + idx, &length); idx += OPAQUE16_LEN;
s->chain.certs[j].length = length;
if (i - idx < length) {
ret = BUFFER_ERROR;
goto end;
}
XMEMCPY(s->chain.certs[j].buffer, data + idx, length);
idx += length;
}
/* Protocol Version | Cipher suite */
if (i - idx < OPAQUE16_LEN + OPAQUE16_LEN) {
ret = BUFFER_ERROR;
goto end;
}
s->version.major = data[idx++];
s->version.minor = data[idx++];
s->cipherSuite0 = data[idx++];
s->cipherSuite = data[idx++];
#endif
#ifndef NO_CLIENT_CACHE
/* ServerID len */
if (i - idx < OPAQUE16_LEN) {
ret = BUFFER_ERROR;
goto end;
}
ato16(data + idx, &s->idLen); idx += OPAQUE16_LEN;
/* ServerID */
if (i - idx < s->idLen) {
ret = BUFFER_ERROR;
goto end;
}
XMEMCPY(s->serverID, data + idx, s->idLen); idx += s->idLen;
#endif
#ifdef HAVE_SESSION_TICKET
/* ticket len */
if (i - idx < OPAQUE16_LEN) {
ret = BUFFER_ERROR;
goto end;
}
ato16(data + idx, &s->ticketLen); idx += OPAQUE16_LEN;
/* Dispose of ol dynamic ticket and ensure space for new ticket. */
if (s->isDynamic)
XFREE(s->ticket, NULL, DYNAMIC_TYPE_SESSION_TICK);
if (s->ticketLen <= SESSION_TICKET_LEN)
s->ticket = s->staticTicket;
else {
s->ticket = (byte*)XMALLOC(s->ticketLen, NULL,
DYNAMIC_TYPE_SESSION_TICK);
if (s->ticket == NULL) {
ret = MEMORY_ERROR;
goto end;
}
s->isDynamic = 1;
}
/* ticket */
if (i - idx < s->ticketLen) {
ret = BUFFER_ERROR;
goto end;
}
XMEMCPY(s->ticket, data + idx, s->ticketLen); idx += s->ticketLen;
#endif
(void)idx;
if (sess != NULL)
*sess = s;
*p += idx;
end:
if (ret != 0 && (sess == NULL || *sess != s))
wolfSSL_SESSION_free(s);
#endif
return s;
}
long wolfSSL_SESSION_get_timeout(const WOLFSSL_SESSION* sess)
{
WOLFSSL_ENTER("wolfSSL_SESSION_get_timeout");
return sess->timeout;
}
long wolfSSL_SESSION_get_time(const WOLFSSL_SESSION* sess)
{
WOLFSSL_ENTER("wolfSSL_SESSION_get_time");
return sess->bornOn;
}
#endif /* OPENSSL_EXTRA */
#ifdef KEEP_PEER_CERT
char* wolfSSL_X509_get_subjectCN(WOLFSSL_X509* x509)
{
if (x509 == NULL)
return NULL;
return x509->subjectCN;
}
#endif /* KEEP_PEER_CERT */
#ifdef OPENSSL_EXTRA
#if defined(FORTRESS) && !defined(NO_FILESYSTEM)
int wolfSSL_cmp_peer_cert_to_file(WOLFSSL* ssl, const char *fname)
{
int ret = WOLFSSL_FATAL_ERROR;
WOLFSSL_ENTER("wolfSSL_cmp_peer_cert_to_file");
if (ssl != NULL && fname != NULL)
{
#ifdef WOLFSSL_SMALL_STACK
EncryptedInfo* info = NULL;
byte staticBuffer[1]; /* force heap usage */
#else
EncryptedInfo info[1];
byte staticBuffer[FILE_BUFFER_SIZE];
#endif
byte* myBuffer = staticBuffer;
int dynamic = 0;
XFILE file = XBADFILE;
size_t sz = 0;
int eccKey = 0;
WOLFSSL_CTX* ctx = ssl->ctx;
WOLFSSL_X509* peer_cert = &ssl->peerCert;
DerBuffer* fileDer = NULL;
file = XFOPEN(fname, "rb");
if (file == XBADFILE)
return WOLFSSL_BAD_FILE;
XFSEEK(file, 0, XSEEK_END);
sz = XFTELL(file);
XREWIND(file);
if (sz > (long)sizeof(staticBuffer)) {
WOLFSSL_MSG("Getting dynamic buffer");
myBuffer = (byte*)XMALLOC(sz, ctx->heap, DYNAMIC_TYPE_FILE);
dynamic = 1;
}
#ifdef WOLFSSL_SMALL_STACK
info = (EncryptedInfo*)XMALLOC(sizeof(EncryptedInfo), NULL,
DYNAMIC_TYPE_ENCRYPTEDINFO);
if (info == NULL)
ret = MEMORY_E;
else
#endif
{
info->set = 0;
info->ctx = ctx;
info->consumed = 0;
if ((myBuffer != NULL) &&
(sz > 0) &&
(XFREAD(myBuffer, 1, sz, file) == sz) &&
(PemToDer(myBuffer, (long)sz, CERT_TYPE,
&fileDer, ctx->heap, info, &eccKey) == 0) &&
(fileDer->length != 0) &&
(fileDer->length == peer_cert->derCert->length) &&
(XMEMCMP(peer_cert->derCert->buffer, fileDer->buffer,
fileDer->length) == 0))
{
ret = 0;
}
#ifdef WOLFSSL_SMALL_STACK
XFREE(info, NULL, DYNAMIC_TYPE_ENCRYPTEDINFO);
#endif
}
FreeDer(&fileDer);
if (dynamic)
XFREE(myBuffer, ctx->heap, DYNAMIC_TYPE_FILE);
XFCLOSE(file);
}
return ret;
}
#endif
static WC_RNG globalRNG;
static int initGlobalRNG = 0;
/* WOLFSSL_SUCCESS on ok */
int wolfSSL_RAND_seed(const void* seed, int len)
{
WOLFSSL_MSG("wolfSSL_RAND_seed");
(void)seed;
(void)len;
if (initGlobalRNG == 0) {
if (wc_InitRng(&globalRNG) < 0) {
WOLFSSL_MSG("wolfSSL Init Global RNG failed");
return 0;
}
initGlobalRNG = 1;
}
return WOLFSSL_SUCCESS;
}
/* WOLFSSL_SUCCESS on ok */
int wolfSSL_RAND_bytes(unsigned char* buf, int num)
{
int ret = 0;
int initTmpRng = 0;
WC_RNG* rng = NULL;
#ifdef WOLFSSL_SMALL_STACK
WC_RNG* tmpRNG = NULL;
#else
WC_RNG tmpRNG[1];
#endif
WOLFSSL_ENTER("wolfSSL_RAND_bytes");
#ifdef WOLFSSL_SMALL_STACK
tmpRNG = (WC_RNG*)XMALLOC(sizeof(WC_RNG), NULL, DYNAMIC_TYPE_RNG);
if (tmpRNG == NULL)
return ret;
#endif
if (wc_InitRng(tmpRNG) == 0) {
rng = tmpRNG;
initTmpRng = 1;
}
else if (initGlobalRNG)
rng = &globalRNG;
if (rng) {
if (wc_RNG_GenerateBlock(rng, buf, num) != 0)
WOLFSSL_MSG("Bad wc_RNG_GenerateBlock");
else
ret = WOLFSSL_SUCCESS;
}
if (initTmpRng)
wc_FreeRng(tmpRNG);
#ifdef WOLFSSL_SMALL_STACK
XFREE(tmpRNG, NULL, DYNAMIC_TYPE_RNG);
#endif
return ret;
}
WOLFSSL_BN_CTX* wolfSSL_BN_CTX_new(void)
{
static int ctx; /* wolfcrypt doesn't now need ctx */
WOLFSSL_MSG("wolfSSL_BN_CTX_new");
return (WOLFSSL_BN_CTX*)&ctx;
}
void wolfSSL_BN_CTX_init(WOLFSSL_BN_CTX* ctx)
{
(void)ctx;
WOLFSSL_MSG("wolfSSL_BN_CTX_init");
}
void wolfSSL_BN_CTX_free(WOLFSSL_BN_CTX* ctx)
{
(void)ctx;
WOLFSSL_MSG("wolfSSL_BN_CTX_free");
/* do free since static ctx that does nothing */
}
static void InitwolfSSL_BigNum(WOLFSSL_BIGNUM* bn)
{
if (bn) {
bn->neg = 0;
bn->internal = NULL;
}
}
WOLFSSL_BIGNUM* wolfSSL_BN_new(void)
{
WOLFSSL_BIGNUM* external;
mp_int* mpi;
WOLFSSL_MSG("wolfSSL_BN_new");
mpi = (mp_int*) XMALLOC(sizeof(mp_int), NULL, DYNAMIC_TYPE_BIGINT);
if (mpi == NULL) {
WOLFSSL_MSG("wolfSSL_BN_new malloc mpi failure");
return NULL;
}
external = (WOLFSSL_BIGNUM*) XMALLOC(sizeof(WOLFSSL_BIGNUM), NULL,
DYNAMIC_TYPE_BIGINT);
if (external == NULL) {
WOLFSSL_MSG("wolfSSL_BN_new malloc WOLFSSL_BIGNUM failure");
XFREE(mpi, NULL, DYNAMIC_TYPE_BIGINT);
return NULL;
}
InitwolfSSL_BigNum(external);
external->internal = mpi;
if (mp_init(mpi) != MP_OKAY) {
wolfSSL_BN_free(external);
return NULL;
}
return external;
}
void wolfSSL_BN_free(WOLFSSL_BIGNUM* bn)
{
WOLFSSL_MSG("wolfSSL_BN_free");
if (bn) {
if (bn->internal) {
mp_forcezero((mp_int*)bn->internal);
XFREE(bn->internal, NULL, DYNAMIC_TYPE_BIGINT);
bn->internal = NULL;
}
XFREE(bn, NULL, DYNAMIC_TYPE_BIGINT);
bn = NULL;
}
}
void wolfSSL_BN_clear_free(WOLFSSL_BIGNUM* bn)
{
WOLFSSL_MSG("wolfSSL_BN_clear_free");
wolfSSL_BN_free(bn);
}
/* WOLFSSL_SUCCESS on ok */
int wolfSSL_BN_sub(WOLFSSL_BIGNUM* r, const WOLFSSL_BIGNUM* a,
const WOLFSSL_BIGNUM* b)
{
WOLFSSL_MSG("wolfSSL_BN_sub");
if (r == NULL || a == NULL || b == NULL)
return 0;
if (mp_sub((mp_int*)a->internal,(mp_int*)b->internal,
(mp_int*)r->internal) == MP_OKAY)
return WOLFSSL_SUCCESS;
WOLFSSL_MSG("wolfSSL_BN_sub mp_sub failed");
return 0;
}
/* WOLFSSL_SUCCESS on ok */
int wolfSSL_BN_mod(WOLFSSL_BIGNUM* r, const WOLFSSL_BIGNUM* a,
const WOLFSSL_BIGNUM* b, const WOLFSSL_BN_CTX* c)
{
(void)c;
WOLFSSL_MSG("wolfSSL_BN_mod");
if (r == NULL || a == NULL || b == NULL)
return 0;
if (mp_mod((mp_int*)a->internal,(mp_int*)b->internal,
(mp_int*)r->internal) == MP_OKAY)
return WOLFSSL_SUCCESS;
WOLFSSL_MSG("wolfSSL_BN_mod mp_mod failed");
return 0;
}
/* r = (a^p) % m */
int wolfSSL_BN_mod_exp(WOLFSSL_BIGNUM *r, const WOLFSSL_BIGNUM *a,
const WOLFSSL_BIGNUM *p, const WOLFSSL_BIGNUM *m, WOLFSSL_BN_CTX *ctx)
{
int ret;
WOLFSSL_ENTER("wolfSSL_BN_mod_exp");
(void) ctx;
if (r == NULL || a == NULL || p == NULL || m == NULL) {
WOLFSSL_MSG("Bad Argument");
return WOLFSSL_FAILURE;
}
if ((ret = mp_exptmod((mp_int*)a->internal,(mp_int*)p->internal,
(mp_int*)m->internal, (mp_int*)r->internal)) == MP_OKAY) {
return WOLFSSL_SUCCESS;
}
WOLFSSL_LEAVE("wolfSSL_BN_mod_exp", ret);
(void)ret;
return WOLFSSL_FAILURE;
}
const WOLFSSL_BIGNUM* wolfSSL_BN_value_one(void)
{
static WOLFSSL_BIGNUM* bn_one = NULL;
WOLFSSL_MSG("wolfSSL_BN_value_one");
if (bn_one == NULL) {
bn_one = wolfSSL_BN_new();
if (bn_one) {
if (mp_set_int((mp_int*)bn_one->internal, 1) != MP_OKAY) {
/* handle error by freeing BN and returning NULL */
wolfSSL_BN_free(bn_one);
bn_one = NULL;
}
}
}
return bn_one;
}
/* return compliant with OpenSSL
* size of BIGNUM in bytes, 0 if error */
int wolfSSL_BN_num_bytes(const WOLFSSL_BIGNUM* bn)
{
WOLFSSL_MSG("wolfSSL_BN_num_bytes");
if (bn == NULL || bn->internal == NULL)
return WOLFSSL_FAILURE;
return mp_unsigned_bin_size((mp_int*)bn->internal);
}
/* return compliant with OpenSSL
* size of BIGNUM in bits, 0 if error */
int wolfSSL_BN_num_bits(const WOLFSSL_BIGNUM* bn)
{
WOLFSSL_MSG("wolfSSL_BN_num_bits");
if (bn == NULL || bn->internal == NULL)
return WOLFSSL_FAILURE;
return mp_count_bits((mp_int*)bn->internal);
}
/* return compliant with OpenSSL
* 1 if BIGNUM is zero, 0 else */
int wolfSSL_BN_is_zero(const WOLFSSL_BIGNUM* bn)
{
WOLFSSL_MSG("wolfSSL_BN_is_zero");
if (bn == NULL || bn->internal == NULL)
return WOLFSSL_FAILURE;
if (mp_iszero((mp_int*)bn->internal) == MP_YES)
return WOLFSSL_SUCCESS;
return WOLFSSL_FAILURE;
}
/* return compliant with OpenSSL
* 1 if BIGNUM is one, 0 else */
int wolfSSL_BN_is_one(const WOLFSSL_BIGNUM* bn)
{
WOLFSSL_MSG("wolfSSL_BN_is_one");
if (bn == NULL || bn->internal == NULL)
return WOLFSSL_FAILURE;
if (mp_cmp_d((mp_int*)bn->internal, 1) == MP_EQ)
return WOLFSSL_SUCCESS;
return WOLFSSL_FAILURE;
}
/* return compliant with OpenSSL
* 1 if BIGNUM is odd, 0 else */
int wolfSSL_BN_is_odd(const WOLFSSL_BIGNUM* bn)
{
WOLFSSL_MSG("wolfSSL_BN_is_odd");
if (bn == NULL || bn->internal == NULL)
return WOLFSSL_FAILURE;
if (mp_isodd((mp_int*)bn->internal) == MP_YES)
return WOLFSSL_SUCCESS;
return WOLFSSL_FAILURE;
}
/* return compliant with OpenSSL
* -1 if a < b, 0 if a == b and 1 if a > b
*/
int wolfSSL_BN_cmp(const WOLFSSL_BIGNUM* a, const WOLFSSL_BIGNUM* b)
{
int ret;
WOLFSSL_MSG("wolfSSL_BN_cmp");
if (a == NULL || a->internal == NULL || b == NULL || b->internal == NULL)
return WOLFSSL_FATAL_ERROR;
ret = mp_cmp((mp_int*)a->internal, (mp_int*)b->internal);
return (ret == MP_EQ ? 0 : (ret == MP_GT ? 1 : -1));
}
/* return compliant with OpenSSL
* length of BIGNUM in bytes, -1 if error */
int wolfSSL_BN_bn2bin(const WOLFSSL_BIGNUM* bn, unsigned char* r)
{
WOLFSSL_MSG("wolfSSL_BN_bn2bin");
if (bn == NULL || bn->internal == NULL) {
WOLFSSL_MSG("NULL bn error");
return WOLFSSL_FATAL_ERROR;
}
if (r == NULL)
return mp_unsigned_bin_size((mp_int*)bn->internal);
if (mp_to_unsigned_bin((mp_int*)bn->internal, r) != MP_OKAY) {
WOLFSSL_MSG("mp_to_unsigned_bin error");
return WOLFSSL_FATAL_ERROR;
}
return mp_unsigned_bin_size((mp_int*)bn->internal);
}
WOLFSSL_BIGNUM* wolfSSL_BN_bin2bn(const unsigned char* str, int len,
WOLFSSL_BIGNUM* ret)
{
int weOwn = 0;
WOLFSSL_MSG("wolfSSL_BN_bin2bn");
/* if ret is null create a BN */
if (ret == NULL) {
ret = wolfSSL_BN_new();
weOwn = 1;
if (ret == NULL)
return NULL;
}
/* check ret and ret->internal then read in value */
if (ret && ret->internal) {
if (mp_read_unsigned_bin((mp_int*)ret->internal, str, len) != 0) {
WOLFSSL_MSG("mp_read_unsigned_bin failure");
if (weOwn)
wolfSSL_BN_free(ret);
return NULL;
}
}
return ret;
}
/* return compliant with OpenSSL
* 1 if success, 0 if error */
int wolfSSL_mask_bits(WOLFSSL_BIGNUM* bn, int n)
{
(void)bn;
(void)n;
WOLFSSL_MSG("wolfSSL_BN_mask_bits");
return WOLFSSL_FAILURE;
}
/* WOLFSSL_SUCCESS on ok */
int wolfSSL_BN_rand(WOLFSSL_BIGNUM* bn, int bits, int top, int bottom)
{
int ret = 0;
int len = bits / 8;
int initTmpRng = 0;
WC_RNG* rng = NULL;
#ifdef WOLFSSL_SMALL_STACK
WC_RNG* tmpRNG = NULL;
byte* buff = NULL;
#else
WC_RNG tmpRNG[1];
byte buff[1024];
#endif
(void)top;
(void)bottom;
WOLFSSL_MSG("wolfSSL_BN_rand");
if (bits % 8)
len++;
#ifdef WOLFSSL_SMALL_STACK
buff = (byte*)XMALLOC(1024, NULL, DYNAMIC_TYPE_TMP_BUFFER);
tmpRNG = (WC_RNG*) XMALLOC(sizeof(WC_RNG), NULL, DYNAMIC_TYPE_RNG);
if (buff == NULL || tmpRNG == NULL) {
XFREE(buff, NULL, DYNAMIC_TYPE_TMP_BUFFER);
XFREE(tmpRNG, NULL, DYNAMIC_TYPE_RNG);
return ret;
}
#endif
if (bn == NULL || bn->internal == NULL)
WOLFSSL_MSG("Bad function arguments");
else if (wc_InitRng(tmpRNG) == 0) {
rng = tmpRNG;
initTmpRng = 1;
}
else if (initGlobalRNG)
rng = &globalRNG;
if (rng) {
if (wc_RNG_GenerateBlock(rng, buff, len) != 0)
WOLFSSL_MSG("Bad wc_RNG_GenerateBlock");
else {
buff[0] |= 0x80 | 0x40;
buff[len-1] |= 0x01;
if (mp_read_unsigned_bin((mp_int*)bn->internal,buff,len) != MP_OKAY)
WOLFSSL_MSG("mp read bin failed");
else
ret = WOLFSSL_SUCCESS;
}
}
if (initTmpRng)
wc_FreeRng(tmpRNG);
#ifdef WOLFSSL_SMALL_STACK
XFREE(buff, NULL, DYNAMIC_TYPE_TMP_BUFFER);
XFREE(tmpRNG, NULL, DYNAMIC_TYPE_RNG);
#endif
return ret;
}
/* return code compliant with OpenSSL :
* 1 if bit set, 0 else
*/
int wolfSSL_BN_is_bit_set(const WOLFSSL_BIGNUM* bn, int n)
{
if (bn == NULL || bn->internal == NULL) {
WOLFSSL_MSG("bn NULL error");
return WOLFSSL_FAILURE;
}
if (n > DIGIT_BIT) {
WOLFSSL_MSG("input bit count too large");
return WOLFSSL_FAILURE;
}
return mp_is_bit_set((mp_int*)bn->internal, (mp_digit)n);
}
/* return code compliant with OpenSSL :
* 1 if success, 0 else
*/
int wolfSSL_BN_set_bit(WOLFSSL_BIGNUM* bn, int n)
{
if (bn == NULL || bn->internal == NULL) {
WOLFSSL_MSG("bn NULL error");
return WOLFSSL_FAILURE;
}
if (mp_set_bit((mp_int*)bn->internal, n) != MP_OKAY) {
WOLFSSL_MSG("mp_set_int error");
return WOLFSSL_FAILURE;
}
return WOLFSSL_SUCCESS;
}
/* WOLFSSL_SUCCESS on ok */
/* Note on use: this function expects str to be an even length. It is
* converting pairs of bytes into 8-bit values. As an example, the RSA
* public exponent is commonly 0x010001. To get it to convert, you need
* to pass in the string "010001", it will fail if you use "10001". This
* is an affect of how Base16_Decode() works.
*/
int wolfSSL_BN_hex2bn(WOLFSSL_BIGNUM** bn, const char* str)
{
int ret = 0;
word32 decSz = 1024;
#ifdef WOLFSSL_SMALL_STACK
byte* decoded = NULL;
#else
byte decoded[1024];
#endif
WOLFSSL_MSG("wolfSSL_BN_hex2bn");
#ifdef WOLFSSL_SMALL_STACK
decoded = (byte*)XMALLOC(decSz, NULL, DYNAMIC_TYPE_DER);
if (decoded == NULL)
return ret;
#endif
if (str == NULL || str[0] == '\0')
WOLFSSL_MSG("Bad function argument");
else if (Base16_Decode((byte*)str, (int)XSTRLEN(str), decoded, &decSz) < 0)
WOLFSSL_MSG("Bad Base16_Decode error");
else if (bn == NULL)
ret = decSz;
else {
if (*bn == NULL)
*bn = wolfSSL_BN_new();
if (*bn == NULL)
WOLFSSL_MSG("BN new failed");
else if (wolfSSL_BN_bin2bn(decoded, decSz, *bn) == NULL)
WOLFSSL_MSG("Bad bin2bn error");
else
ret = WOLFSSL_SUCCESS;
}
#ifdef WOLFSSL_SMALL_STACK
XFREE(decoded, NULL, DYNAMIC_TYPE_DER);
#endif
return ret;
}
WOLFSSL_BIGNUM* wolfSSL_BN_dup(const WOLFSSL_BIGNUM* bn)
{
WOLFSSL_BIGNUM* ret;
WOLFSSL_MSG("wolfSSL_BN_dup");
if (bn == NULL || bn->internal == NULL) {
WOLFSSL_MSG("bn NULL error");
return NULL;
}
ret = wolfSSL_BN_new();
if (ret == NULL) {
WOLFSSL_MSG("bn new error");
return NULL;
}
if (mp_copy((mp_int*)bn->internal, (mp_int*)ret->internal) != MP_OKAY) {
WOLFSSL_MSG("mp_copy error");
wolfSSL_BN_free(ret);
return NULL;
}
ret->neg = bn->neg;
return ret;
}
WOLFSSL_BIGNUM* wolfSSL_BN_copy(WOLFSSL_BIGNUM* r, const WOLFSSL_BIGNUM* bn)
{
WOLFSSL_MSG("wolfSSL_BN_copy");
if (r == NULL || bn == NULL) {
WOLFSSL_MSG("r or bn NULL error");
return NULL;
}
if (mp_copy((mp_int*)bn->internal, (mp_int*)r->internal) != MP_OKAY) {
WOLFSSL_MSG("mp_copy error");
return NULL;
}
r->neg = bn->neg;
return r;
}
/* return code compliant with OpenSSL :
* 1 if success, 0 else
*/
int wolfSSL_BN_set_word(WOLFSSL_BIGNUM* bn, WOLFSSL_BN_ULONG w)
{
WOLFSSL_MSG("wolfSSL_BN_set_word");
if (bn == NULL) {
WOLFSSL_MSG("bn NULL error");
return WOLFSSL_FAILURE;
}
if (mp_set_int((mp_int*)bn->internal, w) != MP_OKAY) {
WOLFSSL_MSG("mp_init_set_int error");
return WOLFSSL_FAILURE;
}
return WOLFSSL_SUCCESS;
}
/* return code compliant with OpenSSL :
* number length in decimal if success, 0 if error
*/
int wolfSSL_BN_dec2bn(WOLFSSL_BIGNUM** bn, const char* str)
{
(void)bn;
(void)str;
WOLFSSL_MSG("wolfSSL_BN_dec2bn");
return WOLFSSL_FAILURE;
}
#if defined(WOLFSSL_KEY_GEN) || defined(HAVE_COMP_KEY)
char *wolfSSL_BN_bn2dec(const WOLFSSL_BIGNUM *bn)
{
int len = 0;
char *buf;
WOLFSSL_MSG("wolfSSL_BN_bn2dec");
if (bn == NULL || bn->internal == NULL) {
WOLFSSL_MSG("bn NULL error");
return NULL;
}
if (mp_radix_size((mp_int*)bn->internal, MP_RADIX_DEC, &len) != MP_OKAY) {
WOLFSSL_MSG("mp_radix_size failure");
return NULL;
}
buf = (char*) XMALLOC(len, NULL, DYNAMIC_TYPE_ECC);
if (buf == NULL) {
WOLFSSL_MSG("BN_bn2dec malloc buffer failure");
return NULL;
}
if (mp_todecimal((mp_int*)bn->internal, buf) != MP_OKAY) {
XFREE(buf, NULL, DYNAMIC_TYPE_ECC);
return NULL;
}
return buf;
}
#else
char* wolfSSL_BN_bn2dec(const WOLFSSL_BIGNUM* bn)
{
(void)bn;
WOLFSSL_MSG("wolfSSL_BN_bn2dec");
return NULL;
}
#endif /* defined(WOLFSSL_KEY_GEN) || defined(HAVE_COMP_KEY) */
/* return code compliant with OpenSSL :
* 1 if success, 0 else
*/
int wolfSSL_BN_lshift(WOLFSSL_BIGNUM *r, const WOLFSSL_BIGNUM *bn, int n)
{
WOLFSSL_MSG("wolfSSL_BN_lshift");
if (r == NULL || r->internal == NULL || bn == NULL || bn->internal == NULL){
WOLFSSL_MSG("bn NULL error");
return WOLFSSL_FAILURE;
}
if (mp_mul_2d((mp_int*)bn->internal, n, (mp_int*)r->internal) != MP_OKAY) {
WOLFSSL_MSG("mp_mul_2d error");
return WOLFSSL_FAILURE;
}
return WOLFSSL_SUCCESS;
}
/* return code compliant with OpenSSL :
* 1 if success, 0 else
*/
int wolfSSL_BN_rshift(WOLFSSL_BIGNUM *r, const WOLFSSL_BIGNUM *bn, int n)
{
WOLFSSL_MSG("wolfSSL_BN_rshift");
if (r == NULL || r->internal == NULL || bn == NULL || bn->internal == NULL){
WOLFSSL_MSG("bn NULL error");
return WOLFSSL_FAILURE;
}
if (mp_div_2d((mp_int*)bn->internal, n,
(mp_int*)r->internal, NULL) != MP_OKAY) {
WOLFSSL_MSG("mp_mul_2d error");
return WOLFSSL_FAILURE;
}
return WOLFSSL_SUCCESS;
}
/* return code compliant with OpenSSL :
* 1 if success, 0 else
*/
int wolfSSL_BN_add_word(WOLFSSL_BIGNUM *bn, WOLFSSL_BN_ULONG w)
{
WOLFSSL_MSG("wolfSSL_BN_add_word");
if (bn == NULL || bn->internal == NULL) {
WOLFSSL_MSG("bn NULL error");
return WOLFSSL_FAILURE;
}
if (mp_add_d((mp_int*)bn->internal, w, (mp_int*)bn->internal) != MP_OKAY) {
WOLFSSL_MSG("mp_add_d error");
return WOLFSSL_FAILURE;
}
return WOLFSSL_SUCCESS;
}
/* return code compliant with OpenSSL :
* 1 if success, 0 else
*/
int wolfSSL_BN_add(WOLFSSL_BIGNUM *r, WOLFSSL_BIGNUM *a, WOLFSSL_BIGNUM *b)
{
WOLFSSL_MSG("wolfSSL_BN_add");
if (r == NULL || r->internal == NULL || a == NULL || a->internal == NULL ||
b == NULL || b->internal == NULL) {
WOLFSSL_MSG("bn NULL error");
return WOLFSSL_FAILURE;
}
if (mp_add((mp_int*)a->internal, (mp_int*)b->internal,
(mp_int*)r->internal) != MP_OKAY) {
WOLFSSL_MSG("mp_add_d error");
return WOLFSSL_FAILURE;
}
return WOLFSSL_SUCCESS;
}
#ifdef WOLFSSL_KEY_GEN
/* return code compliant with OpenSSL :
* 1 if prime, 0 if not, -1 if error
*/
int wolfSSL_BN_is_prime_ex(const WOLFSSL_BIGNUM *bn, int nbchecks,
WOLFSSL_BN_CTX *ctx, WOLFSSL_BN_GENCB *cb)
{
int res;
(void)ctx;
(void)cb;
WOLFSSL_MSG("wolfSSL_BN_is_prime_ex");
if (bn == NULL || bn->internal == NULL) {
WOLFSSL_MSG("bn NULL error");
return WOLFSSL_FATAL_ERROR;
}
if (mp_prime_is_prime((mp_int*)bn->internal, nbchecks, &res) != MP_OKAY) {
WOLFSSL_MSG("mp_prime_is_prime error");
return WOLFSSL_FATAL_ERROR;
}
if (res != MP_YES) {
WOLFSSL_MSG("mp_prime_is_prime not prime");
return WOLFSSL_FAILURE;
}
return WOLFSSL_SUCCESS;
}
/* return code compliant with OpenSSL :
* (bn mod w) if success, -1 if error
*/
WOLFSSL_BN_ULONG wolfSSL_BN_mod_word(const WOLFSSL_BIGNUM *bn,
WOLFSSL_BN_ULONG w)
{
WOLFSSL_BN_ULONG ret = 0;
WOLFSSL_MSG("wolfSSL_BN_mod_word");
if (bn == NULL || bn->internal == NULL) {
WOLFSSL_MSG("bn NULL error");
return (WOLFSSL_BN_ULONG)WOLFSSL_FATAL_ERROR;
}
if (mp_mod_d((mp_int*)bn->internal, w, &ret) != MP_OKAY) {
WOLFSSL_MSG("mp_add_d error");
return (WOLFSSL_BN_ULONG)WOLFSSL_FATAL_ERROR;
}
return ret;
}
#endif /* #ifdef WOLFSSL_KEY_GEN */
char *wolfSSL_BN_bn2hex(const WOLFSSL_BIGNUM *bn)
{
#if defined(WOLFSSL_KEY_GEN) || defined(HAVE_COMP_KEY) || defined(DEBUG_WOLFSSL)
int len = 0;
char *buf;
WOLFSSL_ENTER("wolfSSL_BN_bn2hex");
if (bn == NULL || bn->internal == NULL) {
WOLFSSL_MSG("bn NULL error");
return NULL;
}
if (mp_radix_size((mp_int*)bn->internal, MP_RADIX_HEX, &len) != MP_OKAY) {
WOLFSSL_MSG("mp_radix_size failure");
return NULL;
}
buf = (char*) XMALLOC(len, NULL, DYNAMIC_TYPE_ECC);
if (buf == NULL) {
WOLFSSL_MSG("BN_bn2hex malloc buffer failure");
return NULL;
}
if (mp_tohex((mp_int*)bn->internal, buf) != MP_OKAY) {
XFREE(buf, NULL, DYNAMIC_TYPE_ECC);
return NULL;
}
return buf;
#else
(void)bn;
WOLFSSL_MSG("wolfSSL_BN_bn2hex not compiled in");
return (char*)"";
#endif
}
#ifndef NO_FILESYSTEM
/* return code compliant with OpenSSL :
* 1 if success, 0 if error
*/
int wolfSSL_BN_print_fp(FILE *fp, const WOLFSSL_BIGNUM *bn)
{
#if defined(WOLFSSL_KEY_GEN) || defined(HAVE_COMP_KEY) || defined(DEBUG_WOLFSSL)
char *buf;
WOLFSSL_ENTER("wolfSSL_BN_print_fp");
if (fp == NULL || bn == NULL || bn->internal == NULL) {
WOLFSSL_MSG("bn NULL error");
return WOLFSSL_FAILURE;
}
buf = wolfSSL_BN_bn2hex(bn);
if (buf == NULL) {
WOLFSSL_MSG("wolfSSL_BN_bn2hex failure");
return WOLFSSL_FAILURE;
}
fprintf(fp, "%s", buf);
XFREE(buf, NULL, DYNAMIC_TYPE_ECC);
return WOLFSSL_SUCCESS;
#else
(void)fp;
(void)bn;
WOLFSSL_MSG("wolfSSL_BN_print_fp not compiled in");
return WOLFSSL_SUCCESS;
#endif
}
#endif /* !NO_FILESYSTEM */
WOLFSSL_BIGNUM *wolfSSL_BN_CTX_get(WOLFSSL_BN_CTX *ctx)
{
/* ctx is not used, return new Bignum */
(void)ctx;
WOLFSSL_ENTER("wolfSSL_BN_CTX_get");
return wolfSSL_BN_new();
}
void wolfSSL_BN_CTX_start(WOLFSSL_BN_CTX *ctx)
{
(void)ctx;
WOLFSSL_ENTER("wolfSSL_BN_CTX_start");
WOLFSSL_MSG("wolfSSL_BN_CTX_start TBD");
}
WOLFSSL_BIGNUM *wolfSSL_BN_mod_inverse(WOLFSSL_BIGNUM *r,
WOLFSSL_BIGNUM *a,
const WOLFSSL_BIGNUM *n,
WOLFSSL_BN_CTX *ctx)
{
int dynamic = 0;
/* ctx is not used */
(void)ctx;
WOLFSSL_ENTER("wolfSSL_BN_mod_inverse");
/* check parameter */
if (r == NULL) {
r = wolfSSL_BN_new();
if (r == NULL){
WOLFSSL_MSG("WolfSSL_BN_new() failed");
return NULL;
}
dynamic = 1;
}
if (a == NULL) {
WOLFSSL_MSG("a NULL error");
if (dynamic == 1) {
wolfSSL_BN_free(r);
}
return NULL;
}
if (n == NULL) {
WOLFSSL_MSG("n NULL error");
if (dynamic == 1) {
wolfSSL_BN_free(r);
}
return NULL;
}
/* Compute inverse of a modulo n and return r */
if (mp_invmod((mp_int *)a->internal,(mp_int *)n->internal,
(mp_int*)r->internal) == MP_VAL){
WOLFSSL_MSG("mp_invmod() error");
if (dynamic == 1) {
wolfSSL_BN_free(r);
}
return NULL;
}
return r;
}
#ifndef NO_DH
static void InitwolfSSL_DH(WOLFSSL_DH* dh)
{
if (dh) {
dh->p = NULL;
dh->g = NULL;
dh->q = NULL;
dh->pub_key = NULL;
dh->priv_key = NULL;
dh->internal = NULL;
dh->inSet = 0;
dh->exSet = 0;
}
}
WOLFSSL_DH* wolfSSL_DH_new(void)
{
WOLFSSL_DH* external;
DhKey* key;
WOLFSSL_MSG("wolfSSL_DH_new");
key = (DhKey*) XMALLOC(sizeof(DhKey), NULL, DYNAMIC_TYPE_DH);
if (key == NULL) {
WOLFSSL_MSG("wolfSSL_DH_new malloc DhKey failure");
return NULL;
}
external = (WOLFSSL_DH*) XMALLOC(sizeof(WOLFSSL_DH), NULL,
DYNAMIC_TYPE_DH);
if (external == NULL) {
WOLFSSL_MSG("wolfSSL_DH_new malloc WOLFSSL_DH failure");
XFREE(key, NULL, DYNAMIC_TYPE_DH);
return NULL;
}
InitwolfSSL_DH(external);
if (wc_InitDhKey(key) != 0) {
WOLFSSL_MSG("wolfSSL_DH_new InitDhKey failure");
XFREE(key, NULL, DYNAMIC_TYPE_DH);
XFREE(external, NULL, DYNAMIC_TYPE_DH);
return NULL;
}
external->internal = key;
return external;
}
void wolfSSL_DH_free(WOLFSSL_DH* dh)
{
WOLFSSL_MSG("wolfSSL_DH_free");
if (dh) {
if (dh->internal) {
wc_FreeDhKey((DhKey*)dh->internal);
XFREE(dh->internal, NULL, DYNAMIC_TYPE_DH);
dh->internal = NULL;
}
wolfSSL_BN_free(dh->priv_key);
wolfSSL_BN_free(dh->pub_key);
wolfSSL_BN_free(dh->g);
wolfSSL_BN_free(dh->p);
wolfSSL_BN_free(dh->q);
InitwolfSSL_DH(dh); /* set back to NULLs for safety */
XFREE(dh, NULL, DYNAMIC_TYPE_DH);
}
}
static int SetDhInternal(WOLFSSL_DH* dh)
{
int ret = WOLFSSL_FATAL_ERROR;
int pSz = 1024;
int gSz = 1024;
#ifdef WOLFSSL_SMALL_STACK
unsigned char* p = NULL;
unsigned char* g = NULL;
#else
unsigned char p[1024];
unsigned char g[1024];
#endif
WOLFSSL_ENTER("SetDhInternal");
if (dh == NULL || dh->p == NULL || dh->g == NULL)
WOLFSSL_MSG("Bad function arguments");
else if (wolfSSL_BN_bn2bin(dh->p, NULL) > pSz)
WOLFSSL_MSG("Bad p internal size");
else if (wolfSSL_BN_bn2bin(dh->g, NULL) > gSz)
WOLFSSL_MSG("Bad g internal size");
else {
#ifdef WOLFSSL_SMALL_STACK
p = (unsigned char*)XMALLOC(pSz, NULL, DYNAMIC_TYPE_PUBLIC_KEY);
g = (unsigned char*)XMALLOC(gSz, NULL, DYNAMIC_TYPE_PUBLIC_KEY);
if (p == NULL || g == NULL) {
XFREE(p, NULL, DYNAMIC_TYPE_PUBLIC_KEY);
XFREE(g, NULL, DYNAMIC_TYPE_PUBLIC_KEY);
return ret;
}
#endif
pSz = wolfSSL_BN_bn2bin(dh->p, p);
gSz = wolfSSL_BN_bn2bin(dh->g, g);
if (pSz <= 0 || gSz <= 0)
WOLFSSL_MSG("Bad BN2bin set");
else if (wc_DhSetKey((DhKey*)dh->internal, p, pSz, g, gSz) < 0)
WOLFSSL_MSG("Bad DH SetKey");
else {
dh->inSet = 1;
ret = WOLFSSL_SUCCESS;
}
#ifdef WOLFSSL_SMALL_STACK
XFREE(p, NULL, DYNAMIC_TYPE_PUBLIC_KEY);
XFREE(g, NULL, DYNAMIC_TYPE_PUBLIC_KEY);
#endif
}
return ret;
}
/* return code compliant with OpenSSL :
* DH prime size in bytes if success, 0 if error
*/
int wolfSSL_DH_size(WOLFSSL_DH* dh)
{
WOLFSSL_MSG("wolfSSL_DH_size");
if (dh == NULL)
return WOLFSSL_FATAL_ERROR;
return wolfSSL_BN_num_bytes(dh->p);
}
/* return code compliant with OpenSSL :
* 1 if success, 0 if error
*/
int wolfSSL_DH_generate_key(WOLFSSL_DH* dh)
{
int ret = WOLFSSL_FAILURE;
word32 pubSz = 768;
word32 privSz = 768;
int initTmpRng = 0;
WC_RNG* rng = NULL;
#ifdef WOLFSSL_SMALL_STACK
unsigned char* pub = NULL;
unsigned char* priv = NULL;
WC_RNG* tmpRNG = NULL;
#else
unsigned char pub [768];
unsigned char priv[768];
WC_RNG tmpRNG[1];
#endif
WOLFSSL_MSG("wolfSSL_DH_generate_key");
#ifdef WOLFSSL_SMALL_STACK
tmpRNG = (WC_RNG*)XMALLOC(sizeof(WC_RNG), NULL, DYNAMIC_TYPE_RNG);
pub = (unsigned char*)XMALLOC(pubSz, NULL, DYNAMIC_TYPE_PUBLIC_KEY);
priv = (unsigned char*)XMALLOC(privSz, NULL, DYNAMIC_TYPE_PRIVATE_KEY);
if (tmpRNG == NULL || pub == NULL || priv == NULL) {
XFREE(tmpRNG, NULL, DYNAMIC_TYPE_RNG);
XFREE(pub, NULL, DYNAMIC_TYPE_PUBLIC_KEY);
XFREE(priv, NULL, DYNAMIC_TYPE_PRIVATE_KEY);
return ret;
}
#endif
if (dh == NULL || dh->p == NULL || dh->g == NULL)
WOLFSSL_MSG("Bad function arguments");
else if (dh->inSet == 0 && SetDhInternal(dh) != WOLFSSL_SUCCESS)
WOLFSSL_MSG("Bad DH set internal");
else if (wc_InitRng(tmpRNG) == 0) {
rng = tmpRNG;
initTmpRng = 1;
}
else {
WOLFSSL_MSG("Bad RNG Init, trying global");
if (initGlobalRNG == 0)
WOLFSSL_MSG("Global RNG no Init");
else
rng = &globalRNG;
}
if (rng) {
if (wc_DhGenerateKeyPair((DhKey*)dh->internal, rng, priv, &privSz,
pub, &pubSz) < 0)
WOLFSSL_MSG("Bad wc_DhGenerateKeyPair");
else {
if (dh->pub_key)
wolfSSL_BN_free(dh->pub_key);
dh->pub_key = wolfSSL_BN_new();
if (dh->pub_key == NULL) {
WOLFSSL_MSG("Bad DH new pub");
}
if (dh->priv_key)
wolfSSL_BN_free(dh->priv_key);
dh->priv_key = wolfSSL_BN_new();
if (dh->priv_key == NULL) {
WOLFSSL_MSG("Bad DH new priv");
}
if (dh->pub_key && dh->priv_key) {
if (wolfSSL_BN_bin2bn(pub, pubSz, dh->pub_key) == NULL)
WOLFSSL_MSG("Bad DH bn2bin error pub");
else if (wolfSSL_BN_bin2bn(priv, privSz, dh->priv_key) == NULL)
WOLFSSL_MSG("Bad DH bn2bin error priv");
else
ret = WOLFSSL_SUCCESS;
}
}
}
if (initTmpRng)
wc_FreeRng(tmpRNG);
#ifdef WOLFSSL_SMALL_STACK
XFREE(tmpRNG, NULL, DYNAMIC_TYPE_RNG);
XFREE(pub, NULL, DYNAMIC_TYPE_PUBLIC_KEY);
XFREE(priv, NULL, DYNAMIC_TYPE_PRIVATE_KEY);
#endif
return ret;
}
/* return code compliant with OpenSSL :
* size of shared secret if success, -1 if error
*/
int wolfSSL_DH_compute_key(unsigned char* key, WOLFSSL_BIGNUM* otherPub,
WOLFSSL_DH* dh)
{
int ret = WOLFSSL_FATAL_ERROR;
word32 keySz = 0;
word32 pubSz = 1024;
word32 privSz = 1024;
#ifdef WOLFSSL_SMALL_STACK
unsigned char* pub = NULL;
unsigned char* priv = NULL;
#else
unsigned char pub [1024];
unsigned char priv[1024];
#endif
WOLFSSL_MSG("wolfSSL_DH_compute_key");
#ifdef WOLFSSL_SMALL_STACK
pub = (unsigned char*)XMALLOC(pubSz, NULL, DYNAMIC_TYPE_PUBLIC_KEY);
if (pub == NULL)
return ret;
priv = (unsigned char*)XMALLOC(privSz, NULL, DYNAMIC_TYPE_PRIVATE_KEY);
if (priv == NULL) {
XFREE(pub, NULL, DYNAMIC_TYPE_PUBLIC_KEY);
return ret;
}
#endif
if (dh == NULL || dh->priv_key == NULL || otherPub == NULL)
WOLFSSL_MSG("Bad function arguments");
else if ((keySz = (word32)DH_size(dh)) == 0)
WOLFSSL_MSG("Bad DH_size");
else if (wolfSSL_BN_bn2bin(dh->priv_key, NULL) > (int)privSz)
WOLFSSL_MSG("Bad priv internal size");
else if (wolfSSL_BN_bn2bin(otherPub, NULL) > (int)pubSz)
WOLFSSL_MSG("Bad otherPub size");
else {
privSz = wolfSSL_BN_bn2bin(dh->priv_key, priv);
pubSz = wolfSSL_BN_bn2bin(otherPub, pub);
if (privSz <= 0 || pubSz <= 0)
WOLFSSL_MSG("Bad BN2bin set");
else if (wc_DhAgree((DhKey*)dh->internal, key, &keySz,
priv, privSz, pub, pubSz) < 0)
WOLFSSL_MSG("wc_DhAgree failed");
else
ret = (int)keySz;
}
#ifdef WOLFSSL_SMALL_STACK
XFREE(pub, NULL, DYNAMIC_TYPE_PUBLIC_KEY);
XFREE(priv, NULL, DYNAMIC_TYPE_PRIVATE_KEY);
#endif
return ret;
}
#endif /* NO_DH */
#ifndef NO_DSA
static void InitwolfSSL_DSA(WOLFSSL_DSA* dsa)
{
if (dsa) {
dsa->p = NULL;
dsa->q = NULL;
dsa->g = NULL;
dsa->pub_key = NULL;
dsa->priv_key = NULL;
dsa->internal = NULL;
dsa->inSet = 0;
dsa->exSet = 0;
}
}
WOLFSSL_DSA* wolfSSL_DSA_new(void)
{
WOLFSSL_DSA* external;
DsaKey* key;
WOLFSSL_MSG("wolfSSL_DSA_new");
key = (DsaKey*) XMALLOC(sizeof(DsaKey), NULL, DYNAMIC_TYPE_DSA);
if (key == NULL) {
WOLFSSL_MSG("wolfSSL_DSA_new malloc DsaKey failure");
return NULL;
}
external = (WOLFSSL_DSA*) XMALLOC(sizeof(WOLFSSL_DSA), NULL,
DYNAMIC_TYPE_DSA);
if (external == NULL) {
WOLFSSL_MSG("wolfSSL_DSA_new malloc WOLFSSL_DSA failure");
XFREE(key, NULL, DYNAMIC_TYPE_DSA);
return NULL;
}
InitwolfSSL_DSA(external);
if (wc_InitDsaKey(key) != 0) {
WOLFSSL_MSG("wolfSSL_DSA_new InitDsaKey failure");
XFREE(key, NULL, DYNAMIC_TYPE_DSA);
wolfSSL_DSA_free(external);
return NULL;
}
external->internal = key;
return external;
}
void wolfSSL_DSA_free(WOLFSSL_DSA* dsa)
{
WOLFSSL_MSG("wolfSSL_DSA_free");
if (dsa) {
if (dsa->internal) {
FreeDsaKey((DsaKey*)dsa->internal);
XFREE(dsa->internal, NULL, DYNAMIC_TYPE_DSA);
dsa->internal = NULL;
}
wolfSSL_BN_free(dsa->priv_key);
wolfSSL_BN_free(dsa->pub_key);
wolfSSL_BN_free(dsa->g);
wolfSSL_BN_free(dsa->q);
wolfSSL_BN_free(dsa->p);
InitwolfSSL_DSA(dsa); /* set back to NULLs for safety */
XFREE(dsa, NULL, DYNAMIC_TYPE_DSA);
dsa = NULL;
}
}
#endif /* NO_DSA */
#ifndef NO_RSA
static void InitwolfSSL_Rsa(WOLFSSL_RSA* rsa)
{
if (rsa) {
rsa->n = NULL;
rsa->e = NULL;
rsa->d = NULL;
rsa->p = NULL;
rsa->q = NULL;
rsa->dmp1 = NULL;
rsa->dmq1 = NULL;
rsa->iqmp = NULL;
rsa->internal = NULL;
rsa->inSet = 0;
rsa->exSet = 0;
}
}
WOLFSSL_RSA* wolfSSL_RSA_new(void)
{
WOLFSSL_RSA* external;
RsaKey* key;
WOLFSSL_MSG("wolfSSL_RSA_new");
key = (RsaKey*) XMALLOC(sizeof(RsaKey), NULL, DYNAMIC_TYPE_RSA);
if (key == NULL) {
WOLFSSL_MSG("wolfSSL_RSA_new malloc RsaKey failure");
return NULL;
}
external = (WOLFSSL_RSA*) XMALLOC(sizeof(WOLFSSL_RSA), NULL,
DYNAMIC_TYPE_RSA);
if (external == NULL) {
WOLFSSL_MSG("wolfSSL_RSA_new malloc WOLFSSL_RSA failure");
XFREE(key, NULL, DYNAMIC_TYPE_RSA);
return NULL;
}
InitwolfSSL_Rsa(external);
if (wc_InitRsaKey(key, NULL) != 0) {
WOLFSSL_MSG("InitRsaKey WOLFSSL_RSA failure");
XFREE(external, NULL, DYNAMIC_TYPE_RSA);
XFREE(key, NULL, DYNAMIC_TYPE_RSA);
return NULL;
}
#if !defined(HAVE_FIPS) && !defined(HAVE_USER_RSA) && \
!defined(HAVE_FAST_RSA) && defined(WC_RSA_BLINDING)
{
WC_RNG* rng = NULL;
rng = (WC_RNG*) XMALLOC(sizeof(WC_RNG), NULL, DYNAMIC_TYPE_RNG);
if (rng != NULL && wc_InitRng(rng) != 0) {
WOLFSSL_MSG("InitRng failure, attempting to use global RNG");
XFREE(rng, NULL, DYNAMIC_TYPE_RNG);
rng = NULL;
}
if (initGlobalRNG)
rng = &globalRNG;
if (rng == NULL) {
WOLFSSL_MSG("wolfSSL_RSA_new no WC_RNG for blinding");
XFREE(external, NULL, DYNAMIC_TYPE_RSA);
XFREE(key, NULL, DYNAMIC_TYPE_RSA);
return NULL;
}
wc_RsaSetRNG(key, rng);
}
#endif /* WC_RSA_BLINDING */
external->internal = key;
return external;
}
void wolfSSL_RSA_free(WOLFSSL_RSA* rsa)
{
WOLFSSL_MSG("wolfSSL_RSA_free");
if (rsa) {
if (rsa->internal) {
#if !defined(HAVE_FIPS) && !defined(HAVE_USER_RSA) && \
!defined(HAVE_FAST_RSA) && defined(WC_RSA_BLINDING)
WC_RNG* rng = ((RsaKey*)rsa->internal)->rng;
if (rng != NULL && rng != &globalRNG) {
wc_FreeRng(rng);
XFREE(rng, NULL, DYNAMIC_TYPE_RNG);
}
#endif /* WC_RSA_BLINDING */
wc_FreeRsaKey((RsaKey*)rsa->internal);
XFREE(rsa->internal, NULL, DYNAMIC_TYPE_RSA);
rsa->internal = NULL;
}
wolfSSL_BN_free(rsa->iqmp);
wolfSSL_BN_free(rsa->dmq1);
wolfSSL_BN_free(rsa->dmp1);
wolfSSL_BN_free(rsa->q);
wolfSSL_BN_free(rsa->p);
wolfSSL_BN_free(rsa->d);
wolfSSL_BN_free(rsa->e);
wolfSSL_BN_free(rsa->n);
InitwolfSSL_Rsa(rsa); /* set back to NULLs for safety */
XFREE(rsa, NULL, DYNAMIC_TYPE_RSA);
rsa = NULL;
}
}
#endif /* NO_RSA */
/* these defines are to make sure the functions SetIndividualExternal is not
* declared and then not used. */
#if !defined(NO_ASN) || !defined(NO_DSA) || defined(HAVE_ECC) || \
(!defined(NO_RSA) && !defined(HAVE_USER_RSA) && !defined(HAVE_FAST_RSA))
/* when calling SetIndividualExternal, mpi should be cleared by caller if no
* longer used. ie mp_clear(mpi). This is to free data when fastmath is
* disabled since a copy of mpi is made by this function and placed into bn.
*/
static int SetIndividualExternal(WOLFSSL_BIGNUM** bn, mp_int* mpi)
{
byte dynamic = 0;
WOLFSSL_MSG("Entering SetIndividualExternal");
if (mpi == NULL || bn == NULL) {
WOLFSSL_MSG("mpi NULL error");
return WOLFSSL_FATAL_ERROR;
}
if (*bn == NULL) {
*bn = wolfSSL_BN_new();
if (*bn == NULL) {
WOLFSSL_MSG("SetIndividualExternal alloc failed");
return WOLFSSL_FATAL_ERROR;
}
dynamic = 1;
}
if (mp_copy(mpi, (mp_int*)((*bn)->internal)) != MP_OKAY) {
WOLFSSL_MSG("mp_copy error");
if (dynamic == 1) {
wolfSSL_BN_free(*bn);
}
return WOLFSSL_FATAL_ERROR;
}
return WOLFSSL_SUCCESS;
}
static int SetIndividualInternal(WOLFSSL_BIGNUM* bn, mp_int* mpi)
{
WOLFSSL_MSG("Entering SetIndividualInternal");
if (bn == NULL || bn->internal == NULL) {
WOLFSSL_MSG("bn NULL error");
return WOLFSSL_FATAL_ERROR;
}
if (mpi == NULL || (mp_init(mpi) != MP_OKAY)) {
WOLFSSL_MSG("mpi NULL error");
return WOLFSSL_FATAL_ERROR;
}
if (mp_copy((mp_int*)bn->internal, mpi) != MP_OKAY) {
WOLFSSL_MSG("mp_copy error");
return WOLFSSL_FATAL_ERROR;
}
return WOLFSSL_SUCCESS;
}
#ifndef NO_ASN
WOLFSSL_BIGNUM *wolfSSL_ASN1_INTEGER_to_BN(const WOLFSSL_ASN1_INTEGER *ai,
WOLFSSL_BIGNUM *bn)
{
mp_int mpi;
word32 idx = 0;
int ret;
WOLFSSL_ENTER("wolfSSL_ASN1_INTEGER_to_BN");
if (ai == NULL) {
return NULL;
}
if ((ret = GetInt(&mpi, ai->data, &idx, sizeof(ai->data))) != 0) {
/* expecting ASN1 format for INTEGER */
WOLFSSL_LEAVE("wolfSSL_ASN1_INTEGER_to_BN", ret);
return NULL;
}
/* mp_clear needs called because mpi is copied and causes memory leak with
* --disable-fastmath */
ret = SetIndividualExternal(&bn, &mpi);
mp_clear(&mpi);
if (ret != WOLFSSL_SUCCESS) {
return NULL;
}
return bn;
}
#endif /* !NO_ASN */
#if !defined(NO_DSA) && !defined(NO_DH)
WOLFSSL_DH *wolfSSL_DSA_dup_DH(const WOLFSSL_DSA *dsa)
{
WOLFSSL_DH* dh;
DhKey* key;
WOLFSSL_ENTER("wolfSSL_DSA_dup_DH");
if (dsa == NULL) {
return NULL;
}
dh = wolfSSL_DH_new();
if (dh == NULL) {
return NULL;
}
key = (DhKey*)dh->internal;
if (dsa->p != NULL &&
SetIndividualInternal(((WOLFSSL_DSA*)dsa)->p, &key->p) != WOLFSSL_SUCCESS) {
WOLFSSL_MSG("rsa p key error");
wolfSSL_DH_free(dh);
return NULL;
}
if (dsa->g != NULL &&
SetIndividualInternal(((WOLFSSL_DSA*)dsa)->g, &key->g) != WOLFSSL_SUCCESS) {
WOLFSSL_MSG("rsa g key error");
wolfSSL_DH_free(dh);
return NULL;
}
if (SetIndividualExternal(&dh->p, &key->p) != WOLFSSL_SUCCESS) {
WOLFSSL_MSG("dsa p key error");
wolfSSL_DH_free(dh);
return NULL;
}
if (SetIndividualExternal(&dh->g, &key->g) != WOLFSSL_SUCCESS) {
WOLFSSL_MSG("dsa g key error");
wolfSSL_DH_free(dh);
return NULL;
}
return dh;
}
#endif /* !defined(NO_DSA) && !defined(NO_DH) */
#endif /* !NO_RSA && !NO_DSA */
#ifndef NO_DSA
/* wolfSSL -> OpenSSL */
static int SetDsaExternal(WOLFSSL_DSA* dsa)
{
DsaKey* key;
WOLFSSL_MSG("Entering SetDsaExternal");
if (dsa == NULL || dsa->internal == NULL) {
WOLFSSL_MSG("dsa key NULL error");
return WOLFSSL_FATAL_ERROR;
}
key = (DsaKey*)dsa->internal;
if (SetIndividualExternal(&dsa->p, &key->p) != WOLFSSL_SUCCESS) {
WOLFSSL_MSG("dsa p key error");
return WOLFSSL_FATAL_ERROR;
}
if (SetIndividualExternal(&dsa->q, &key->q) != WOLFSSL_SUCCESS) {
WOLFSSL_MSG("dsa q key error");
return WOLFSSL_FATAL_ERROR;
}
if (SetIndividualExternal(&dsa->g, &key->g) != WOLFSSL_SUCCESS) {
WOLFSSL_MSG("dsa g key error");
return WOLFSSL_FATAL_ERROR;
}
if (SetIndividualExternal(&dsa->pub_key, &key->y) != WOLFSSL_SUCCESS) {
WOLFSSL_MSG("dsa y key error");
return WOLFSSL_FATAL_ERROR;
}
if (SetIndividualExternal(&dsa->priv_key, &key->x) != WOLFSSL_SUCCESS) {
WOLFSSL_MSG("dsa x key error");
return WOLFSSL_FATAL_ERROR;
}
dsa->exSet = 1;
return WOLFSSL_SUCCESS;
}
/* Openssl -> WolfSSL */
static int SetDsaInternal(WOLFSSL_DSA* dsa)
{
DsaKey* key;
WOLFSSL_MSG("Entering SetDsaInternal");
if (dsa == NULL || dsa->internal == NULL) {
WOLFSSL_MSG("dsa key NULL error");
return WOLFSSL_FATAL_ERROR;
}
key = (DsaKey*)dsa->internal;
if (dsa->p != NULL &&
SetIndividualInternal(dsa->p, &key->p) != WOLFSSL_SUCCESS) {
WOLFSSL_MSG("rsa p key error");
return WOLFSSL_FATAL_ERROR;
}
if (dsa->q != NULL &&
SetIndividualInternal(dsa->q, &key->q) != WOLFSSL_SUCCESS) {
WOLFSSL_MSG("rsa q key error");
return WOLFSSL_FATAL_ERROR;
}
if (dsa->g != NULL &&
SetIndividualInternal(dsa->g, &key->g) != WOLFSSL_SUCCESS) {
WOLFSSL_MSG("rsa g key error");
return WOLFSSL_FATAL_ERROR;
}
if (dsa->pub_key != NULL) {
if (SetIndividualInternal(dsa->pub_key, &key->y) != WOLFSSL_SUCCESS) {
WOLFSSL_MSG("rsa pub_key error");
return WOLFSSL_FATAL_ERROR;
}
/* public key */
key->type = DSA_PUBLIC;
}
if (dsa->priv_key != NULL) {
if (SetIndividualInternal(dsa->priv_key, &key->x) != WOLFSSL_SUCCESS) {
WOLFSSL_MSG("rsa priv_key error");
return WOLFSSL_FATAL_ERROR;
}
/* private key */
key->type = DSA_PRIVATE;
}
dsa->inSet = 1;
return WOLFSSL_SUCCESS;
}
#endif /* NO_DSA */
#if !defined(NO_RSA)
#if !defined(HAVE_USER_RSA) && !defined(HAVE_FAST_RSA)
/* WolfSSL -> OpenSSL */
static int SetRsaExternal(WOLFSSL_RSA* rsa)
{
RsaKey* key;
WOLFSSL_MSG("Entering SetRsaExternal");
if (rsa == NULL || rsa->internal == NULL) {
WOLFSSL_MSG("rsa key NULL error");
return WOLFSSL_FATAL_ERROR;
}
key = (RsaKey*)rsa->internal;
if (SetIndividualExternal(&rsa->n, &key->n) != WOLFSSL_SUCCESS) {
WOLFSSL_MSG("rsa n key error");
return WOLFSSL_FATAL_ERROR;
}
if (SetIndividualExternal(&rsa->e, &key->e) != WOLFSSL_SUCCESS) {
WOLFSSL_MSG("rsa e key error");
return WOLFSSL_FATAL_ERROR;
}
if (SetIndividualExternal(&rsa->d, &key->d) != WOLFSSL_SUCCESS) {
WOLFSSL_MSG("rsa d key error");
return WOLFSSL_FATAL_ERROR;
}
if (SetIndividualExternal(&rsa->p, &key->p) != WOLFSSL_SUCCESS) {
WOLFSSL_MSG("rsa p key error");
return WOLFSSL_FATAL_ERROR;
}
if (SetIndividualExternal(&rsa->q, &key->q) != WOLFSSL_SUCCESS) {
WOLFSSL_MSG("rsa q key error");
return WOLFSSL_FATAL_ERROR;
}
if (SetIndividualExternal(&rsa->dmp1, &key->dP) != WOLFSSL_SUCCESS) {
WOLFSSL_MSG("rsa dP key error");
return WOLFSSL_FATAL_ERROR;
}
if (SetIndividualExternal(&rsa->dmq1, &key->dQ) != WOLFSSL_SUCCESS) {
WOLFSSL_MSG("rsa dQ key error");
return WOLFSSL_FATAL_ERROR;
}
if (SetIndividualExternal(&rsa->iqmp, &key->u) != WOLFSSL_SUCCESS) {
WOLFSSL_MSG("rsa u key error");
return WOLFSSL_FATAL_ERROR;
}
rsa->exSet = 1;
return WOLFSSL_SUCCESS;
}
/* Openssl -> WolfSSL */
static int SetRsaInternal(WOLFSSL_RSA* rsa)
{
RsaKey* key;
WOLFSSL_MSG("Entering SetRsaInternal");
if (rsa == NULL || rsa->internal == NULL) {
WOLFSSL_MSG("rsa key NULL error");
return WOLFSSL_FATAL_ERROR;
}
key = (RsaKey*)rsa->internal;
if (SetIndividualInternal(rsa->n, &key->n) != WOLFSSL_SUCCESS) {
WOLFSSL_MSG("rsa n key error");
return WOLFSSL_FATAL_ERROR;
}
if (SetIndividualInternal(rsa->e, &key->e) != WOLFSSL_SUCCESS) {
WOLFSSL_MSG("rsa e key error");
return WOLFSSL_FATAL_ERROR;
}
/* public key */
key->type = RSA_PUBLIC;
if (rsa->d != NULL) {
if (SetIndividualInternal(rsa->d, &key->d) != WOLFSSL_SUCCESS) {
WOLFSSL_MSG("rsa d key error");
return WOLFSSL_FATAL_ERROR;
}
/* private key */
key->type = RSA_PRIVATE;
}
if (rsa->p != NULL &&
SetIndividualInternal(rsa->p, &key->p) != WOLFSSL_SUCCESS) {
WOLFSSL_MSG("rsa p key error");
return WOLFSSL_FATAL_ERROR;
}
if (rsa->q != NULL &&
SetIndividualInternal(rsa->q, &key->q) != WOLFSSL_SUCCESS) {
WOLFSSL_MSG("rsa q key error");
return WOLFSSL_FATAL_ERROR;
}
if (rsa->dmp1 != NULL &&
SetIndividualInternal(rsa->dmp1, &key->dP) != WOLFSSL_SUCCESS) {
WOLFSSL_MSG("rsa dP key error");
return WOLFSSL_FATAL_ERROR;
}
if (rsa->dmq1 != NULL &&
SetIndividualInternal(rsa->dmq1, &key->dQ) != WOLFSSL_SUCCESS) {
WOLFSSL_MSG("rsa dQ key error");
return WOLFSSL_FATAL_ERROR;
}
if (rsa->iqmp != NULL &&
SetIndividualInternal(rsa->iqmp, &key->u) != WOLFSSL_SUCCESS) {
WOLFSSL_MSG("rsa u key error");
return WOLFSSL_FATAL_ERROR;
}
rsa->inSet = 1;
return WOLFSSL_SUCCESS;
}
#endif /* HAVE_USER_RSA */
/* return compliant with OpenSSL
* 1 if success, 0 if error
*/
int wolfSSL_RSA_generate_key_ex(WOLFSSL_RSA* rsa, int bits, WOLFSSL_BIGNUM* bn,
void* cb)
{
int ret = WOLFSSL_FAILURE;
(void)cb;
(void)bn;
(void)bits;
WOLFSSL_ENTER("wolfSSL_RSA_generate_key_ex");
if (rsa == NULL || rsa->internal == NULL) {
/* bit size checked during make key call */
WOLFSSL_MSG("bad arguments");
return WOLFSSL_FAILURE;
}
#ifdef WOLFSSL_KEY_GEN
{
#ifdef WOLFSSL_SMALL_STACK
WC_RNG* rng = NULL;
#else
WC_RNG rng[1];
#endif
#ifdef WOLFSSL_SMALL_STACK
rng = (WC_RNG*)XMALLOC(sizeof(WC_RNG), NULL, DYNAMIC_TYPE_RNG);
if (rng == NULL)
return WOLFSSL_FAILURE;
#endif
if (wc_InitRng(rng) < 0)
WOLFSSL_MSG("RNG init failed");
else if (wc_MakeRsaKey((RsaKey*)rsa->internal,
bits, WC_RSA_EXPONENT, rng) != MP_OKAY)
WOLFSSL_MSG("wc_MakeRsaKey failed");
else if (SetRsaExternal(rsa) != WOLFSSL_SUCCESS)
WOLFSSL_MSG("SetRsaExternal failed");
else {
rsa->inSet = 1;
ret = WOLFSSL_SUCCESS;
}
wc_FreeRng(rng);
#ifdef WOLFSSL_SMALL_STACK
XFREE(rng, NULL, DYNAMIC_TYPE_RNG);
#endif
}
#else
WOLFSSL_MSG("No Key Gen built in");
#endif
return ret;
}
/* WOLFSSL_SUCCESS on ok */
int wolfSSL_RSA_blinding_on(WOLFSSL_RSA* rsa, WOLFSSL_BN_CTX* bn)
{
(void)rsa;
(void)bn;
WOLFSSL_MSG("wolfSSL_RSA_blinding_on");
return WOLFSSL_SUCCESS; /* on by default */
}
/* return compliant with OpenSSL
* size of encrypted data if success , -1 if error
*/
int wolfSSL_RSA_public_encrypt(int len, const unsigned char* fr,
unsigned char* to, WOLFSSL_RSA* rsa, int padding)
{
int tlen = 0;
int initTmpRng = 0;
WC_RNG* rng = NULL;
#ifdef WOLFSSL_SMALL_STACK
WC_RNG* tmpRNG = NULL;
#else
WC_RNG tmpRNG[1];
#endif
#if !defined(HAVE_FIPS) && !defined(HAVE_USER_RSA) && !defined(HAVE_FAST_RSA)
int mgf = WC_MGF1NONE;
enum wc_HashType hash = WC_HASH_TYPE_NONE;
#endif
WOLFSSL_MSG("wolfSSL_RSA_public_encrypt");
if (rsa == NULL || rsa->internal == NULL || fr == NULL) {
WOLFSSL_MSG("Bad function arguments");
return 0;
}
/* Check and remap the padding to internal values, if needed. */
#if !defined(HAVE_FIPS) && !defined(HAVE_USER_RSA) && !defined(HAVE_FAST_RSA)
if (padding == RSA_PKCS1_PADDING)
padding = WC_RSA_PKCSV15_PAD;
else if (padding == RSA_PKCS1_OAEP_PADDING) {
padding = WC_RSA_OAEP_PAD;
hash = WC_HASH_TYPE_SHA;
mgf = WC_MGF1SHA1;
}
#else
if (padding == RSA_PKCS1_PADDING)
;
#endif
else {
WOLFSSL_MSG("wolfSSL_RSA_public_encrypt unsupported padding");
return 0;
}
if (rsa->inSet == 0)
{
WOLFSSL_MSG("No RSA internal set, do it");
if (SetRsaInternal(rsa) != WOLFSSL_SUCCESS) {
WOLFSSL_MSG("SetRsaInternal failed");
return 0;
}
}
#if !defined(HAVE_FIPS) && !defined(HAVE_USER_RSA) && \
!defined(HAVE_FAST_RSA) && defined(WC_RSA_BLINDING)
rng = ((RsaKey*)rsa->internal)->rng;
#endif
if (rng == NULL) {
#ifdef WOLFSSL_SMALL_STACK
tmpRNG = (WC_RNG*)XMALLOC(sizeof(WC_RNG), NULL, DYNAMIC_TYPE_RNG);
if (tmpRNG == NULL)
return WOLFSSL_FATAL_ERROR;
#endif
if (wc_InitRng(tmpRNG) == 0) {
rng = tmpRNG;
initTmpRng = 1;
}
else {
WOLFSSL_MSG("Bad RNG Init, trying global");
if (initGlobalRNG == 0)
WOLFSSL_MSG("Global RNG no Init");
else
rng = &globalRNG;
}
}
/* size of 'to' buffer must be size of RSA key */
if (rng) {
#if !defined(HAVE_FIPS) && !defined(HAVE_USER_RSA) && !defined(HAVE_FAST_RSA)
tlen = wc_RsaPublicEncrypt_ex(fr, len, to, wolfSSL_RSA_size(rsa),
(RsaKey*)rsa->internal, rng, padding,
hash, mgf, NULL, 0);
#else
tlen = wc_RsaPublicEncrypt(fr, len, to, wolfSSL_RSA_size(rsa),
(RsaKey*)rsa->internal, rng);
#endif
if (tlen <= 0) {
WOLFSSL_MSG("wolfSSL_RSA_public_encrypt failed");
}
else {
WOLFSSL_MSG("wolfSSL_RSA_public_encrypt success");
}
}
if (initTmpRng)
wc_FreeRng(tmpRNG);
#ifdef WOLFSSL_SMALL_STACK
XFREE(tmpRNG, NULL, DYNAMIC_TYPE_RNG);
#endif
return tlen;
}
/* return compliant with OpenSSL
* size of plain recovered data if success , -1 if error
*/
int wolfSSL_RSA_private_decrypt(int len, const unsigned char* fr,
unsigned char* to, WOLFSSL_RSA* rsa, int padding)
{
int tlen = 0;
#if !defined(HAVE_FIPS) && !defined(HAVE_USER_RSA) && !defined(HAVE_FAST_RSA)
int mgf = WC_MGF1NONE;
enum wc_HashType hash = WC_HASH_TYPE_NONE;
#endif
WOLFSSL_MSG("wolfSSL_RSA_private_decrypt");
if (rsa == NULL || rsa->internal == NULL || fr == NULL) {
WOLFSSL_MSG("Bad function arguments");
return 0;
}
/* Check and remap the padding to internal values, if needed. */
#if !defined(HAVE_FIPS) && !defined(HAVE_USER_RSA) && !defined(HAVE_FAST_RSA)
if (padding == RSA_PKCS1_PADDING)
padding = WC_RSA_PKCSV15_PAD;
else if (padding == RSA_PKCS1_OAEP_PADDING) {
padding = WC_RSA_OAEP_PAD;
hash = WC_HASH_TYPE_SHA;
mgf = WC_MGF1SHA1;
}
#else
if (padding == RSA_PKCS1_PADDING)
;
#endif
else {
WOLFSSL_MSG("wolfSSL_RSA_private_decrypt unsupported padding");
return 0;
}
if (rsa->inSet == 0)
{
WOLFSSL_MSG("No RSA internal set, do it");
if (SetRsaInternal(rsa) != WOLFSSL_SUCCESS) {
WOLFSSL_MSG("SetRsaInternal failed");
return 0;
}
}
/* size of 'to' buffer must be size of RSA key */
#if !defined(HAVE_FIPS) && !defined(HAVE_USER_RSA) && !defined(HAVE_FAST_RSA)
tlen = wc_RsaPrivateDecrypt_ex(fr, len, to, wolfSSL_RSA_size(rsa),
(RsaKey*)rsa->internal, padding,
hash, mgf, NULL, 0);
#else
tlen = wc_RsaPrivateDecrypt(fr, len, to, wolfSSL_RSA_size(rsa),
(RsaKey*)rsa->internal);
#endif
if (tlen <= 0) {
WOLFSSL_MSG("wolfSSL_RSA_private_decrypt failed");
}
else {
WOLFSSL_MSG("wolfSSL_RSA_private_decrypt success");
}
return tlen;
}
/* return compliant with OpenSSL
* RSA modulus size in bytes, -1 if error
*/
int wolfSSL_RSA_size(const WOLFSSL_RSA* rsa)
{
WOLFSSL_MSG("wolfSSL_RSA_size");
if (rsa == NULL)
return WOLFSSL_FATAL_ERROR;
return wolfSSL_BN_num_bytes(rsa->n);
}
#endif /* NO_RSA */
#ifndef NO_DSA
/* return code compliant with OpenSSL :
* 1 if success, 0 if error
*/
int wolfSSL_DSA_generate_key(WOLFSSL_DSA* dsa)
{
int ret = WOLFSSL_FAILURE;
WOLFSSL_ENTER("wolfSSL_DSA_generate_key");
if (dsa == NULL || dsa->internal == NULL) {
WOLFSSL_MSG("Bad arguments");
return WOLFSSL_FAILURE;
}
if (dsa->inSet == 0) {
WOLFSSL_MSG("No DSA internal set, do it");
if (SetDsaInternal(dsa) != WOLFSSL_SUCCESS) {
WOLFSSL_MSG("SetDsaInternal failed");
return ret;
}
}
#ifdef WOLFSSL_KEY_GEN
{
int initTmpRng = 0;
WC_RNG *rng = NULL;
#ifdef WOLFSSL_SMALL_STACK
WC_RNG *tmpRNG = NULL;
#else
WC_RNG tmpRNG[1];
#endif
#ifdef WOLFSSL_SMALL_STACK
tmpRNG = (WC_RNG*)XMALLOC(sizeof(WC_RNG), NULL, DYNAMIC_TYPE_RNG);
if (tmpRNG == NULL)
return WOLFSSL_FATAL_ERROR;
#endif
if (wc_InitRng(tmpRNG) == 0) {
rng = tmpRNG;
initTmpRng = 1;
}
else {
WOLFSSL_MSG("Bad RNG Init, trying global");
if (initGlobalRNG == 0)
WOLFSSL_MSG("Global RNG no Init");
else
rng = &globalRNG;
}
if (rng) {
if (wc_MakeDsaKey(rng, (DsaKey*)dsa->internal) != MP_OKAY)
WOLFSSL_MSG("wc_MakeDsaKey failed");
else if (SetDsaExternal(dsa) != WOLFSSL_SUCCESS)
WOLFSSL_MSG("SetDsaExternal failed");
else
ret = WOLFSSL_SUCCESS;
}
if (initTmpRng)
wc_FreeRng(tmpRNG);
#ifdef WOLFSSL_SMALL_STACK
XFREE(tmpRNG, NULL, DYNAMIC_TYPE_RNG);
#endif
}
#else /* WOLFSSL_KEY_GEN */
WOLFSSL_MSG("No Key Gen built in");
#endif
return ret;
}
/* return code compliant with OpenSSL :
* 1 if success, 0 if error
*/
int wolfSSL_DSA_generate_parameters_ex(WOLFSSL_DSA* dsa, int bits,
unsigned char* seed, int seedLen,
int* counterRet,
unsigned long* hRet, void* cb)
{
int ret = WOLFSSL_FAILURE;
(void)bits;
(void)seed;
(void)seedLen;
(void)counterRet;
(void)hRet;
(void)cb;
WOLFSSL_ENTER("wolfSSL_DSA_generate_parameters_ex");
if (dsa == NULL || dsa->internal == NULL) {
WOLFSSL_MSG("Bad arguments");
return WOLFSSL_FAILURE;
}
#ifdef WOLFSSL_KEY_GEN
{
int initTmpRng = 0;
WC_RNG *rng = NULL;
#ifdef WOLFSSL_SMALL_STACK
WC_RNG *tmpRNG = NULL;
#else
WC_RNG tmpRNG[1];
#endif
#ifdef WOLFSSL_SMALL_STACK
tmpRNG = (WC_RNG*)XMALLOC(sizeof(WC_RNG), NULL, DYNAMIC_TYPE_RNG);
if (tmpRNG == NULL)
return WOLFSSL_FATAL_ERROR;
#endif
if (wc_InitRng(tmpRNG) == 0) {
rng = tmpRNG;
initTmpRng = 1;
}
else {
WOLFSSL_MSG("Bad RNG Init, trying global");
if (initGlobalRNG == 0)
WOLFSSL_MSG("Global RNG no Init");
else
rng = &globalRNG;
}
if (rng) {
if (wc_MakeDsaParameters(rng, bits,
(DsaKey*)dsa->internal) != MP_OKAY)
WOLFSSL_MSG("wc_MakeDsaParameters failed");
else if (SetDsaExternal(dsa) != WOLFSSL_SUCCESS)
WOLFSSL_MSG("SetDsaExternal failed");
else
ret = WOLFSSL_SUCCESS;
}
if (initTmpRng)
wc_FreeRng(tmpRNG);
#ifdef WOLFSSL_SMALL_STACK
XFREE(tmpRNG, NULL, DYNAMIC_TYPE_RNG);
#endif
}
#else /* WOLFSSL_KEY_GEN */
WOLFSSL_MSG("No Key Gen built in");
#endif
return ret;
}
/* return WOLFSSL_SUCCESS on success, < 0 otherwise */
int wolfSSL_DSA_do_sign(const unsigned char* d, unsigned char* sigRet,
WOLFSSL_DSA* dsa)
{
int ret = WOLFSSL_FATAL_ERROR;
int initTmpRng = 0;
WC_RNG* rng = NULL;
#ifdef WOLFSSL_SMALL_STACK
WC_RNG* tmpRNG = NULL;
#else
WC_RNG tmpRNG[1];
#endif
WOLFSSL_ENTER("wolfSSL_DSA_do_sign");
if (d == NULL || sigRet == NULL || dsa == NULL) {
WOLFSSL_MSG("Bad function arguments");
return ret;
}
if (dsa->inSet == 0)
{
WOLFSSL_MSG("No DSA internal set, do it");
if (SetDsaInternal(dsa) != WOLFSSL_SUCCESS) {
WOLFSSL_MSG("SetDsaInternal failed");
return ret;
}
}
#ifdef WOLFSSL_SMALL_STACK
tmpRNG = (WC_RNG*)XMALLOC(sizeof(WC_RNG), NULL, DYNAMIC_TYPE_RNG);
if (tmpRNG == NULL)
return WOLFSSL_FATAL_ERROR;
#endif
if (wc_InitRng(tmpRNG) == 0) {
rng = tmpRNG;
initTmpRng = 1;
}
else {
WOLFSSL_MSG("Bad RNG Init, trying global");
if (initGlobalRNG == 0)
WOLFSSL_MSG("Global RNG no Init");
else
rng = &globalRNG;
}
if (rng) {
if (DsaSign(d, sigRet, (DsaKey*)dsa->internal, rng) < 0)
WOLFSSL_MSG("DsaSign failed");
else
ret = WOLFSSL_SUCCESS;
}
if (initTmpRng)
wc_FreeRng(tmpRNG);
#ifdef WOLFSSL_SMALL_STACK
XFREE(tmpRNG, NULL, DYNAMIC_TYPE_RNG);
#endif
return ret;
}
int wolfSSL_DSA_do_verify(const unsigned char* d, unsigned char* sig,
WOLFSSL_DSA* dsa, int *dsacheck)
{
int ret = WOLFSSL_FATAL_ERROR;
WOLFSSL_ENTER("wolfSSL_DSA_do_verify");
if (d == NULL || sig == NULL || dsa == NULL) {
WOLFSSL_MSG("Bad function arguments");
return WOLFSSL_FATAL_ERROR;
}
if (dsa->inSet == 0)
{
WOLFSSL_MSG("No DSA internal set, do it");
if (SetDsaInternal(dsa) != WOLFSSL_SUCCESS) {
WOLFSSL_MSG("SetDsaInternal failed");
return WOLFSSL_FATAL_ERROR;
}
}
ret = DsaVerify(d, sig, (DsaKey*)dsa->internal, dsacheck);
if (ret != 0 || *dsacheck != 1) {
WOLFSSL_MSG("DsaVerify failed");
return ret;
}
return WOLFSSL_SUCCESS;
}
#endif /* NO_DSA */
#ifndef NO_RSA
/* return SSL_SUCCES on ok, 0 otherwise */
int wolfSSL_RSA_sign(int type, const unsigned char* m,
unsigned int mLen, unsigned char* sigRet,
unsigned int* sigLen, WOLFSSL_RSA* rsa)
{
word32 outLen;
word32 signSz;
int initTmpRng = 0;
WC_RNG* rng = NULL;
int ret = 0;
#ifdef WOLFSSL_SMALL_STACK
WC_RNG* tmpRNG = NULL;
byte* encodedSig = NULL;
#else
WC_RNG tmpRNG[1];
byte encodedSig[MAX_ENCODED_SIG_SZ];
#endif
WOLFSSL_MSG("wolfSSL_RSA_sign");
if (m == NULL || sigRet == NULL || sigLen == NULL || rsa == NULL) {
WOLFSSL_MSG("Bad function arguments");
return 0;
}
switch (type) {
#ifdef WOLFSSL_MD2
case NID_md2: type = MD2h; break;
#endif
#ifndef NO_MD5
case NID_md5: type = MD5h; break;
#endif
#ifndef NO_SHA
case NID_sha1: type = SHAh; break;
#endif
#ifndef NO_SHA256
case NID_sha256: type = SHA256h; break;
#endif
#ifdef WOLFSSL_SHA384
case NID_sha384: type = SHA384h; break;
#endif
#ifdef WOLFSSL_SHA512
case NID_sha512: type = SHA512h; break;
#endif
default:
WOLFSSL_MSG("This NID (md type) not configured or not implemented");
return 0;
}
if (rsa->inSet == 0)
{
WOLFSSL_MSG("No RSA internal set, do it");
if (SetRsaInternal(rsa) != WOLFSSL_SUCCESS) {
WOLFSSL_MSG("SetRsaInternal failed");
return 0;
}
}
outLen = (word32)wolfSSL_BN_num_bytes(rsa->n);
#ifdef WOLFSSL_SMALL_STACK
tmpRNG = (WC_RNG*)XMALLOC(sizeof(WC_RNG), NULL, DYNAMIC_TYPE_RNG);
if (tmpRNG == NULL)
return 0;
encodedSig = (byte*)XMALLOC(MAX_ENCODED_SIG_SZ, NULL,
DYNAMIC_TYPE_SIGNATURE);
if (encodedSig == NULL) {
XFREE(tmpRNG, NULL, DYNAMIC_TYPE_RNG);
return 0;
}
#endif
if (outLen == 0)
WOLFSSL_MSG("Bad RSA size");
else if (wc_InitRng(tmpRNG) == 0) {
rng = tmpRNG;
initTmpRng = 1;
}
else {
WOLFSSL_MSG("Bad RNG Init, trying global");
if (initGlobalRNG == 0)
WOLFSSL_MSG("Global RNG no Init");
else
rng = &globalRNG;
}
if (rng) {
signSz = wc_EncodeSignature(encodedSig, m, mLen, type);
if (signSz == 0) {
WOLFSSL_MSG("Bad Encode Signature");
}
else {
ret = wc_RsaSSL_Sign(encodedSig, signSz, sigRet, outLen,
(RsaKey*)rsa->internal, rng);
if (ret <= 0) {
WOLFSSL_MSG("Bad Rsa Sign");
ret = 0;
}
else {
ret = WOLFSSL_SUCCESS;
*sigLen = ret;
}
}
}
if (initTmpRng)
wc_FreeRng(tmpRNG);
#ifdef WOLFSSL_SMALL_STACK
XFREE(tmpRNG, NULL, DYNAMIC_TYPE_RNG);
XFREE(encodedSig, NULL, DYNAMIC_TYPE_SIGNATURE);
#endif
if (ret == WOLFSSL_SUCCESS)
WOLFSSL_MSG("wolfSSL_RSA_sign success");
else {
WOLFSSL_MSG("wolfSSL_RSA_sign failed");
}
return ret;
}
int wolfSSL_RSA_public_decrypt(int flen, const unsigned char* from,
unsigned char* to, WOLFSSL_RSA* rsa, int padding)
{
int tlen = 0;
WOLFSSL_MSG("wolfSSL_RSA_public_decrypt");
if (rsa == NULL || rsa->internal == NULL || from == NULL) {
WOLFSSL_MSG("Bad function arguments");
return 0;
}
if (padding != RSA_PKCS1_PADDING) {
WOLFSSL_MSG("wolfSSL_RSA_public_decrypt unsupported padding");
return 0;
}
if (rsa->inSet == 0)
{
WOLFSSL_MSG("No RSA internal set, do it");
if (SetRsaInternal(rsa) != WOLFSSL_SUCCESS) {
WOLFSSL_MSG("SetRsaInternal failed");
return 0;
}
}
/* size of 'to' buffer must be size of RSA key */
tlen = wc_RsaSSL_Verify(from, flen, to, wolfSSL_RSA_size(rsa),
(RsaKey*)rsa->internal);
if (tlen <= 0)
WOLFSSL_MSG("wolfSSL_RSA_public_decrypt failed");
else {
WOLFSSL_MSG("wolfSSL_RSA_public_decrypt success");
}
return tlen;
}
/* generate p-1 and q-1, WOLFSSL_SUCCESS on ok */
int wolfSSL_RSA_GenAdd(WOLFSSL_RSA* rsa)
{
int err;
mp_int tmp;
WOLFSSL_MSG("wolfSSL_RsaGenAdd");
if (rsa == NULL || rsa->p == NULL || rsa->q == NULL || rsa->d == NULL ||
rsa->dmp1 == NULL || rsa->dmq1 == NULL) {
WOLFSSL_MSG("rsa no init error");
return WOLFSSL_FATAL_ERROR;
}
if (mp_init(&tmp) != MP_OKAY) {
WOLFSSL_MSG("mp_init error");
return WOLFSSL_FATAL_ERROR;
}
err = mp_sub_d((mp_int*)rsa->p->internal, 1, &tmp);
if (err != MP_OKAY) {
WOLFSSL_MSG("mp_sub_d error");
}
else
err = mp_mod((mp_int*)rsa->d->internal, &tmp,
(mp_int*)rsa->dmp1->internal);
if (err != MP_OKAY) {
WOLFSSL_MSG("mp_mod error");
}
else
err = mp_sub_d((mp_int*)rsa->q->internal, 1, &tmp);
if (err != MP_OKAY) {
WOLFSSL_MSG("mp_sub_d error");
}
else
err = mp_mod((mp_int*)rsa->d->internal, &tmp,
(mp_int*)rsa->dmq1->internal);
mp_clear(&tmp);
if (err == MP_OKAY)
return WOLFSSL_SUCCESS;
else
return WOLFSSL_FATAL_ERROR;
}
#endif /* NO_RSA */
#ifdef WOLFSSL_SIGNAL
int wolfSSL_HMAC_CTX_init(HMAC_CTX* ctx)
{
WOLFSSL_MSG("wolfSSL_HMAC_CTX_init");
(void) ctx;
return SSL_SUCCESS;
}
int wolfSSL_HMAC_Init(WOLFSSL_HMAC_CTX* ctx, const void* key, int keylen,
const EVP_MD* type)
{
int hmac_error = 0;
WOLFSSL_MSG("wolfSSL_HMAC_Init");
if (ctx == NULL) {
WOLFSSL_MSG("no ctx on init");
return SSL_FAILURE;
}
if (type) {
WOLFSSL_MSG("init has type");
if (XSTRNCMP(type, "MD5", 3) == 0) {
WOLFSSL_MSG("md5 hmac");
ctx->type = MD5;
}
else if (XSTRNCMP(type, "SHA256", 6) == 0) {
WOLFSSL_MSG("sha256 hmac");
ctx->type = SHA256;
}
/* has to be last since would pick or 256, 384, or 512 too */
else if (XSTRNCMP(type, "SHA", 3) == 0) {
WOLFSSL_MSG("sha hmac");
ctx->type = SHA;
}
else {
WOLFSSL_MSG("bad init type");
return SSL_FAILURE;
}
}
if (key && keylen) {
WOLFSSL_MSG("keying hmac");
if (wc_HmacInit(&ctx->hmac, NULL, INVALID_DEVID) == 0) {
hmac_error = wc_HmacSetKey(&ctx->hmac, ctx->type, (const byte*)key,
(word32)keylen);
if (hmac_error < 0){
wc_HmacFree(&ctx->hmac);
return SSL_FAILURE;
}
}
} else {
WOLFSSL_MSG("no key or keylen");
return SSL_FAILURE;
}
return SSL_SUCCESS;
}
int wolfSSL_HMAC_Init_ex(WOLFSSL_HMAC_CTX* ctx, const void* key, int len,
const EVP_MD* md, void* impl)
{
(void)impl;
return wolfSSL_HMAC_Init(ctx, key, len, md);
}
int wolfSSL_HMAC_Update(WOLFSSL_HMAC_CTX* ctx, const unsigned char* data,
int len)
{
int hmac_error = 0;
WOLFSSL_MSG("wolfSSL_HMAC_Update");
if (ctx == NULL || data == NULL) {
WOLFSSL_MSG("no ctx or data");
return SSL_FAILURE;
}
WOLFSSL_MSG("updating hmac");
hmac_error = wc_HmacUpdate(&ctx->hmac, data, (word32)len);
if (hmac_error < 0){
WOLFSSL_MSG("hmac update error");
return SSL_FAILURE;
}
return SSL_SUCCESS;
}
int wolfSSL_HMAC_Final(WOLFSSL_HMAC_CTX* ctx, unsigned char* hash,
unsigned int* len)
{
int hmac_error;
WOLFSSL_MSG("wolfSSL_HMAC_Final");
if (ctx == NULL || hash == NULL || len == NULL) {
WOLFSSL_MSG("invalid parameter");
return SSL_FAILURE;
}
WOLFSSL_MSG("final hmac");
hmac_error = wc_HmacFinal(&ctx->hmac, hash);
if (hmac_error < 0){
WOLFSSL_MSG("final hmac error");
return SSL_FAILURE;
}
if (len) {
WOLFSSL_MSG("setting output len");
switch (ctx->type) {
case MD5:
*len = MD5_DIGEST_SIZE;
break;
case SHA:
*len = SHA_DIGEST_SIZE;
break;
case SHA256:
*len = SHA256_DIGEST_SIZE;
break;
default:
WOLFSSL_MSG("bad hmac type");
return SSL_FAILURE;
}
}
return SSL_SUCCESS;
}
int wolfSSL_HMAC_cleanup(WOLFSSL_HMAC_CTX* ctx)
{
WOLFSSL_MSG("wolfSSL_HMAC_cleanup");
if (ctx)
wc_HmacFree(&ctx->hmac);
return SSL_SUCCESS;
}
#else /* WOLFSSL_SIGNAL */
void wolfSSL_HMAC_CTX_init(HMAC_CTX* ctx)
{
WOLFSSL_MSG("wolfSSL_HMAC_CTX_init");
(void) ctx;
}
void wolfSSL_HMAC_Init(WOLFSSL_HMAC_CTX* ctx, const void* key, int keylen,
const EVP_MD* type)
{
WOLFSSL_MSG("wolfSSL_HMAC_Init");
if (ctx == NULL) {
WOLFSSL_MSG("no ctx on init");
return;
}
if (type) {
WOLFSSL_MSG("init has type");
if (XSTRNCMP(type, "MD5", 3) == 0) {
WOLFSSL_MSG("md5 hmac");
ctx->type = WC_MD5;
}
else if (XSTRNCMP(type, "SHA256", 6) == 0) {
WOLFSSL_MSG("sha256 hmac");
ctx->type = WC_SHA256;
}
/* has to be last since would pick or 256, 384, or 512 too */
else if (XSTRNCMP(type, "SHA", 3) == 0) {
WOLFSSL_MSG("sha hmac");
ctx->type = WC_SHA;
}
else {
WOLFSSL_MSG("bad init type");
}
}
if (key && keylen) {
WOLFSSL_MSG("keying hmac");
if (wc_HmacInit(&ctx->hmac, NULL, INVALID_DEVID) == 0) {
wc_HmacSetKey(&ctx->hmac, ctx->type, (const byte*)key,
(word32)keylen);
}
/* OpenSSL compat, no error */
}
}
void wolfSSL_HMAC_Init_ex(WOLFSSL_HMAC_CTX* ctx, const void* key, int len,
const EVP_MD* md, void* impl)
{
(void)impl;
wolfSSL_HMAC_Init(ctx, key, len, md);
}
void wolfSSL_HMAC_Update(WOLFSSL_HMAC_CTX* ctx, const unsigned char* data,
int len)
{
WOLFSSL_MSG("wolfSSL_HMAC_Update");
if (ctx && data) {
WOLFSSL_MSG("updating hmac");
wc_HmacUpdate(&ctx->hmac, data, (word32)len);
/* OpenSSL compat, no error */
}
}
void wolfSSL_HMAC_Final(WOLFSSL_HMAC_CTX* ctx, unsigned char* hash,
unsigned int* len)
{
WOLFSSL_MSG("wolfSSL_HMAC_Final");
if (ctx && hash) {
WOLFSSL_MSG("final hmac");
wc_HmacFinal(&ctx->hmac, hash);
/* OpenSSL compat, no error */
if (len) {
WOLFSSL_MSG("setting output len");
switch (ctx->type) {
case WC_MD5:
*len = WC_MD5_DIGEST_SIZE;
break;
case WC_SHA:
*len = WC_SHA_DIGEST_SIZE;
break;
case WC_SHA256:
*len = WC_SHA256_DIGEST_SIZE;
break;
default:
WOLFSSL_MSG("bad hmac type");
}
}
}
}
void wolfSSL_HMAC_cleanup(WOLFSSL_HMAC_CTX* ctx)
{
WOLFSSL_MSG("wolfSSL_HMAC_cleanup");
if (ctx)
wc_HmacFree(&ctx->hmac);
}
#endif /* WOLFSSL_SIGNAL */
const WOLFSSL_EVP_MD* wolfSSL_EVP_get_digestbynid(int id)
{
WOLFSSL_MSG("wolfSSL_get_digestbynid");
switch(id) {
#ifndef NO_MD5
case NID_md5:
return wolfSSL_EVP_md5();
#endif
#ifndef NO_SHA
case NID_sha1:
return wolfSSL_EVP_sha1();
#endif
default:
WOLFSSL_MSG("Bad digest id value");
}
return NULL;
}
WOLFSSL_RSA* wolfSSL_EVP_PKEY_get1_RSA(WOLFSSL_EVP_PKEY* key)
{
(void)key;
WOLFSSL_MSG("wolfSSL_EVP_PKEY_get1_RSA not implemented");
return NULL;
}
WOLFSSL_DSA* wolfSSL_EVP_PKEY_get1_DSA(WOLFSSL_EVP_PKEY* key)
{
(void)key;
WOLFSSL_MSG("wolfSSL_EVP_PKEY_get1_DSA not implemented");
return NULL;
}
WOLFSSL_EC_KEY* wolfSSL_EVP_PKEY_get1_EC_KEY(WOLFSSL_EVP_PKEY* key)
{
(void)key;
WOLFSSL_MSG("wolfSSL_EVP_PKEY_get1_EC_KEY not implemented");
return NULL;
}
void* wolfSSL_EVP_X_STATE(const WOLFSSL_EVP_CIPHER_CTX* ctx)
{
WOLFSSL_MSG("wolfSSL_EVP_X_STATE");
if (ctx) {
switch (ctx->cipherType) {
case ARC4_TYPE:
WOLFSSL_MSG("returning arc4 state");
return (void*)&ctx->cipher.arc4.x;
default:
WOLFSSL_MSG("bad x state type");
return 0;
}
}
return NULL;
}
int wolfSSL_EVP_X_STATE_LEN(const WOLFSSL_EVP_CIPHER_CTX* ctx)
{
WOLFSSL_MSG("wolfSSL_EVP_X_STATE_LEN");
if (ctx) {
switch (ctx->cipherType) {
case ARC4_TYPE:
WOLFSSL_MSG("returning arc4 state size");
return sizeof(Arc4);
default:
WOLFSSL_MSG("bad x state type");
return 0;
}
}
return 0;
}
#ifndef NO_DES3
void wolfSSL_3des_iv(WOLFSSL_EVP_CIPHER_CTX* ctx, int doset,
unsigned char* iv, int len)
{
(void)len;
WOLFSSL_MSG("wolfSSL_3des_iv");
if (ctx == NULL || iv == NULL) {
WOLFSSL_MSG("Bad function argument");
return;
}
if (doset)
wc_Des3_SetIV(&ctx->cipher.des3, iv); /* OpenSSL compat, no ret */
else
XMEMCPY(iv, &ctx->cipher.des3.reg, DES_BLOCK_SIZE);
}
#endif /* NO_DES3 */
#ifndef NO_AES
void wolfSSL_aes_ctr_iv(WOLFSSL_EVP_CIPHER_CTX* ctx, int doset,
unsigned char* iv, int len)
{
(void)len;
WOLFSSL_MSG("wolfSSL_aes_ctr_iv");
if (ctx == NULL || iv == NULL) {
WOLFSSL_MSG("Bad function argument");
return;
}
if (doset)
wc_AesSetIV(&ctx->cipher.aes, iv); /* OpenSSL compat, no ret */
else
XMEMCPY(iv, &ctx->cipher.aes.reg, AES_BLOCK_SIZE);
}
#endif /* NO_AES */
const WOLFSSL_EVP_MD* wolfSSL_EVP_ripemd160(void)
{
WOLFSSL_MSG("wolfSSL_ripemd160");
return NULL;
}
int wolfSSL_EVP_MD_size(const WOLFSSL_EVP_MD* type)
{
WOLFSSL_MSG("wolfSSL_EVP_MD_size");
if (type == NULL) {
WOLFSSL_MSG("No md type arg");
return BAD_FUNC_ARG;
}
if (XSTRNCMP(type, "SHA256", 6) == 0) {
return WC_SHA256_DIGEST_SIZE;
}
#ifndef NO_MD5
else if (XSTRNCMP(type, "MD5", 3) == 0) {
return WC_MD5_DIGEST_SIZE;
}
#endif
#ifdef WOLFSSL_SHA224
else if (XSTRNCMP(type, "SHA224", 6) == 0) {
return WC_SHA224_DIGEST_SIZE;
}
#endif
#ifdef WOLFSSL_SHA384
else if (XSTRNCMP(type, "SHA384", 6) == 0) {
return WC_SHA384_DIGEST_SIZE;
}
#endif
#ifdef WOLFSSL_SHA512
else if (XSTRNCMP(type, "SHA512", 6) == 0) {
return WC_SHA512_DIGEST_SIZE;
}
#endif
#ifndef NO_SHA
/* has to be last since would pick or 256, 384, or 512 too */
else if (XSTRNCMP(type, "SHA", 3) == 0) {
return WC_SHA_DIGEST_SIZE;
}
#endif
return BAD_FUNC_ARG;
}
int wolfSSL_EVP_CIPHER_CTX_iv_length(const WOLFSSL_EVP_CIPHER_CTX* ctx)
{
WOLFSSL_MSG("wolfSSL_EVP_CIPHER_CTX_iv_length");
switch (ctx->cipherType) {
case AES_128_CBC_TYPE :
case AES_192_CBC_TYPE :
case AES_256_CBC_TYPE :
WOLFSSL_MSG("AES CBC");
return AES_BLOCK_SIZE;
#ifdef WOLFSSL_AES_COUNTER
case AES_128_CTR_TYPE :
case AES_192_CTR_TYPE :
case AES_256_CTR_TYPE :
WOLFSSL_MSG("AES CTR");
return AES_BLOCK_SIZE;
#endif
case DES_CBC_TYPE :
WOLFSSL_MSG("DES CBC");
return DES_BLOCK_SIZE;
case DES_EDE3_CBC_TYPE :
WOLFSSL_MSG("DES EDE3 CBC");
return DES_BLOCK_SIZE;
#ifdef HAVE_IDEA
case IDEA_CBC_TYPE :
WOLFSSL_MSG("IDEA CBC");
return IDEA_BLOCK_SIZE;
#endif
case ARC4_TYPE :
WOLFSSL_MSG("ARC4");
return 0;
case NULL_CIPHER_TYPE :
WOLFSSL_MSG("NULL");
return 0;
default: {
WOLFSSL_MSG("bad type");
}
}
return 0;
}
int wolfSSL_EVP_CIPHER_iv_length(const WOLFSSL_EVP_CIPHER* cipher)
{
const char *name = (const char *)cipher;
WOLFSSL_MSG("wolfSSL_EVP_CIPHER_iv_length");
#ifndef NO_AES
if ((XSTRNCMP(name, EVP_AES_128_CBC, XSTRLEN(EVP_AES_128_CBC)) == 0) ||
(XSTRNCMP(name, EVP_AES_192_CBC, XSTRLEN(EVP_AES_192_CBC)) == 0) ||
(XSTRNCMP(name, EVP_AES_256_CBC, XSTRLEN(EVP_AES_256_CBC)) == 0)) {
return AES_BLOCK_SIZE;
}
#ifdef WOLFSSL_AES_COUNTER
if ((XSTRNCMP(name, EVP_AES_128_CTR, XSTRLEN(EVP_AES_128_CTR)) == 0) ||
(XSTRNCMP(name, EVP_AES_192_CTR, XSTRLEN(EVP_AES_192_CTR)) == 0) ||
(XSTRNCMP(name, EVP_AES_256_CTR, XSTRLEN(EVP_AES_256_CTR)) == 0)) {
return AES_BLOCK_SIZE;
}
#endif
#endif
#ifndef NO_DES3
if ((XSTRNCMP(name, EVP_DES_CBC, XSTRLEN(EVP_DES_CBC)) == 0) ||
(XSTRNCMP(name, EVP_DES_EDE3_CBC, XSTRLEN(EVP_DES_EDE3_CBC)) == 0)) {
return DES_BLOCK_SIZE;
}
#endif
#ifdef HAVE_IDEA
if (XSTRNCMP(name, EVP_IDEA_CBC, XSTRLEN(EVP_IDEA_CBC)) == 0)
return IDEA_BLOCK_SIZE;
#endif
(void)name;
return 0;
}
/* Free the dynamically allocated data.
*
* p Pointer to dynamically allocated memory.
*/
void wolfSSL_OPENSSL_free(void* p)
{
WOLFSSL_MSG("wolfSSL_OPENSSL_free");
XFREE(p, NULL, DYNAMIC_TYPE_OPENSSL);
}
#if defined(WOLFSSL_KEY_GEN)
static int EncryptDerKey(byte *der, int *derSz, const EVP_CIPHER* cipher,
unsigned char* passwd, int passwdSz, byte **cipherInfo)
{
int ret, paddingSz;
word32 idx, cipherInfoSz;
#ifdef WOLFSSL_SMALL_STACK
EncryptedInfo* info = NULL;
#else
EncryptedInfo info[1];
#endif
WOLFSSL_ENTER("EncryptDerKey");
if (der == NULL || derSz == NULL || cipher == NULL ||
passwd == NULL || cipherInfo == NULL)
return BAD_FUNC_ARG;
#ifdef WOLFSSL_SMALL_STACK
info = (EncryptedInfo*)XMALLOC(sizeof(EncryptedInfo), NULL,
DYNAMIC_TYPE_ENCRYPTEDINFO);
if (info == NULL) {
WOLFSSL_MSG("malloc failed");
return WOLFSSL_FAILURE;
}
#endif
info->set = 0;
info->ctx = NULL;
info->consumed = 0;
/* set iv size */
if (XSTRNCMP(cipher, "DES", 3) == 0)
info->ivSz = DES_IV_SIZE;
else if (XSTRNCMP(cipher, "AES", 3) == 0)
info->ivSz = AES_IV_SIZE;
else {
WOLFSSL_MSG("unsupported cipher");
#ifdef WOLFSSL_SMALL_STACK
XFREE(info, NULL, DYNAMIC_TYPE_ENCRYPTEDINFO);
#endif
return WOLFSSL_FAILURE;
}
/* set the cipher name on info */
XSTRNCPY(info->name, cipher, NAME_SZ);
info->name[NAME_SZ-1] = '\0'; /* null term */
/* Generate a random salt */
if (wolfSSL_RAND_bytes(info->iv, info->ivSz) != WOLFSSL_SUCCESS) {
WOLFSSL_MSG("generate iv failed");
#ifdef WOLFSSL_SMALL_STACK
XFREE(info, NULL, DYNAMIC_TYPE_ENCRYPTEDINFO);
#endif
return WOLFSSL_FAILURE;
}
/* add the padding before encryption */
paddingSz = ((*derSz)/info->ivSz + 1) * info->ivSz - (*derSz);
if (paddingSz == 0)
paddingSz = info->ivSz;
XMEMSET(der+(*derSz), (byte)paddingSz, paddingSz);
(*derSz) += paddingSz;
/* encrypt buffer */
if (wolfssl_encrypt_buffer_key(der, *derSz,
passwd, passwdSz, info) != WOLFSSL_SUCCESS) {
WOLFSSL_MSG("encrypt key failed");
#ifdef WOLFSSL_SMALL_STACK
XFREE(info, NULL, DYNAMIC_TYPE_ENCRYPTEDINFO);
#endif
return WOLFSSL_FAILURE;
}
/* create cipher info : 'cipher_name,Salt(hex)' */
cipherInfoSz = (word32)(2*info->ivSz + XSTRLEN(info->name) + 2);
*cipherInfo = (byte*)XMALLOC(cipherInfoSz, NULL,
DYNAMIC_TYPE_STRING);
if (*cipherInfo == NULL) {
WOLFSSL_MSG("malloc failed");
#ifdef WOLFSSL_SMALL_STACK
XFREE(info, NULL, DYNAMIC_TYPE_ENCRYPTEDINFO);
#endif
return WOLFSSL_FAILURE;
}
XSTRNCPY((char*)*cipherInfo, info->name, cipherInfoSz);
XSTRNCAT((char*)*cipherInfo, ",", 1);
idx = (word32)XSTRLEN((char*)*cipherInfo);
cipherInfoSz -= idx;
ret = Base16_Encode(info->iv, info->ivSz, *cipherInfo+idx, &cipherInfoSz);
#ifdef WOLFSSL_SMALL_STACK
XFREE(info, NULL, DYNAMIC_TYPE_ENCRYPTEDINFO);
#endif
if (ret != 0) {
WOLFSSL_MSG("Base16_Encode failed");
XFREE(*cipherInfo, NULL, DYNAMIC_TYPE_STRING);
return WOLFSSL_FAILURE;
}
return WOLFSSL_SUCCESS;
}
#endif /* defined(WOLFSSL_KEY_GEN) */
#if defined(WOLFSSL_KEY_GEN) || defined(WOLFSSL_CERT_GEN)
int wolfSSL_PEM_write_bio_PrivateKey(WOLFSSL_BIO* bio, WOLFSSL_EVP_PKEY* key,
const WOLFSSL_EVP_CIPHER* cipher,
unsigned char* passwd, int len,
pem_password_cb* cb, void* arg)
{
byte* keyDer;
int pemSz;
int type;
int ret;
(void)cipher;
(void)passwd;
(void)len;
(void)cb;
(void)arg;
WOLFSSL_ENTER("wolfSSL_PEM_write_bio_PrivateKey");
if (bio == NULL || key == NULL) {
return WOLFSSL_FAILURE;
}
keyDer = (byte*)key->pkey.ptr;
switch (key->type) {
case EVP_PKEY_RSA:
type = PRIVATEKEY_TYPE;
break;
#ifndef NO_DSA
case EVP_PKEY_DSA:
type = DSA_PRIVATEKEY_TYPE;
break;
#endif
case EVP_PKEY_EC:
type = ECC_PRIVATEKEY_TYPE;
break;
default:
WOLFSSL_MSG("Unknown Key type!");
type = PRIVATEKEY_TYPE;
}
pemSz = wc_DerToPem(keyDer, key->pkey_sz, NULL, 0, type);
if (pemSz < 0) {
WOLFSSL_LEAVE("wolfSSL_PEM_write_bio_PrivateKey", pemSz);
return WOLFSSL_FAILURE;
}
if (bio->mem != NULL) {
XFREE(bio->mem, NULL, DYNAMIC_TYPE_OPENSSL);
}
bio->mem = (byte*)XMALLOC(pemSz, NULL, DYNAMIC_TYPE_OPENSSL);
bio->memLen = pemSz;
ret = wc_DerToPemEx(keyDer, key->pkey_sz, bio->mem, bio->memLen,
NULL, type);
if (ret < 0) {
WOLFSSL_LEAVE("wolfSSL_PEM_write_bio_PrivateKey", ret);
return WOLFSSL_FAILURE;
}
return WOLFSSL_SUCCESS;
}
#endif /* defined(WOLFSSL_KEY_GEN) || defined(WOLFSSL_CERT_GEN) */
#if defined(WOLFSSL_KEY_GEN) && !defined(NO_RSA)
/* return code compliant with OpenSSL :
* 1 if success, 0 if error
*/
int wolfSSL_PEM_write_mem_RSAPrivateKey(RSA* rsa, const EVP_CIPHER* cipher,
unsigned char* passwd, int passwdSz,
unsigned char **pem, int *plen)
{
byte *derBuf, *tmp, *cipherInfo = NULL;
int der_max_len = 0, derSz = 0;
WOLFSSL_ENTER("wolfSSL_PEM_write_mem_RSAPrivateKey");
if (pem == NULL || plen == NULL || rsa == NULL || rsa->internal == NULL) {
WOLFSSL_MSG("Bad function arguments");
return WOLFSSL_FAILURE;
}
if (rsa->inSet == 0) {
WOLFSSL_MSG("No RSA internal set, do it");
if (SetRsaInternal(rsa) != WOLFSSL_SUCCESS) {
WOLFSSL_MSG("SetRsaInternal failed");
return WOLFSSL_FAILURE;
}
}
/* 5 > size of n, d, p, q, d%(p-1), d(q-1), 1/q%p, e + ASN.1 additional
* informations
*/
der_max_len = 5 * wolfSSL_RSA_size(rsa) + AES_BLOCK_SIZE;
derBuf = (byte*)XMALLOC(der_max_len, NULL, DYNAMIC_TYPE_DER);
if (derBuf == NULL) {
WOLFSSL_MSG("malloc failed");
return WOLFSSL_FAILURE;
}
/* Key to DER */
derSz = wc_RsaKeyToDer((RsaKey*)rsa->internal, derBuf, der_max_len);
if (derSz < 0) {
WOLFSSL_MSG("wc_RsaKeyToDer failed");
XFREE(derBuf, NULL, DYNAMIC_TYPE_DER);
return WOLFSSL_FAILURE;
}
/* encrypt DER buffer if required */
if (passwd != NULL && passwdSz > 0 && cipher != NULL) {
int ret;
ret = EncryptDerKey(derBuf, &derSz, cipher,
passwd, passwdSz, &cipherInfo);
if (ret != WOLFSSL_SUCCESS) {
WOLFSSL_MSG("EncryptDerKey failed");
XFREE(derBuf, NULL, DYNAMIC_TYPE_DER);
return ret;
}
/* tmp buffer with a max size */
*plen = (derSz * 2) + sizeof(BEGIN_RSA_PRIV) +
sizeof(END_RSA_PRIV) + HEADER_ENCRYPTED_KEY_SIZE;
}
else /* tmp buffer with a max size */
*plen = (derSz * 2) + sizeof(BEGIN_RSA_PRIV) + sizeof(END_RSA_PRIV);
tmp = (byte*)XMALLOC(*plen, NULL, DYNAMIC_TYPE_PEM);
if (tmp == NULL) {
WOLFSSL_MSG("malloc failed");
XFREE(derBuf, NULL, DYNAMIC_TYPE_DER);
if (cipherInfo != NULL)
XFREE(cipherInfo, NULL, DYNAMIC_TYPE_STRING);
return WOLFSSL_FAILURE;
}
/* DER to PEM */
*plen = wc_DerToPemEx(derBuf, derSz, tmp, *plen, cipherInfo, PRIVATEKEY_TYPE);
if (*plen <= 0) {
WOLFSSL_MSG("wc_DerToPemEx failed");
XFREE(derBuf, NULL, DYNAMIC_TYPE_DER);
XFREE(tmp, NULL, DYNAMIC_TYPE_PEM);
if (cipherInfo != NULL)
XFREE(cipherInfo, NULL, DYNAMIC_TYPE_STRING);
return WOLFSSL_FAILURE;
}
XFREE(derBuf, NULL, DYNAMIC_TYPE_DER);
if (cipherInfo != NULL)
XFREE(cipherInfo, NULL, DYNAMIC_TYPE_STRING);
*pem = (byte*)XMALLOC((*plen)+1, NULL, DYNAMIC_TYPE_KEY);
if (*pem == NULL) {
WOLFSSL_MSG("malloc failed");
XFREE(tmp, NULL, DYNAMIC_TYPE_PEM);
return WOLFSSL_FAILURE;
}
XMEMSET(*pem, 0, (*plen)+1);
if (XMEMCPY(*pem, tmp, *plen) == NULL) {
WOLFSSL_MSG("XMEMCPY failed");
XFREE(pem, NULL, DYNAMIC_TYPE_KEY);
XFREE(tmp, NULL, DYNAMIC_TYPE_PEM);
return WOLFSSL_FAILURE;
}
XFREE(tmp, NULL, DYNAMIC_TYPE_PEM);
return WOLFSSL_SUCCESS;
}
#ifndef NO_FILESYSTEM
/* return code compliant with OpenSSL :
* 1 if success, 0 if error
*/
int wolfSSL_PEM_write_RSAPrivateKey(FILE *fp, WOLFSSL_RSA *rsa,
const EVP_CIPHER *enc,
unsigned char *kstr, int klen,
pem_password_cb *cb, void *u)
{
byte *pem;
int plen, ret;
(void)cb;
(void)u;
WOLFSSL_MSG("wolfSSL_PEM_write_RSAPrivateKey");
if (fp == NULL || rsa == NULL || rsa->internal == NULL) {
WOLFSSL_MSG("Bad function arguments");
return WOLFSSL_FAILURE;
}
ret = wolfSSL_PEM_write_mem_RSAPrivateKey(rsa, enc, kstr, klen, &pem, &plen);
if (ret != WOLFSSL_SUCCESS) {
WOLFSSL_MSG("wolfSSL_PEM_write_mem_RSAPrivateKey failed");
return WOLFSSL_FAILURE;
}
ret = (int)XFWRITE(pem, plen, 1, fp);
if (ret != 1) {
WOLFSSL_MSG("RSA private key file write failed");
return WOLFSSL_FAILURE;
}
XFREE(pem, NULL, DYNAMIC_TYPE_KEY);
return WOLFSSL_SUCCESS;
}
#endif /* NO_FILESYSTEM */
int wolfSSL_PEM_write_bio_RSAPrivateKey(WOLFSSL_BIO* bio, RSA* rsa,
const EVP_CIPHER* cipher,
unsigned char* passwd, int len,
pem_password_cb* cb, void* arg)
{
(void)bio;
(void)rsa;
(void)cipher;
(void)passwd;
(void)len;
(void)cb;
(void)arg;
WOLFSSL_MSG("wolfSSL_PEM_write_bio_RSAPrivateKey not implemented");
return WOLFSSL_FAILURE;
}
#endif /* defined(WOLFSSL_KEY_GEN) && !defined(NO_RSA) */
#ifdef HAVE_ECC
/* EC_POINT Openssl -> WolfSSL */
static int SetECPointInternal(WOLFSSL_EC_POINT *p)
{
ecc_point* point;
WOLFSSL_ENTER("SetECPointInternal");
if (p == NULL || p->internal == NULL) {
WOLFSSL_MSG("ECPoint NULL error");
return WOLFSSL_FATAL_ERROR;
}
point = (ecc_point*)p->internal;
if (p->X != NULL && SetIndividualInternal(p->X, point->x) != WOLFSSL_SUCCESS) {
WOLFSSL_MSG("ecc point X error");
return WOLFSSL_FATAL_ERROR;
}
if (p->Y != NULL && SetIndividualInternal(p->Y, point->y) != WOLFSSL_SUCCESS) {
WOLFSSL_MSG("ecc point Y error");
return WOLFSSL_FATAL_ERROR;
}
if (p->Z != NULL && SetIndividualInternal(p->Z, point->z) != WOLFSSL_SUCCESS) {
WOLFSSL_MSG("ecc point Z error");
return WOLFSSL_FATAL_ERROR;
}
p->inSet = 1;
return WOLFSSL_SUCCESS;
}
/* EC_POINT WolfSSL -> OpenSSL */
static int SetECPointExternal(WOLFSSL_EC_POINT *p)
{
ecc_point* point;
WOLFSSL_ENTER("SetECPointExternal");
if (p == NULL || p->internal == NULL) {
WOLFSSL_MSG("ECPoint NULL error");
return WOLFSSL_FATAL_ERROR;
}
point = (ecc_point*)p->internal;
if (SetIndividualExternal(&p->X, point->x) != WOLFSSL_SUCCESS) {
WOLFSSL_MSG("ecc point X error");
return WOLFSSL_FATAL_ERROR;
}
if (SetIndividualExternal(&p->Y, point->y) != WOLFSSL_SUCCESS) {
WOLFSSL_MSG("ecc point Y error");
return WOLFSSL_FATAL_ERROR;
}
if (SetIndividualExternal(&p->Z, point->z) != WOLFSSL_SUCCESS) {
WOLFSSL_MSG("ecc point Z error");
return WOLFSSL_FATAL_ERROR;
}
p->exSet = 1;
return WOLFSSL_SUCCESS;
}
/* EC_KEY wolfSSL -> OpenSSL */
static int SetECKeyExternal(WOLFSSL_EC_KEY* eckey)
{
ecc_key* key;
WOLFSSL_ENTER("SetECKeyExternal");
if (eckey == NULL || eckey->internal == NULL) {
WOLFSSL_MSG("ec key NULL error");
return WOLFSSL_FATAL_ERROR;
}
key = (ecc_key*)eckey->internal;
/* set group (OID, nid and idx) */
eckey->group->curve_oid = ecc_sets[key->idx].oidSum;
eckey->group->curve_nid = ecc_sets[key->idx].id;
eckey->group->curve_idx = key->idx;
if (eckey->pub_key->internal != NULL) {
/* set the internal public key */
if (wc_ecc_copy_point(&key->pubkey,
(ecc_point*)eckey->pub_key->internal) != MP_OKAY) {
WOLFSSL_MSG("SetECKeyExternal ecc_copy_point failed");
return WOLFSSL_FATAL_ERROR;
}
/* set the external pubkey (point) */
if (SetECPointExternal(eckey->pub_key) != WOLFSSL_SUCCESS) {
WOLFSSL_MSG("SetECKeyExternal SetECPointExternal failed");
return WOLFSSL_FATAL_ERROR;
}
}
/* set the external privkey */
if (key->type == ECC_PRIVATEKEY) {
if (SetIndividualExternal(&eckey->priv_key, &key->k) != WOLFSSL_SUCCESS) {
WOLFSSL_MSG("ec priv key error");
return WOLFSSL_FATAL_ERROR;
}
}
eckey->exSet = 1;
return WOLFSSL_SUCCESS;
}
/* EC_KEY Openssl -> WolfSSL */
static int SetECKeyInternal(WOLFSSL_EC_KEY* eckey)
{
ecc_key* key;
WOLFSSL_ENTER("SetECKeyInternal");
if (eckey == NULL || eckey->internal == NULL) {
WOLFSSL_MSG("ec key NULL error");
return WOLFSSL_FATAL_ERROR;
}
key = (ecc_key*)eckey->internal;
/* validate group */
if ((eckey->group->curve_idx < 0) ||
(wc_ecc_is_valid_idx(eckey->group->curve_idx) == 0)) {
WOLFSSL_MSG("invalid curve idx");
return WOLFSSL_FATAL_ERROR;
}
/* set group (idx of curve and corresponding domain parameters) */
key->idx = eckey->group->curve_idx;
key->dp = &ecc_sets[key->idx];
/* set pubkey (point) */
if (eckey->pub_key != NULL) {
if (SetECPointInternal(eckey->pub_key) != WOLFSSL_SUCCESS) {
WOLFSSL_MSG("ec key pub error");
return WOLFSSL_FATAL_ERROR;
}
/* public key */
key->type = ECC_PUBLICKEY;
}
/* set privkey */
if (eckey->priv_key != NULL) {
if (SetIndividualInternal(eckey->priv_key, &key->k) != WOLFSSL_SUCCESS) {
WOLFSSL_MSG("ec key priv error");
return WOLFSSL_FATAL_ERROR;
}
/* private key */
key->type = ECC_PRIVATEKEY;
}
eckey->inSet = 1;
return WOLFSSL_SUCCESS;
}
WOLFSSL_EC_POINT *wolfSSL_EC_KEY_get0_public_key(const WOLFSSL_EC_KEY *key)
{
WOLFSSL_ENTER("wolfSSL_EC_KEY_get0_public_key");
if (key == NULL) {
WOLFSSL_MSG("wolfSSL_EC_KEY_get0_group Bad arguments");
return NULL;
}
return key->pub_key;
}
const WOLFSSL_EC_GROUP *wolfSSL_EC_KEY_get0_group(const WOLFSSL_EC_KEY *key)
{
WOLFSSL_ENTER("wolfSSL_EC_KEY_get0_group");
if (key == NULL) {
WOLFSSL_MSG("wolfSSL_EC_KEY_get0_group Bad arguments");
return NULL;
}
return key->group;
}
/* return code compliant with OpenSSL :
* 1 if success, 0 if error
*/
int wolfSSL_EC_KEY_set_private_key(WOLFSSL_EC_KEY *key,
const WOLFSSL_BIGNUM *priv_key)
{
WOLFSSL_ENTER("wolfSSL_EC_KEY_set_private_key");
if (key == NULL || priv_key == NULL) {
WOLFSSL_MSG("Bad arguments");
return WOLFSSL_FAILURE;
}
/* free key if previously set */
if (key->priv_key != NULL)
wolfSSL_BN_free(key->priv_key);
key->priv_key = wolfSSL_BN_dup(priv_key);
if (key->priv_key == NULL) {
WOLFSSL_MSG("key ecc priv key NULL");
return WOLFSSL_FAILURE;
}
if (SetECKeyInternal(key) != WOLFSSL_SUCCESS) {
WOLFSSL_MSG("SetECKeyInternal failed");
wolfSSL_BN_free(key->priv_key);
return WOLFSSL_FAILURE;
}
return WOLFSSL_SUCCESS;
}
WOLFSSL_BIGNUM *wolfSSL_EC_KEY_get0_private_key(const WOLFSSL_EC_KEY *key)
{
WOLFSSL_ENTER("wolfSSL_EC_KEY_get0_private_key");
if (key == NULL) {
WOLFSSL_MSG("wolfSSL_EC_KEY_get0_private_key Bad arguments");
return NULL;
}
return key->priv_key;
}
WOLFSSL_EC_KEY *wolfSSL_EC_KEY_new_by_curve_name(int nid)
{
WOLFSSL_EC_KEY *key;
int x;
WOLFSSL_ENTER("wolfSSL_EC_KEY_new_by_curve_name");
key = wolfSSL_EC_KEY_new();
if (key == NULL) {
WOLFSSL_MSG("wolfSSL_EC_KEY_new failure");
return NULL;
}
/* set the nid of the curve */
key->group->curve_nid = nid;
/* search and set the corresponding internal curve idx */
for (x = 0; ecc_sets[x].size != 0; x++)
if (ecc_sets[x].id == key->group->curve_nid) {
key->group->curve_idx = x;
key->group->curve_oid = ecc_sets[x].oidSum;
break;
}
return key;
}
static void InitwolfSSL_ECKey(WOLFSSL_EC_KEY* key)
{
if (key) {
key->group = NULL;
key->pub_key = NULL;
key->priv_key = NULL;
key->internal = NULL;
key->inSet = 0;
key->exSet = 0;
}
}
WOLFSSL_EC_KEY *wolfSSL_EC_KEY_new(void)
{
WOLFSSL_EC_KEY *external;
ecc_key* key;
WOLFSSL_ENTER("wolfSSL_EC_KEY_new");
external = (WOLFSSL_EC_KEY*)XMALLOC(sizeof(WOLFSSL_EC_KEY), NULL,
DYNAMIC_TYPE_ECC);
if (external == NULL) {
WOLFSSL_MSG("wolfSSL_EC_KEY_new malloc WOLFSSL_EC_KEY failure");
return NULL;
}
XMEMSET(external, 0, sizeof(WOLFSSL_EC_KEY));
InitwolfSSL_ECKey(external);
external->internal = (ecc_key*)XMALLOC(sizeof(ecc_key), NULL,
DYNAMIC_TYPE_ECC);
if (external->internal == NULL) {
WOLFSSL_MSG("wolfSSL_EC_KEY_new malloc ecc key failure");
wolfSSL_EC_KEY_free(external);
return NULL;
}
XMEMSET(external->internal, 0, sizeof(ecc_key));
wc_ecc_init((ecc_key*)external->internal);
/* public key */
external->pub_key = (WOLFSSL_EC_POINT*)XMALLOC(sizeof(WOLFSSL_EC_POINT),
NULL, DYNAMIC_TYPE_ECC);
if (external->pub_key == NULL) {
WOLFSSL_MSG("wolfSSL_EC_KEY_new malloc WOLFSSL_EC_POINT failure");
wolfSSL_EC_KEY_free(external);
return NULL;
}
XMEMSET(external->pub_key, 0, sizeof(WOLFSSL_EC_POINT));
key = (ecc_key*)external->internal;
external->pub_key->internal = (ecc_point*)&key->pubkey;
/* curve group */
external->group = (WOLFSSL_EC_GROUP*)XMALLOC(sizeof(WOLFSSL_EC_GROUP), NULL,
DYNAMIC_TYPE_ECC);
if (external->group == NULL) {
WOLFSSL_MSG("wolfSSL_EC_KEY_new malloc WOLFSSL_EC_GROUP failure");
wolfSSL_EC_KEY_free(external);
return NULL;
}
XMEMSET(external->group, 0, sizeof(WOLFSSL_EC_GROUP));
/* private key */
external->priv_key = wolfSSL_BN_new();
if (external->priv_key == NULL) {
WOLFSSL_MSG("wolfSSL_BN_new failure");
wolfSSL_EC_KEY_free(external);
return NULL;
}
return external;
}
void wolfSSL_EC_KEY_free(WOLFSSL_EC_KEY *key)
{
WOLFSSL_ENTER("wolfSSL_EC_KEY_free");
if (key != NULL) {
if (key->internal != NULL) {
wc_ecc_free((ecc_key*)key->internal);
XFREE(key->internal, NULL, DYNAMIC_TYPE_ECC);
}
wolfSSL_BN_free(key->priv_key);
wolfSSL_EC_POINT_free(key->pub_key);
wolfSSL_EC_GROUP_free(key->group);
InitwolfSSL_ECKey(key); /* set back to NULLs for safety */
XFREE(key, NULL, DYNAMIC_TYPE_ECC);
key = NULL;
}
}
int wolfSSL_EC_KEY_set_group(WOLFSSL_EC_KEY *key, WOLFSSL_EC_GROUP *group)
{
(void)key;
(void)group;
WOLFSSL_ENTER("wolfSSL_EC_KEY_set_group");
WOLFSSL_MSG("wolfSSL_EC_KEY_set_group TBD");
return -1;
}
int wolfSSL_EC_KEY_generate_key(WOLFSSL_EC_KEY *key)
{
int initTmpRng = 0;
WC_RNG* rng = NULL;
#ifdef WOLFSSL_SMALL_STACK
WC_RNG* tmpRNG = NULL;
#else
WC_RNG tmpRNG[1];
#endif
WOLFSSL_ENTER("wolfSSL_EC_KEY_generate_key");
if (key == NULL || key->internal == NULL ||
key->group == NULL || key->group->curve_idx < 0) {
WOLFSSL_MSG("wolfSSL_EC_KEY_generate_key Bad arguments");
return 0;
}
#ifdef WOLFSSL_SMALL_STACK
tmpRNG = (WC_RNG*)XMALLOC(sizeof(WC_RNG), NULL, DYNAMIC_TYPE_RNG);
if (tmpRNG == NULL)
return 0;
#endif
if (wc_InitRng(tmpRNG) == 0) {
rng = tmpRNG;
initTmpRng = 1;
}
else {
WOLFSSL_MSG("Bad RNG Init, trying global");
if (initGlobalRNG == 0)
WOLFSSL_MSG("Global RNG no Init");
else
rng = &globalRNG;
}
if (rng == NULL) {
WOLFSSL_MSG("wolfSSL_EC_KEY_generate_key failed to set RNG");
#ifdef WOLFSSL_SMALL_STACK
XFREE(tmpRNG, NULL, DYNAMIC_TYPE_RNG);
#endif
return 0;
}
if (wc_ecc_make_key_ex(rng, 0, (ecc_key*)key->internal,
key->group->curve_nid) != MP_OKAY) {
WOLFSSL_MSG("wolfSSL_EC_KEY_generate_key wc_ecc_make_key failed");
#ifdef WOLFSSL_SMALL_STACK
XFREE(tmpRNG, NULL, DYNAMIC_TYPE_RNG);
#endif
return 0;
}
if (initTmpRng)
wc_FreeRng(tmpRNG);
#ifdef WOLFSSL_SMALL_STACK
XFREE(tmpRNG, NULL, DYNAMIC_TYPE_RNG);
#endif
if (SetECKeyExternal(key) != WOLFSSL_SUCCESS) {
WOLFSSL_MSG("wolfSSL_EC_KEY_generate_key SetECKeyExternal failed");
return 0;
}
return 1;
}
void wolfSSL_EC_KEY_set_asn1_flag(WOLFSSL_EC_KEY *key, int asn1_flag)
{
(void)key;
(void)asn1_flag;
WOLFSSL_ENTER("wolfSSL_EC_KEY_set_asn1_flag");
WOLFSSL_MSG("wolfSSL_EC_KEY_set_asn1_flag TBD");
}
/* return code compliant with OpenSSL :
* 1 if success, 0 if error
*/
int wolfSSL_EC_KEY_set_public_key(WOLFSSL_EC_KEY *key,
const WOLFSSL_EC_POINT *pub)
{
ecc_point *pub_p, *key_p;
WOLFSSL_ENTER("wolfSSL_EC_KEY_set_public_key");
if (key == NULL || key->internal == NULL ||
pub == NULL || pub->internal == NULL) {
WOLFSSL_MSG("wolfSSL_EC_GROUP_get_order Bad arguments");
return WOLFSSL_FAILURE;
}
if (key->inSet == 0) {
if (SetECKeyInternal(key) != WOLFSSL_SUCCESS) {
WOLFSSL_MSG("SetECKeyInternal failed");
return WOLFSSL_FAILURE;
}
}
if (pub->inSet == 0) {
if (SetECPointInternal((WOLFSSL_EC_POINT *)pub) != WOLFSSL_SUCCESS) {
WOLFSSL_MSG("SetECPointInternal failed");
return WOLFSSL_FAILURE;
}
}
pub_p = (ecc_point*)pub->internal;
key_p = (ecc_point*)key->pub_key->internal;
/* create new point if required */
if (key_p == NULL)
key_p = wc_ecc_new_point();
if (key_p == NULL) {
WOLFSSL_MSG("key ecc point NULL");
return WOLFSSL_FAILURE;
}
if (wc_ecc_copy_point(pub_p, key_p) != MP_OKAY) {
WOLFSSL_MSG("ecc_copy_point failure");
return WOLFSSL_FAILURE;
}
if (SetECKeyExternal(key) != WOLFSSL_SUCCESS) {
WOLFSSL_MSG("SetECKeyInternal failed");
return WOLFSSL_FAILURE;
}
wolfSSL_EC_POINT_dump("pub", pub);
wolfSSL_EC_POINT_dump("key->pub_key", key->pub_key);
return WOLFSSL_SUCCESS;
}
/* End EC_KEY */
void wolfSSL_EC_POINT_dump(const char *msg, const WOLFSSL_EC_POINT *p)
{
#if defined(DEBUG_WOLFSSL)
char *num;
WOLFSSL_ENTER("wolfSSL_EC_POINT_dump");
if (p == NULL) {
printf("%s = NULL", msg);
return;
}
printf("%s:\n\tinSet=%d, exSet=%d\n", msg, p->inSet, p->exSet);
num = wolfSSL_BN_bn2hex(p->X);
printf("\tX = %s\n", num);
XFREE(num, NULL, DYNAMIC_TYPE_ECC);
num = wolfSSL_BN_bn2hex(p->Y);
printf("\tY = %s\n", num);
XFREE(num, NULL, DYNAMIC_TYPE_ECC);
num = wolfSSL_BN_bn2hex(p->Z);
printf("\tZ = %s\n", num);
XFREE(num, NULL, DYNAMIC_TYPE_ECC);
#else
(void)msg;
(void)p;
#endif
}
/* Start EC_GROUP */
/* return code compliant with OpenSSL :
* 0 if equal, 1 if not and -1 in case of error
*/
int wolfSSL_EC_GROUP_cmp(const WOLFSSL_EC_GROUP *a, const WOLFSSL_EC_GROUP *b,
WOLFSSL_BN_CTX *ctx)
{
(void)ctx;
WOLFSSL_ENTER("wolfSSL_EC_GROUP_cmp");
if (a == NULL || b == NULL) {
WOLFSSL_MSG("wolfSSL_EC_GROUP_cmp Bad arguments");
return WOLFSSL_FATAL_ERROR;
}
/* ok */
if ((a->curve_idx == b->curve_idx) && (a->curve_nid == b->curve_nid))
return 0;
/* ko */
return 1;
}
void wolfSSL_EC_GROUP_free(WOLFSSL_EC_GROUP *group)
{
WOLFSSL_ENTER("wolfSSL_EC_GROUP_free");
XFREE(group, NULL, DYNAMIC_TYPE_ECC);
group = NULL;
}
void wolfSSL_EC_GROUP_set_asn1_flag(WOLFSSL_EC_GROUP *group, int flag)
{
(void)group;
(void)flag;
WOLFSSL_ENTER("wolfSSL_EC_GROUP_set_asn1_flag");
WOLFSSL_MSG("wolfSSL_EC_GROUP_set_asn1_flag TBD");
}
WOLFSSL_EC_GROUP *wolfSSL_EC_GROUP_new_by_curve_name(int nid)
{
WOLFSSL_EC_GROUP *g;
int x;
WOLFSSL_ENTER("wolfSSL_EC_GROUP_new_by_curve_name");
/* curve group */
g = (WOLFSSL_EC_GROUP*) XMALLOC(sizeof(WOLFSSL_EC_GROUP), NULL,
DYNAMIC_TYPE_ECC);
if (g == NULL) {
WOLFSSL_MSG("wolfSSL_EC_GROUP_new_by_curve_name malloc failure");
return NULL;
}
XMEMSET(g, 0, sizeof(WOLFSSL_EC_GROUP));
/* set the nid of the curve */
g->curve_nid = nid;
/* search and set the corresponding internal curve idx */
for (x = 0; ecc_sets[x].size != 0; x++)
if (ecc_sets[x].id == g->curve_nid) {
g->curve_idx = x;
g->curve_oid = ecc_sets[x].oidSum;
break;
}
return g;
}
/* return code compliant with OpenSSL :
* the curve nid if success, 0 if error
*/
int wolfSSL_EC_GROUP_get_curve_name(const WOLFSSL_EC_GROUP *group)
{
WOLFSSL_ENTER("wolfSSL_EC_GROUP_get_curve_name");
if (group == NULL) {
WOLFSSL_MSG("wolfSSL_EC_GROUP_get_curve_name Bad arguments");
return WOLFSSL_FAILURE;
}
return group->curve_nid;
}
/* return code compliant with OpenSSL :
* the degree of the curve if success, 0 if error
*/
int wolfSSL_EC_GROUP_get_degree(const WOLFSSL_EC_GROUP *group)
{
WOLFSSL_ENTER("wolfSSL_EC_GROUP_get_degree");
if (group == NULL || group->curve_idx < 0) {
WOLFSSL_MSG("wolfSSL_EC_GROUP_get_degree Bad arguments");
return WOLFSSL_FAILURE;
}
switch(group->curve_nid) {
case NID_secp112r1:
case NID_secp112r2:
return 112;
case NID_secp128r1:
case NID_secp128r2:
return 128;
case NID_secp160k1:
case NID_secp160r1:
case NID_secp160r2:
case NID_brainpoolP160r1:
return 160;
case NID_secp192k1:
case NID_brainpoolP192r1:
case NID_X9_62_prime192v1:
return 192;
case NID_secp224k1:
case NID_secp224r1:
case NID_brainpoolP224r1:
return 224;
case NID_secp256k1:
case NID_brainpoolP256r1:
case NID_X9_62_prime256v1:
return 256;
case NID_brainpoolP320r1:
return 320;
case NID_secp384r1:
case NID_brainpoolP384r1:
return 384;
case NID_secp521r1:
case NID_brainpoolP512r1:
return 521;
default:
return WOLFSSL_FAILURE;
}
}
/* return code compliant with OpenSSL :
* 1 if success, 0 if error
*/
int wolfSSL_EC_GROUP_get_order(const WOLFSSL_EC_GROUP *group,
WOLFSSL_BIGNUM *order, WOLFSSL_BN_CTX *ctx)
{
(void)ctx;
if (group == NULL || order == NULL || order->internal == NULL) {
WOLFSSL_MSG("wolfSSL_EC_GROUP_get_order NULL error");
return WOLFSSL_FAILURE;
}
if (mp_init((mp_int*)order->internal) != MP_OKAY) {
WOLFSSL_MSG("wolfSSL_EC_GROUP_get_order mp_init failure");
return WOLFSSL_FAILURE;
}
if (mp_read_radix((mp_int*)order->internal,
ecc_sets[group->curve_idx].order, MP_RADIX_HEX) != MP_OKAY) {
WOLFSSL_MSG("wolfSSL_EC_GROUP_get_order mp_read order failure");
mp_clear((mp_int*)order->internal);
return WOLFSSL_FAILURE;
}
return WOLFSSL_SUCCESS;
}
/* End EC_GROUP */
/* Start EC_POINT */
/* return code compliant with OpenSSL :
* 1 if success, 0 if error
*/
int wolfSSL_ECPoint_i2d(const WOLFSSL_EC_GROUP *group,
const WOLFSSL_EC_POINT *p,
unsigned char *out, unsigned int *len)
{
int err;
WOLFSSL_ENTER("wolfSSL_ECPoint_i2d");
if (group == NULL || p == NULL || len == NULL) {
WOLFSSL_MSG("wolfSSL_ECPoint_i2d NULL error");
return WOLFSSL_FAILURE;
}
if (p->inSet == 0) {
WOLFSSL_MSG("No ECPoint internal set, do it");
if (SetECPointInternal((WOLFSSL_EC_POINT *)p) != WOLFSSL_SUCCESS) {
WOLFSSL_MSG("SetECPointInternal SetECPointInternal failed");
return WOLFSSL_FAILURE;
}
}
if (out != NULL) {
wolfSSL_EC_POINT_dump("i2d p", p);
}
err = wc_ecc_export_point_der(group->curve_idx, (ecc_point*)p->internal,
out, len);
if (err != MP_OKAY && !(out == NULL && err == LENGTH_ONLY_E)) {
WOLFSSL_MSG("wolfSSL_ECPoint_i2d wc_ecc_export_point_der failed");
return WOLFSSL_FAILURE;
}
return WOLFSSL_SUCCESS;
}
/* return code compliant with OpenSSL :
* 1 if success, 0 if error
*/
int wolfSSL_ECPoint_d2i(unsigned char *in, unsigned int len,
const WOLFSSL_EC_GROUP *group, WOLFSSL_EC_POINT *p)
{
WOLFSSL_ENTER("wolfSSL_ECPoint_d2i");
if (group == NULL || p == NULL || p->internal == NULL || in == NULL) {
WOLFSSL_MSG("wolfSSL_ECPoint_d2i NULL error");
return WOLFSSL_FAILURE;
}
if (wc_ecc_import_point_der(in, len, group->curve_idx,
(ecc_point*)p->internal) != MP_OKAY) {
WOLFSSL_MSG("wc_ecc_import_point_der failed");
return WOLFSSL_FAILURE;
}
if (p->exSet == 0) {
WOLFSSL_MSG("No ECPoint external set, do it");
if (SetECPointExternal(p) != WOLFSSL_SUCCESS) {
WOLFSSL_MSG("SetECPointExternal failed");
return WOLFSSL_FAILURE;
}
}
wolfSSL_EC_POINT_dump("d2i p", p);
return WOLFSSL_SUCCESS;
}
WOLFSSL_EC_POINT *wolfSSL_EC_POINT_new(const WOLFSSL_EC_GROUP *group)
{
WOLFSSL_EC_POINT *p;
WOLFSSL_ENTER("wolfSSL_EC_POINT_new");
if (group == NULL) {
WOLFSSL_MSG("wolfSSL_EC_POINT_new NULL error");
return NULL;
}
p = (WOLFSSL_EC_POINT *)XMALLOC(sizeof(WOLFSSL_EC_POINT), NULL,
DYNAMIC_TYPE_ECC);
if (p == NULL) {
WOLFSSL_MSG("wolfSSL_EC_POINT_new malloc ecc point failure");
return NULL;
}
XMEMSET(p, 0, sizeof(WOLFSSL_EC_POINT));
p->internal = wc_ecc_new_point();
if (p->internal == NULL) {
WOLFSSL_MSG("ecc_new_point failure");
XFREE(p, NULL, DYNAMIC_TYPE_ECC);
return NULL;
}
return p;
}
/* return code compliant with OpenSSL :
* 1 if success, 0 if error
*/
int wolfSSL_EC_POINT_get_affine_coordinates_GFp(const WOLFSSL_EC_GROUP *group,
const WOLFSSL_EC_POINT *point,
WOLFSSL_BIGNUM *x,
WOLFSSL_BIGNUM *y,
WOLFSSL_BN_CTX *ctx)
{
(void)ctx;
WOLFSSL_ENTER("wolfSSL_EC_POINT_get_affine_coordinates_GFp");
if (group == NULL || point == NULL || point->internal == NULL ||
x == NULL || y == NULL) {
WOLFSSL_MSG("wolfSSL_EC_POINT_get_affine_coordinates_GFp NULL error");
return WOLFSSL_FAILURE;
}
if (point->inSet == 0) {
WOLFSSL_MSG("No ECPoint internal set, do it");
if (SetECPointInternal((WOLFSSL_EC_POINT *)point) != WOLFSSL_SUCCESS) {
WOLFSSL_MSG("SetECPointInternal failed");
return WOLFSSL_FAILURE;
}
}
BN_copy(x, point->X);
BN_copy(y, point->Y);
return WOLFSSL_SUCCESS;
}
/* return code compliant with OpenSSL :
* 1 if success, 0 if error
*/
int wolfSSL_EC_POINT_mul(const WOLFSSL_EC_GROUP *group, WOLFSSL_EC_POINT *r,
const WOLFSSL_BIGNUM *n, const WOLFSSL_EC_POINT *q,
const WOLFSSL_BIGNUM *m, WOLFSSL_BN_CTX *ctx)
{
mp_int a, prime;
int ret;
(void)ctx;
(void)n;
WOLFSSL_ENTER("wolfSSL_EC_POINT_mul");
if (group == NULL || r == NULL || r->internal == NULL ||
q == NULL || q->internal == NULL || m == NULL) {
WOLFSSL_MSG("wolfSSL_EC_POINT_mul NULL error");
return WOLFSSL_FAILURE;
}
if (q->inSet == 0) {
WOLFSSL_MSG("No ECPoint internal set, do it");
if (SetECPointInternal((WOLFSSL_EC_POINT *)q) != WOLFSSL_SUCCESS) {
WOLFSSL_MSG("SetECPointInternal q failed");
return WOLFSSL_FAILURE;
}
}
/* read the curve prime and a */
if (mp_init_multi(&prime, &a, NULL, NULL, NULL, NULL) != MP_OKAY) {
return WOLFSSL_FAILURE;
}
ret = mp_read_radix(&prime, ecc_sets[group->curve_idx].prime, MP_RADIX_HEX);
if (ret == MP_OKAY) {
ret = mp_read_radix(&a, ecc_sets[group->curve_idx].Af, MP_RADIX_HEX);
}
/* r = q * m % prime */
if (ret == MP_OKAY) {
ret = wc_ecc_mulmod((mp_int*)m->internal, (ecc_point*)q->internal,
(ecc_point*)r->internal, &a, &prime, 1);
}
mp_clear(&a);
mp_clear(&prime);
if (ret == MP_OKAY) {
r->inSet = 1; /* mark internal set */
/* set the external value for the computed point */
ret = SetECPointExternal(r);
if (ret != WOLFSSL_SUCCESS) {
WOLFSSL_MSG("SetECPointInternal r failed");
}
}
else {
ret = WOLFSSL_FAILURE;
}
return ret;
}
void wolfSSL_EC_POINT_clear_free(WOLFSSL_EC_POINT *p)
{
WOLFSSL_ENTER("wolfSSL_EC_POINT_clear_free");
wolfSSL_EC_POINT_free(p);
}
/* return code compliant with OpenSSL :
* 0 if equal, 1 if not and -1 in case of error
*/
int wolfSSL_EC_POINT_cmp(const WOLFSSL_EC_GROUP *group,
const WOLFSSL_EC_POINT *a, const WOLFSSL_EC_POINT *b,
WOLFSSL_BN_CTX *ctx)
{
int ret;
(void)ctx;
WOLFSSL_ENTER("wolfSSL_EC_POINT_cmp");
if (group == NULL || a == NULL || a->internal == NULL || b == NULL ||
b->internal == NULL) {
WOLFSSL_MSG("wolfSSL_EC_POINT_cmp Bad arguments");
return WOLFSSL_FATAL_ERROR;
}
ret = wc_ecc_cmp_point((ecc_point*)a->internal, (ecc_point*)b->internal);
if (ret == MP_EQ)
return 0;
else if (ret == MP_LT || ret == MP_GT)
return 1;
return WOLFSSL_FATAL_ERROR;
}
void wolfSSL_EC_POINT_free(WOLFSSL_EC_POINT *p)
{
WOLFSSL_ENTER("wolfSSL_EC_POINT_free");
if (p != NULL) {
if (p->internal != NULL) {
wc_ecc_del_point((ecc_point*)p->internal);
p->internal = NULL;
}
wolfSSL_BN_free(p->X);
wolfSSL_BN_free(p->Y);
wolfSSL_BN_free(p->Z);
p->X = NULL;
p->Y = NULL;
p->Z = NULL;
p->inSet = p->exSet = 0;
XFREE(p, NULL, DYNAMIC_TYPE_ECC);
p = NULL;
}
}
/* return code compliant with OpenSSL :
* 1 if point at infinity, 0 else
*/
int wolfSSL_EC_POINT_is_at_infinity(const WOLFSSL_EC_GROUP *group,
const WOLFSSL_EC_POINT *point)
{
int ret;
WOLFSSL_ENTER("wolfSSL_EC_POINT_is_at_infinity");
if (group == NULL || point == NULL || point->internal == NULL) {
WOLFSSL_MSG("wolfSSL_EC_POINT_is_at_infinity NULL error");
return WOLFSSL_FAILURE;
}
if (point->inSet == 0) {
WOLFSSL_MSG("No ECPoint internal set, do it");
if (SetECPointInternal((WOLFSSL_EC_POINT *)point) != WOLFSSL_SUCCESS) {
WOLFSSL_MSG("SetECPointInternal failed");
return WOLFSSL_FAILURE;
}
}
ret = wc_ecc_point_is_at_infinity((ecc_point*)point->internal);
if (ret <= 0) {
WOLFSSL_MSG("ecc_point_is_at_infinity failure");
return WOLFSSL_FAILURE;
}
return WOLFSSL_SUCCESS;
}
/* End EC_POINT */
/* Start ECDSA_SIG */
void wolfSSL_ECDSA_SIG_free(WOLFSSL_ECDSA_SIG *sig)
{
WOLFSSL_ENTER("wolfSSL_ECDSA_SIG_free");
if (sig) {
wolfSSL_BN_free(sig->r);
wolfSSL_BN_free(sig->s);
XFREE(sig, NULL, DYNAMIC_TYPE_ECC);
}
}
WOLFSSL_ECDSA_SIG *wolfSSL_ECDSA_SIG_new(void)
{
WOLFSSL_ECDSA_SIG *sig;
WOLFSSL_ENTER("wolfSSL_ECDSA_SIG_new");
sig = (WOLFSSL_ECDSA_SIG*) XMALLOC(sizeof(WOLFSSL_ECDSA_SIG), NULL,
DYNAMIC_TYPE_ECC);
if (sig == NULL) {
WOLFSSL_MSG("wolfSSL_ECDSA_SIG_new malloc ECDSA signature failure");
return NULL;
}
sig->s = NULL;
sig->r = wolfSSL_BN_new();
if (sig->r == NULL) {
WOLFSSL_MSG("wolfSSL_ECDSA_SIG_new malloc ECDSA r failure");
wolfSSL_ECDSA_SIG_free(sig);
return NULL;
}
sig->s = wolfSSL_BN_new();
if (sig->s == NULL) {
WOLFSSL_MSG("wolfSSL_ECDSA_SIG_new malloc ECDSA s failure");
wolfSSL_ECDSA_SIG_free(sig);
return NULL;
}
return sig;
}
/* return signature structure on success, NULL otherwise */
WOLFSSL_ECDSA_SIG *wolfSSL_ECDSA_do_sign(const unsigned char *d, int dlen,
WOLFSSL_EC_KEY *key)
{
WOLFSSL_ECDSA_SIG *sig = NULL;
int initTmpRng = 0;
WC_RNG* rng = NULL;
#ifdef WOLFSSL_SMALL_STACK
WC_RNG* tmpRNG = NULL;
#else
WC_RNG tmpRNG[1];
#endif
WOLFSSL_ENTER("wolfSSL_ECDSA_do_sign");
if (d == NULL || key == NULL || key->internal == NULL) {
WOLFSSL_MSG("wolfSSL_ECDSA_do_sign Bad arguments");
return NULL;
}
/* set internal key if not done */
if (key->inSet == 0)
{
WOLFSSL_MSG("wolfSSL_ECDSA_do_sign No EC key internal set, do it");
if (SetECKeyInternal(key) != WOLFSSL_SUCCESS) {
WOLFSSL_MSG("wolfSSL_ECDSA_do_sign SetECKeyInternal failed");
return NULL;
}
}
#ifdef WOLFSSL_SMALL_STACK
tmpRNG = (WC_RNG*)XMALLOC(sizeof(WC_RNG), NULL, DYNAMIC_TYPE_RNG);
if (tmpRNG == NULL)
return NULL;
#endif
if (wc_InitRng(tmpRNG) == 0) {
rng = tmpRNG;
initTmpRng = 1;
}
else {
WOLFSSL_MSG("wolfSSL_ECDSA_do_sign Bad RNG Init, trying global");
if (initGlobalRNG == 0)
WOLFSSL_MSG("wolfSSL_ECDSA_do_sign Global RNG no Init");
else
rng = &globalRNG;
}
if (rng) {
mp_int sig_r, sig_s;
if (mp_init_multi(&sig_r, &sig_s, NULL, NULL, NULL, NULL) == MP_OKAY) {
if (wc_ecc_sign_hash_ex(d, dlen, rng, (ecc_key*)key->internal,
&sig_r, &sig_s) != MP_OKAY) {
WOLFSSL_MSG("wc_ecc_sign_hash_ex failed");
}
else {
/* put signature blob in ECDSA structure */
sig = wolfSSL_ECDSA_SIG_new();
if (sig == NULL)
WOLFSSL_MSG("wolfSSL_ECDSA_SIG_new failed");
else if (SetIndividualExternal(&(sig->r), &sig_r)!=WOLFSSL_SUCCESS){
WOLFSSL_MSG("ecdsa r key error");
wolfSSL_ECDSA_SIG_free(sig);
sig = NULL;
}
else if (SetIndividualExternal(&(sig->s), &sig_s)!=WOLFSSL_SUCCESS){
WOLFSSL_MSG("ecdsa s key error");
wolfSSL_ECDSA_SIG_free(sig);
sig = NULL;
}
}
mp_free(&sig_r);
mp_free(&sig_s);
}
}
if (initTmpRng)
wc_FreeRng(tmpRNG);
#ifdef WOLFSSL_SMALL_STACK
XFREE(tmpRNG, NULL, DYNAMIC_TYPE_RNG);
#endif
return sig;
}
/* return code compliant with OpenSSL :
* 1 for a valid signature, 0 for an invalid signature and -1 on error
*/
int wolfSSL_ECDSA_do_verify(const unsigned char *d, int dlen,
const WOLFSSL_ECDSA_SIG *sig, WOLFSSL_EC_KEY *key)
{
int check_sign = 0;
WOLFSSL_ENTER("wolfSSL_ECDSA_do_verify");
if (d == NULL || sig == NULL || key == NULL || key->internal == NULL) {
WOLFSSL_MSG("wolfSSL_ECDSA_do_verify Bad arguments");
return WOLFSSL_FATAL_ERROR;
}
/* set internal key if not done */
if (key->inSet == 0)
{
WOLFSSL_MSG("No EC key internal set, do it");
if (SetECKeyInternal(key) != WOLFSSL_SUCCESS) {
WOLFSSL_MSG("SetECKeyInternal failed");
return WOLFSSL_FATAL_ERROR;
}
}
if (wc_ecc_verify_hash_ex((mp_int*)sig->r->internal,
(mp_int*)sig->s->internal, d, dlen, &check_sign,
(ecc_key *)key->internal) != MP_OKAY) {
WOLFSSL_MSG("wc_ecc_verify_hash failed");
return WOLFSSL_FATAL_ERROR;
}
else if (check_sign == 0) {
WOLFSSL_MSG("wc_ecc_verify_hash incorrect signature detected");
return WOLFSSL_FAILURE;
}
return WOLFSSL_SUCCESS;
}
/* End ECDSA_SIG */
/* Start ECDH */
/* return code compliant with OpenSSL :
* length of computed key if success, -1 if error
*/
int wolfSSL_ECDH_compute_key(void *out, size_t outlen,
const WOLFSSL_EC_POINT *pub_key,
WOLFSSL_EC_KEY *ecdh,
void *(*KDF) (const void *in, size_t inlen,
void *out, size_t *outlen))
{
word32 len;
(void)KDF;
(void)KDF;
WOLFSSL_ENTER("wolfSSL_ECDH_compute_key");
if (out == NULL || pub_key == NULL || pub_key->internal == NULL ||
ecdh == NULL || ecdh->internal == NULL) {
WOLFSSL_MSG("Bad function arguments");
return WOLFSSL_FATAL_ERROR;
}
/* set internal key if not done */
if (ecdh->inSet == 0)
{
WOLFSSL_MSG("No EC key internal set, do it");
if (SetECKeyInternal(ecdh) != WOLFSSL_SUCCESS) {
WOLFSSL_MSG("SetECKeyInternal failed");
return WOLFSSL_FATAL_ERROR;
}
}
len = (word32)outlen;
if (wc_ecc_shared_secret_ssh((ecc_key*)ecdh->internal,
(ecc_point*)pub_key->internal,
(byte *)out, &len) != MP_OKAY) {
WOLFSSL_MSG("wc_ecc_shared_secret failed");
return WOLFSSL_FATAL_ERROR;
}
return len;
}
/* End ECDH */
#if !defined(NO_FILESYSTEM)
/* return code compliant with OpenSSL :
* 1 if success, 0 if error
*/
int wolfSSL_PEM_write_EC_PUBKEY(FILE *fp, WOLFSSL_EC_KEY *x)
{
(void)fp;
(void)x;
WOLFSSL_MSG("wolfSSL_PEM_write_EC_PUBKEY not implemented");
return WOLFSSL_FAILURE;
}
#endif /* NO_FILESYSTEM */
#if defined(WOLFSSL_KEY_GEN)
/* return code compliant with OpenSSL :
* 1 if success, 0 if error
*/
int wolfSSL_PEM_write_bio_ECPrivateKey(WOLFSSL_BIO* bio, WOLFSSL_EC_KEY* ecc,
const EVP_CIPHER* cipher,
unsigned char* passwd, int len,
pem_password_cb* cb, void* arg)
{
(void)bio;
(void)ecc;
(void)cipher;
(void)passwd;
(void)len;
(void)cb;
(void)arg;
WOLFSSL_MSG("wolfSSL_PEM_write_bio_ECPrivateKey not implemented");
return WOLFSSL_FAILURE;
}
/* return code compliant with OpenSSL :
* 1 if success, 0 if error
*/
int wolfSSL_PEM_write_mem_ECPrivateKey(WOLFSSL_EC_KEY* ecc,
const EVP_CIPHER* cipher,
unsigned char* passwd, int passwdSz,
unsigned char **pem, int *plen)
{
byte *derBuf, *tmp, *cipherInfo = NULL;
int der_max_len = 0, derSz = 0;
WOLFSSL_MSG("wolfSSL_PEM_write_mem_ECPrivateKey");
if (pem == NULL || plen == NULL || ecc == NULL || ecc->internal == NULL) {
WOLFSSL_MSG("Bad function arguments");
return WOLFSSL_FAILURE;
}
if (ecc->inSet == 0) {
WOLFSSL_MSG("No ECC internal set, do it");
if (SetECKeyInternal(ecc) != WOLFSSL_SUCCESS) {
WOLFSSL_MSG("SetDsaInternal failed");
return WOLFSSL_FAILURE;
}
}
/* 4 > size of pub, priv + ASN.1 additional informations
*/
der_max_len = 4 * wc_ecc_size((ecc_key*)ecc->internal) + AES_BLOCK_SIZE;
derBuf = (byte*)XMALLOC(der_max_len, NULL, DYNAMIC_TYPE_DER);
if (derBuf == NULL) {
WOLFSSL_MSG("malloc failed");
return WOLFSSL_FAILURE;
}
/* Key to DER */
derSz = wc_EccKeyToDer((ecc_key*)ecc->internal, derBuf, der_max_len);
if (derSz < 0) {
WOLFSSL_MSG("wc_DsaKeyToDer failed");
XFREE(derBuf, NULL, DYNAMIC_TYPE_DER);
return WOLFSSL_FAILURE;
}
/* encrypt DER buffer if required */
if (passwd != NULL && passwdSz > 0 && cipher != NULL) {
int ret;
ret = EncryptDerKey(derBuf, &derSz, cipher,
passwd, passwdSz, &cipherInfo);
if (ret != WOLFSSL_SUCCESS) {
WOLFSSL_MSG("EncryptDerKey failed");
XFREE(derBuf, NULL, DYNAMIC_TYPE_DER);
return ret;
}
/* tmp buffer with a max size */
*plen = (derSz * 2) + sizeof(BEGIN_EC_PRIV) +
sizeof(END_EC_PRIV) + HEADER_ENCRYPTED_KEY_SIZE;
}
else /* tmp buffer with a max size */
*plen = (derSz * 2) + sizeof(BEGIN_EC_PRIV) + sizeof(END_EC_PRIV);
tmp = (byte*)XMALLOC(*plen, NULL, DYNAMIC_TYPE_PEM);
if (tmp == NULL) {
WOLFSSL_MSG("malloc failed");
XFREE(derBuf, NULL, DYNAMIC_TYPE_DER);
if (cipherInfo != NULL)
XFREE(cipherInfo, NULL, DYNAMIC_TYPE_STRING);
return WOLFSSL_FAILURE;
}
/* DER to PEM */
*plen = wc_DerToPemEx(derBuf, derSz, tmp, *plen, cipherInfo, ECC_PRIVATEKEY_TYPE);
if (*plen <= 0) {
WOLFSSL_MSG("wc_DerToPemEx failed");
XFREE(derBuf, NULL, DYNAMIC_TYPE_DER);
XFREE(tmp, NULL, DYNAMIC_TYPE_PEM);
if (cipherInfo != NULL)
XFREE(cipherInfo, NULL, DYNAMIC_TYPE_STRING);
return WOLFSSL_FAILURE;
}
XFREE(derBuf, NULL, DYNAMIC_TYPE_DER);
if (cipherInfo != NULL)
XFREE(cipherInfo, NULL, DYNAMIC_TYPE_STRING);
*pem = (byte*)XMALLOC((*plen)+1, NULL, DYNAMIC_TYPE_KEY);
if (*pem == NULL) {
WOLFSSL_MSG("malloc failed");
XFREE(tmp, NULL, DYNAMIC_TYPE_PEM);
return WOLFSSL_FAILURE;
}
XMEMSET(*pem, 0, (*plen)+1);
if (XMEMCPY(*pem, tmp, *plen) == NULL) {
WOLFSSL_MSG("XMEMCPY failed");
XFREE(pem, NULL, DYNAMIC_TYPE_KEY);
XFREE(tmp, NULL, DYNAMIC_TYPE_PEM);
return WOLFSSL_FAILURE;
}
XFREE(tmp, NULL, DYNAMIC_TYPE_PEM);
return WOLFSSL_SUCCESS;
}
#ifndef NO_FILESYSTEM
/* return code compliant with OpenSSL :
* 1 if success, 0 if error
*/
int wolfSSL_PEM_write_ECPrivateKey(FILE *fp, WOLFSSL_EC_KEY *ecc,
const EVP_CIPHER *enc,
unsigned char *kstr, int klen,
pem_password_cb *cb, void *u)
{
byte *pem;
int plen, ret;
(void)cb;
(void)u;
WOLFSSL_MSG("wolfSSL_PEM_write_ECPrivateKey");
if (fp == NULL || ecc == NULL || ecc->internal == NULL) {
WOLFSSL_MSG("Bad function arguments");
return WOLFSSL_FAILURE;
}
ret = wolfSSL_PEM_write_mem_ECPrivateKey(ecc, enc, kstr, klen, &pem, &plen);
if (ret != WOLFSSL_SUCCESS) {
WOLFSSL_MSG("wolfSSL_PEM_write_mem_ECPrivateKey failed");
return WOLFSSL_FAILURE;
}
ret = (int)XFWRITE(pem, plen, 1, fp);
if (ret != 1) {
WOLFSSL_MSG("ECC private key file write failed");
return WOLFSSL_FAILURE;
}
XFREE(pem, NULL, DYNAMIC_TYPE_KEY);
return WOLFSSL_SUCCESS;
}
#endif /* NO_FILESYSTEM */
#endif /* defined(WOLFSSL_KEY_GEN) */
#endif /* HAVE_ECC */
#ifndef NO_DSA
#if defined(WOLFSSL_KEY_GEN)
/* return code compliant with OpenSSL :
* 1 if success, 0 if error
*/
int wolfSSL_PEM_write_bio_DSAPrivateKey(WOLFSSL_BIO* bio, WOLFSSL_DSA* dsa,
const EVP_CIPHER* cipher,
unsigned char* passwd, int len,
pem_password_cb* cb, void* arg)
{
(void)bio;
(void)dsa;
(void)cipher;
(void)passwd;
(void)len;
(void)cb;
(void)arg;
WOLFSSL_MSG("wolfSSL_PEM_write_bio_DSAPrivateKey not implemented");
return WOLFSSL_FAILURE;
}
/* return code compliant with OpenSSL :
* 1 if success, 0 if error
*/
int wolfSSL_PEM_write_mem_DSAPrivateKey(WOLFSSL_DSA* dsa,
const EVP_CIPHER* cipher,
unsigned char* passwd, int passwdSz,
unsigned char **pem, int *plen)
{
byte *derBuf, *tmp, *cipherInfo = NULL;
int der_max_len = 0, derSz = 0;
WOLFSSL_MSG("wolfSSL_PEM_write_mem_DSAPrivateKey");
if (pem == NULL || plen == NULL || dsa == NULL || dsa->internal == NULL) {
WOLFSSL_MSG("Bad function arguments");
return WOLFSSL_FAILURE;
}
if (dsa->inSet == 0) {
WOLFSSL_MSG("No DSA internal set, do it");
if (SetDsaInternal(dsa) != WOLFSSL_SUCCESS) {
WOLFSSL_MSG("SetDsaInternal failed");
return WOLFSSL_FAILURE;
}
}
/* 4 > size of pub, priv, p, q, g + ASN.1 additional informations
*/
der_max_len = 4 * wolfSSL_BN_num_bytes(dsa->g) + AES_BLOCK_SIZE;
derBuf = (byte*)XMALLOC(der_max_len, NULL, DYNAMIC_TYPE_DER);
if (derBuf == NULL) {
WOLFSSL_MSG("malloc failed");
return WOLFSSL_FAILURE;
}
/* Key to DER */
derSz = wc_DsaKeyToDer((DsaKey*)dsa->internal, derBuf, der_max_len);
if (derSz < 0) {
WOLFSSL_MSG("wc_DsaKeyToDer failed");
XFREE(derBuf, NULL, DYNAMIC_TYPE_DER);
return WOLFSSL_FAILURE;
}
/* encrypt DER buffer if required */
if (passwd != NULL && passwdSz > 0 && cipher != NULL) {
int ret;
ret = EncryptDerKey(derBuf, &derSz, cipher,
passwd, passwdSz, &cipherInfo);
if (ret != WOLFSSL_SUCCESS) {
WOLFSSL_MSG("EncryptDerKey failed");
XFREE(derBuf, NULL, DYNAMIC_TYPE_DER);
return ret;
}
/* tmp buffer with a max size */
*plen = (derSz * 2) + sizeof(BEGIN_DSA_PRIV) +
sizeof(END_DSA_PRIV) + HEADER_ENCRYPTED_KEY_SIZE;
}
else /* tmp buffer with a max size */
*plen = (derSz * 2) + sizeof(BEGIN_DSA_PRIV) + sizeof(END_DSA_PRIV);
tmp = (byte*)XMALLOC(*plen, NULL, DYNAMIC_TYPE_PEM);
if (tmp == NULL) {
WOLFSSL_MSG("malloc failed");
XFREE(derBuf, NULL, DYNAMIC_TYPE_DER);
if (cipherInfo != NULL)
XFREE(cipherInfo, NULL, DYNAMIC_TYPE_STRING);
return WOLFSSL_FAILURE;
}
/* DER to PEM */
*plen = wc_DerToPemEx(derBuf, derSz, tmp, *plen, cipherInfo, DSA_PRIVATEKEY_TYPE);
if (*plen <= 0) {
WOLFSSL_MSG("wc_DerToPemEx failed");
XFREE(derBuf, NULL, DYNAMIC_TYPE_DER);
XFREE(tmp, NULL, DYNAMIC_TYPE_PEM);
if (cipherInfo != NULL)
XFREE(cipherInfo, NULL, DYNAMIC_TYPE_STRING);
return WOLFSSL_FAILURE;
}
XFREE(derBuf, NULL, DYNAMIC_TYPE_DER);
if (cipherInfo != NULL)
XFREE(cipherInfo, NULL, DYNAMIC_TYPE_STRING);
*pem = (byte*)XMALLOC((*plen)+1, NULL, DYNAMIC_TYPE_KEY);
if (*pem == NULL) {
WOLFSSL_MSG("malloc failed");
XFREE(tmp, NULL, DYNAMIC_TYPE_PEM);
return WOLFSSL_FAILURE;
}
XMEMSET(*pem, 0, (*plen)+1);
if (XMEMCPY(*pem, tmp, *plen) == NULL) {
WOLFSSL_MSG("XMEMCPY failed");
XFREE(pem, NULL, DYNAMIC_TYPE_KEY);
XFREE(tmp, NULL, DYNAMIC_TYPE_PEM);
return WOLFSSL_FAILURE;
}
XFREE(tmp, NULL, DYNAMIC_TYPE_PEM);
return WOLFSSL_SUCCESS;
}
#ifndef NO_FILESYSTEM
/* return code compliant with OpenSSL :
* 1 if success, 0 if error
*/
int wolfSSL_PEM_write_DSAPrivateKey(FILE *fp, WOLFSSL_DSA *dsa,
const EVP_CIPHER *enc,
unsigned char *kstr, int klen,
pem_password_cb *cb, void *u)
{
byte *pem;
int plen, ret;
(void)cb;
(void)u;
WOLFSSL_MSG("wolfSSL_PEM_write_DSAPrivateKey");
if (fp == NULL || dsa == NULL || dsa->internal == NULL) {
WOLFSSL_MSG("Bad function arguments");
return WOLFSSL_FAILURE;
}
ret = wolfSSL_PEM_write_mem_DSAPrivateKey(dsa, enc, kstr, klen, &pem, &plen);
if (ret != WOLFSSL_SUCCESS) {
WOLFSSL_MSG("wolfSSL_PEM_write_mem_DSAPrivateKey failed");
return WOLFSSL_FAILURE;
}
ret = (int)XFWRITE(pem, plen, 1, fp);
if (ret != 1) {
WOLFSSL_MSG("DSA private key file write failed");
return WOLFSSL_FAILURE;
}
XFREE(pem, NULL, DYNAMIC_TYPE_KEY);
return WOLFSSL_SUCCESS;
}
#endif /* NO_FILESYSTEM */
#endif /* defined(WOLFSSL_KEY_GEN) */
#ifndef NO_FILESYSTEM
/* return code compliant with OpenSSL :
* 1 if success, 0 if error
*/
int wolfSSL_PEM_write_DSA_PUBKEY(FILE *fp, WOLFSSL_DSA *x)
{
(void)fp;
(void)x;
WOLFSSL_MSG("wolfSSL_PEM_write_DSA_PUBKEY not implemented");
return WOLFSSL_FAILURE;
}
#endif /* NO_FILESYSTEM */
#endif /* #ifndef NO_DSA */
WOLFSSL_EVP_PKEY* wolfSSL_PEM_read_bio_PrivateKey(WOLFSSL_BIO* bio,
WOLFSSL_EVP_PKEY** key, pem_password_cb* cb, void* arg)
{
(void)bio;
(void)key;
(void)cb;
(void)arg;
WOLFSSL_MSG("wolfSSL_PEM_read_bio_PrivateKey not implemented");
return NULL;
}
int wolfSSL_EVP_PKEY_type(int type)
{
(void) type;
WOLFSSL_MSG("wolfSSL_EVP_PKEY_type always returns EVP_PKEY_RSA");
return EVP_PKEY_RSA;
}
int wolfSSL_EVP_PKEY_base_id(const EVP_PKEY *pkey)
{
return EVP_PKEY_type(pkey->type);
}
#if !defined(NO_FILESYSTEM)
WOLFSSL_EVP_PKEY *wolfSSL_PEM_read_PUBKEY(FILE *fp, EVP_PKEY **x,
pem_password_cb *cb, void *u)
{
(void)fp;
(void)x;
(void)cb;
(void)u;
WOLFSSL_MSG("wolfSSL_PEM_read_PUBKEY not implemented");
return NULL;
}
#endif /* NO_FILESYSTEM */
#ifndef NO_RSA
#if !defined(NO_FILESYSTEM)
WOLFSSL_RSA *wolfSSL_PEM_read_RSAPublicKey(FILE *fp, WOLFSSL_RSA **x,
pem_password_cb *cb, void *u)
{
(void)fp;
(void)x;
(void)cb;
(void)u;
WOLFSSL_MSG("wolfSSL_PEM_read_RSAPublicKey not implemented");
return NULL;
}
/* return code compliant with OpenSSL :
* 1 if success, 0 if error
*/
int wolfSSL_PEM_write_RSAPublicKey(FILE *fp, WOLFSSL_RSA *x)
{
(void)fp;
(void)x;
WOLFSSL_MSG("wolfSSL_PEM_write_RSAPublicKey not implemented");
return WOLFSSL_FAILURE;
}
/* return code compliant with OpenSSL :
* 1 if success, 0 if error
*/
int wolfSSL_PEM_write_RSA_PUBKEY(FILE *fp, WOLFSSL_RSA *x)
{
(void)fp;
(void)x;
WOLFSSL_MSG("wolfSSL_PEM_write_RSA_PUBKEY not implemented");
return WOLFSSL_FAILURE;
}
#endif /* NO_FILESYSTEM */
/* return WOLFSSL_SUCCESS if success, WOLFSSL_FATAL_ERROR if error */
int wolfSSL_RSA_LoadDer(WOLFSSL_RSA* rsa, const unsigned char* derBuf, int derSz)
{
word32 idx = 0;
int ret;
WOLFSSL_ENTER("wolfSSL_RSA_LoadDer");
if (rsa == NULL || rsa->internal == NULL || derBuf == NULL || derSz <= 0) {
WOLFSSL_MSG("Bad function arguments");
return WOLFSSL_FATAL_ERROR;
}
ret = wc_RsaPrivateKeyDecode(derBuf, &idx, (RsaKey*)rsa->internal, derSz);
if (ret < 0) {
WOLFSSL_MSG("RsaPrivateKeyDecode failed");
return WOLFSSL_FATAL_ERROR;
}
if (SetRsaExternal(rsa) != WOLFSSL_SUCCESS) {
WOLFSSL_MSG("SetRsaExternal failed");
return WOLFSSL_FATAL_ERROR;
}
rsa->inSet = 1;
return WOLFSSL_SUCCESS;
}
#endif /* NO_RSA */
#ifndef NO_DSA
/* return WOLFSSL_SUCCESS if success, WOLFSSL_FATAL_ERROR if error */
int wolfSSL_DSA_LoadDer(WOLFSSL_DSA* dsa, const unsigned char* derBuf, int derSz)
{
word32 idx = 0;
int ret;
WOLFSSL_ENTER("wolfSSL_DSA_LoadDer");
if (dsa == NULL || dsa->internal == NULL || derBuf == NULL || derSz <= 0) {
WOLFSSL_MSG("Bad function arguments");
return WOLFSSL_FATAL_ERROR;
}
ret = DsaPrivateKeyDecode(derBuf, &idx, (DsaKey*)dsa->internal, derSz);
if (ret < 0) {
WOLFSSL_MSG("DsaPrivateKeyDecode failed");
return WOLFSSL_FATAL_ERROR;
}
if (SetDsaExternal(dsa) != WOLFSSL_SUCCESS) {
WOLFSSL_MSG("SetDsaExternal failed");
return WOLFSSL_FATAL_ERROR;
}
dsa->inSet = 1;
return WOLFSSL_SUCCESS;
}
#endif /* NO_DSA */
#ifdef HAVE_ECC
/* return WOLFSSL_SUCCESS if success, WOLFSSL_FATAL_ERROR if error */
int wolfSSL_EC_KEY_LoadDer(WOLFSSL_EC_KEY* key,
const unsigned char* derBuf, int derSz)
{
word32 idx = 0;
int ret;
WOLFSSL_ENTER("wolfSSL_EC_KEY_LoadDer");
if (key == NULL || key->internal == NULL || derBuf == NULL || derSz <= 0) {
WOLFSSL_MSG("Bad function arguments");
return WOLFSSL_FATAL_ERROR;
}
ret = wc_EccPrivateKeyDecode(derBuf, &idx, (ecc_key*)key->internal, derSz);
if (ret < 0) {
WOLFSSL_MSG("wc_EccPrivateKeyDecode failed");
return WOLFSSL_FATAL_ERROR;
}
if (SetECKeyExternal(key) != WOLFSSL_SUCCESS) {
WOLFSSL_MSG("SetECKeyExternal failed");
return WOLFSSL_FATAL_ERROR;
}
key->inSet = 1;
return WOLFSSL_SUCCESS;
}
#endif /* HAVE_ECC */
#endif /* OPENSSL_EXTRA */
#ifdef WOLFSSL_ALT_CERT_CHAINS
int wolfSSL_is_peer_alt_cert_chain(const WOLFSSL* ssl)
{
int isUsing = 0;
if (ssl)
isUsing = ssl->options.usingAltCertChain;
return isUsing;
}
#endif /* WOLFSSL_ALT_CERT_CHAINS */
#ifdef SESSION_CERTS
#ifdef WOLFSSL_ALT_CERT_CHAINS
/* Get peer's alternate certificate chain */
WOLFSSL_X509_CHAIN* wolfSSL_get_peer_alt_chain(WOLFSSL* ssl)
{
WOLFSSL_ENTER("wolfSSL_get_peer_alt_chain");
if (ssl)
return &ssl->session.altChain;
return 0;
}
#endif /* WOLFSSL_ALT_CERT_CHAINS */
/* Get peer's certificate chain */
WOLFSSL_X509_CHAIN* wolfSSL_get_peer_chain(WOLFSSL* ssl)
{
WOLFSSL_ENTER("wolfSSL_get_peer_chain");
if (ssl)
return &ssl->session.chain;
return 0;
}
/* Get peer's certificate chain total count */
int wolfSSL_get_chain_count(WOLFSSL_X509_CHAIN* chain)
{
WOLFSSL_ENTER("wolfSSL_get_chain_count");
if (chain)
return chain->count;
return 0;
}
/* Get peer's ASN.1 DER certificate at index (idx) length in bytes */
int wolfSSL_get_chain_length(WOLFSSL_X509_CHAIN* chain, int idx)
{
WOLFSSL_ENTER("wolfSSL_get_chain_length");
if (chain)
return chain->certs[idx].length;
return 0;
}
/* Get peer's ASN.1 DER certificate at index (idx) */
byte* wolfSSL_get_chain_cert(WOLFSSL_X509_CHAIN* chain, int idx)
{
WOLFSSL_ENTER("wolfSSL_get_chain_cert");
if (chain)
return chain->certs[idx].buffer;
return 0;
}
/* Get peer's wolfSSL X509 certificate at index (idx) */
WOLFSSL_X509* wolfSSL_get_chain_X509(WOLFSSL_X509_CHAIN* chain, int idx)
{
int ret;
WOLFSSL_X509* x509 = NULL;
#ifdef WOLFSSL_SMALL_STACK
DecodedCert* cert = NULL;
#else
DecodedCert cert[1];
#endif
WOLFSSL_ENTER("wolfSSL_get_chain_X509");
if (chain != NULL) {
#ifdef WOLFSSL_SMALL_STACK
cert = (DecodedCert*)XMALLOC(sizeof(DecodedCert), NULL,
DYNAMIC_TYPE_DCERT);
if (cert != NULL)
#endif
{
InitDecodedCert(cert, chain->certs[idx].buffer,
chain->certs[idx].length, NULL);
if ((ret = ParseCertRelative(cert, CERT_TYPE, 0, NULL)) != 0) {
WOLFSSL_MSG("Failed to parse cert");
}
else {
x509 = (WOLFSSL_X509*)XMALLOC(sizeof(WOLFSSL_X509), NULL,
DYNAMIC_TYPE_X509);
if (x509 == NULL) {
WOLFSSL_MSG("Failed alloc X509");
}
else {
InitX509(x509, 1, NULL);
if ((ret = CopyDecodedToX509(x509, cert)) != 0) {
WOLFSSL_MSG("Failed to copy decoded");
XFREE(x509, NULL, DYNAMIC_TYPE_X509);
x509 = NULL;
}
}
}
FreeDecodedCert(cert);
#ifdef WOLFSSL_SMALL_STACK
XFREE(cert, NULL, DYNAMIC_TYPE_DCERT);
#endif
}
}
(void)ret;
return x509;
}
/* Get peer's PEM certificate at index (idx), output to buffer if inLen big
enough else return error (-1). If buffer is NULL only calculate
outLen. Output length is in *outLen WOLFSSL_SUCCESS on ok */
int wolfSSL_get_chain_cert_pem(WOLFSSL_X509_CHAIN* chain, int idx,
unsigned char* buf, int inLen, int* outLen)
{
const char header[] = "-----BEGIN CERTIFICATE-----\n";
const char footer[] = "-----END CERTIFICATE-----\n";
int headerLen = sizeof(header) - 1;
int footerLen = sizeof(footer) - 1;
int i;
int err;
word32 szNeeded = 0;
WOLFSSL_ENTER("wolfSSL_get_chain_cert_pem");
if (!chain || !outLen || idx < 0 || idx >= wolfSSL_get_chain_count(chain))
return BAD_FUNC_ARG;
/* Null output buffer return size needed in outLen */
if(!buf) {
if(Base64_Encode(chain->certs[idx].buffer, chain->certs[idx].length,
NULL, &szNeeded) != LENGTH_ONLY_E)
return WOLFSSL_FAILURE;
*outLen = szNeeded + headerLen + footerLen;
return LENGTH_ONLY_E;
}
/* don't even try if inLen too short */
if (inLen < headerLen + footerLen + chain->certs[idx].length)
return BAD_FUNC_ARG;
/* header */
if (XMEMCPY(buf, header, headerLen) == NULL)
return WOLFSSL_FATAL_ERROR;
i = headerLen;
/* body */
*outLen = inLen; /* input to Base64_Encode */
if ( (err = Base64_Encode(chain->certs[idx].buffer,
chain->certs[idx].length, buf + i, (word32*)outLen)) < 0)
return err;
i += *outLen;
/* footer */
if ( (i + footerLen) > inLen)
return BAD_FUNC_ARG;
if (XMEMCPY(buf + i, footer, footerLen) == NULL)
return WOLFSSL_FATAL_ERROR;
*outLen += headerLen + footerLen;
return WOLFSSL_SUCCESS;
}
/* get session ID */
const byte* wolfSSL_get_sessionID(const WOLFSSL_SESSION* session)
{
WOLFSSL_ENTER("wolfSSL_get_sessionID");
if (session)
return session->sessionID;
return NULL;
}
#endif /* SESSION_CERTS */
#ifdef HAVE_FUZZER
void wolfSSL_SetFuzzerCb(WOLFSSL* ssl, CallbackFuzzer cbf, void* fCtx)
{
if (ssl) {
ssl->fuzzerCb = cbf;
ssl->fuzzerCtx = fCtx;
}
}
#endif
#ifndef NO_CERTS
#ifdef HAVE_PK_CALLBACKS
#ifdef HAVE_ECC
void wolfSSL_CTX_SetEccSignCb(WOLFSSL_CTX* ctx, CallbackEccSign cb)
{
if (ctx)
ctx->EccSignCb = cb;
}
void wolfSSL_SetEccSignCtx(WOLFSSL* ssl, void *ctx)
{
if (ssl)
ssl->EccSignCtx = ctx;
}
void* wolfSSL_GetEccSignCtx(WOLFSSL* ssl)
{
if (ssl)
return ssl->EccSignCtx;
return NULL;
}
void wolfSSL_CTX_SetEccVerifyCb(WOLFSSL_CTX* ctx, CallbackEccVerify cb)
{
if (ctx)
ctx->EccVerifyCb = cb;
}
void wolfSSL_SetEccVerifyCtx(WOLFSSL* ssl, void *ctx)
{
if (ssl)
ssl->EccVerifyCtx = ctx;
}
void* wolfSSL_GetEccVerifyCtx(WOLFSSL* ssl)
{
if (ssl)
return ssl->EccVerifyCtx;
return NULL;
}
void wolfSSL_CTX_SetEccSharedSecretCb(WOLFSSL_CTX* ctx, CallbackEccSharedSecret cb)
{
if (ctx)
ctx->EccSharedSecretCb = cb;
}
void wolfSSL_SetEccSharedSecretCtx(WOLFSSL* ssl, void *ctx)
{
if (ssl)
ssl->EccSharedSecretCtx = ctx;
}
void* wolfSSL_GetEccSharedSecretCtx(WOLFSSL* ssl)
{
if (ssl)
return ssl->EccSharedSecretCtx;
return NULL;
}
#endif /* HAVE_ECC */
#ifdef HAVE_ED25519
void wolfSSL_CTX_SetEd25519SignCb(WOLFSSL_CTX* ctx, CallbackEd25519Sign cb)
{
if (ctx)
ctx->Ed25519SignCb = cb;
}
void wolfSSL_SetEd25519SignCtx(WOLFSSL* ssl, void *ctx)
{
if (ssl)
ssl->Ed25519SignCtx = ctx;
}
void* wolfSSL_GetEd25519SignCtx(WOLFSSL* ssl)
{
if (ssl)
return ssl->Ed25519SignCtx;
return NULL;
}
void wolfSSL_CTX_SetEd25519VerifyCb(WOLFSSL_CTX* ctx, CallbackEd25519Verify cb)
{
if (ctx)
ctx->Ed25519VerifyCb = cb;
}
void wolfSSL_SetEd25519VerifyCtx(WOLFSSL* ssl, void *ctx)
{
if (ssl)
ssl->Ed25519VerifyCtx = ctx;
}
void* wolfSSL_GetEd25519VerifyCtx(WOLFSSL* ssl)
{
if (ssl)
return ssl->Ed25519VerifyCtx;
return NULL;
}
#endif
#ifdef HAVE_CURVE25519
void wolfSSL_CTX_SetX25519SharedSecretCb(WOLFSSL_CTX* ctx,
CallbackX25519SharedSecret cb)
{
if (ctx)
ctx->X25519SharedSecretCb = cb;
}
void wolfSSL_SetX25519SharedSecretCtx(WOLFSSL* ssl, void *ctx)
{
if (ssl)
ssl->X25519SharedSecretCtx = ctx;
}
void* wolfSSL_GetX25519SharedSecretCtx(WOLFSSL* ssl)
{
if (ssl)
return ssl->X25519SharedSecretCtx;
return NULL;
}
#endif
#ifndef NO_RSA
void wolfSSL_CTX_SetRsaSignCb(WOLFSSL_CTX* ctx, CallbackRsaSign cb)
{
if (ctx)
ctx->RsaSignCb = cb;
}
void wolfSSL_SetRsaSignCtx(WOLFSSL* ssl, void *ctx)
{
if (ssl)
ssl->RsaSignCtx = ctx;
}
void* wolfSSL_GetRsaSignCtx(WOLFSSL* ssl)
{
if (ssl)
return ssl->RsaSignCtx;
return NULL;
}
void wolfSSL_CTX_SetRsaVerifyCb(WOLFSSL_CTX* ctx, CallbackRsaVerify cb)
{
if (ctx)
ctx->RsaVerifyCb = cb;
}
void wolfSSL_SetRsaVerifyCtx(WOLFSSL* ssl, void *ctx)
{
if (ssl)
ssl->RsaVerifyCtx = ctx;
}
void* wolfSSL_GetRsaVerifyCtx(WOLFSSL* ssl)
{
if (ssl)
return ssl->RsaVerifyCtx;
return NULL;
}
#ifdef WC_RSA_PSS
void wolfSSL_CTX_SetRsaPssSignCb(WOLFSSL_CTX* ctx, CallbackRsaPssSign cb)
{
if (ctx)
ctx->RsaPssSignCb = cb;
}
void wolfSSL_SetRsaPssSignCtx(WOLFSSL* ssl, void *ctx)
{
if (ssl)
ssl->RsaPssSignCtx = ctx;
}
void* wolfSSL_GetRsaPssSignCtx(WOLFSSL* ssl)
{
if (ssl)
return ssl->RsaPssSignCtx;
return NULL;
}
void wolfSSL_CTX_SetRsaPssVerifyCb(WOLFSSL_CTX* ctx, CallbackRsaPssVerify cb)
{
if (ctx)
ctx->RsaPssVerifyCb = cb;
}
void wolfSSL_SetRsaPssVerifyCtx(WOLFSSL* ssl, void *ctx)
{
if (ssl)
ssl->RsaPssVerifyCtx = ctx;
}
void* wolfSSL_GetRsaPssVerifyCtx(WOLFSSL* ssl)
{
if (ssl)
return ssl->RsaPssVerifyCtx;
return NULL;
}
#endif
void wolfSSL_CTX_SetRsaEncCb(WOLFSSL_CTX* ctx, CallbackRsaEnc cb)
{
if (ctx)
ctx->RsaEncCb = cb;
}
void wolfSSL_SetRsaEncCtx(WOLFSSL* ssl, void *ctx)
{
if (ssl)
ssl->RsaEncCtx = ctx;
}
void* wolfSSL_GetRsaEncCtx(WOLFSSL* ssl)
{
if (ssl)
return ssl->RsaEncCtx;
return NULL;
}
void wolfSSL_CTX_SetRsaDecCb(WOLFSSL_CTX* ctx, CallbackRsaDec cb)
{
if (ctx)
ctx->RsaDecCb = cb;
}
void wolfSSL_SetRsaDecCtx(WOLFSSL* ssl, void *ctx)
{
if (ssl)
ssl->RsaDecCtx = ctx;
}
void* wolfSSL_GetRsaDecCtx(WOLFSSL* ssl)
{
if (ssl)
return ssl->RsaDecCtx;
return NULL;
}
#endif /* NO_RSA */
#endif /* HAVE_PK_CALLBACKS */
#endif /* NO_CERTS */
#ifdef WOLFSSL_HAVE_WOLFSCEP
/* Used by autoconf to see if wolfSCEP is available */
void wolfSSL_wolfSCEP(void) {}
#endif
#ifdef WOLFSSL_HAVE_CERT_SERVICE
/* Used by autoconf to see if cert service is available */
void wolfSSL_cert_service(void) {}
#endif
#ifdef OPENSSL_EXTRA /*Lighttp compatibility*/
#ifndef NO_CERTS
WOLFSSL_X509 *wolfSSL_PEM_read_bio_X509(WOLFSSL_BIO *bp, WOLFSSL_X509 **x,
pem_password_cb *cb, void *u)
{
WOLFSSL_X509* x509 = NULL;
unsigned char* pem = NULL;
int pemSz;
long i = 0, l;
WOLFSSL_ENTER("wolfSSL_PEM_read_bio_X509");
if (bp == NULL) {
WOLFSSL_LEAVE("wolfSSL_PEM_read_bio_X509", BAD_FUNC_ARG);
return NULL;
}
if (bp->type == BIO_MEMORY) {
l = (long)wolfSSL_BIO_ctrl_pending(bp);
if (l <= 0) {
WOLFSSL_MSG("No pending data in WOLFSSL_BIO");
return NULL;
}
}
else if (bp->type == BIO_FILE) {
#ifndef NO_FILESYSTEM
/* Read in next certificate from file but no more. */
i = XFTELL(bp->file);
if (i < 0)
return NULL;
XFSEEK(bp->file, 0, SEEK_END);
l = XFTELL(bp->file);
if (l < 0)
return NULL;
XFSEEK(bp->file, i, SEEK_SET);
#else
WOLFSSL_MSG("Unable to read file with NO_FILESYSTEM defined");
return NULL;
#endif
}
else
return NULL;
/* check calulated length */
if (l - i < 0)
return NULL;
pem = (unsigned char*)XMALLOC(l - i, 0, DYNAMIC_TYPE_PEM);
if (pem == NULL)
return NULL;
i = 0;
/* TODO: Inefficient
* reading in one byte at a time until see END_CERT
*/
while ((l = wolfSSL_BIO_read(bp, (char *)&pem[i], 1)) == 1) {
i++;
if (i > 26 && XMEMCMP((char *)&pem[i-26], END_CERT, 25) == 0) {
if (pem[i-1] == '\r') {
/* found \r , Windows line ending is \r\n so try to read one
* more byte for \n */
wolfSSL_BIO_read(bp, (char *)&pem[i++], 1);
}
break;
}
}
#ifdef WOLFSSL_NGINX
if (l == 0)
WOLFSSL_ERROR(SSL_NO_PEM_HEADER);
#endif
pemSz = (int)i;
x509 = wolfSSL_X509_load_certificate_buffer(pem, pemSz,
WOLFSSL_FILETYPE_PEM);
if (x != NULL) {
*x = x509;
}
XFREE(pem, NULL, DYNAMIC_TYPE_PEM);
(void)cb;
(void)u;
return x509;
}
/*
* bp : bio to read X509 from
* x : x509 to write to
* cb : password call back for reading PEM
* u : password
* _AUX is for working with a trusted X509 certificate
*/
WOLFSSL_X509 *wolfSSL_PEM_read_bio_X509_AUX(WOLFSSL_BIO *bp,
WOLFSSL_X509 **x, pem_password_cb *cb, void *u) {
WOLFSSL_ENTER("wolfSSL_PEM_read_bio_X509");
/* AUX info is; trusted/rejected uses, friendly name, private key id,
* and potentially a stack of "other" info. wolfSSL does not store
* friendly name or private key id yet in WOLFSSL_X509 for human
* readibility and does not support extra trusted/rejected uses for
* root CA. */
return wolfSSL_PEM_read_bio_X509(bp, x, cb, u);
}
#endif /* ifndef NO_CERTS */
#ifndef NO_CERTS
void wolfSSL_X509_NAME_free(WOLFSSL_X509_NAME *name){
FreeX509Name(name, NULL);
WOLFSSL_ENTER("wolfSSL_X509_NAME_free");
}
#endif /* NO_CERTS */
#if defined(HAVE_LIGHTY) || defined(WOLFSSL_MYSQL_COMPATIBLE) || \
defined(HAVE_STUNNEL) || defined(WOLFSSL_NGINX) || \
defined(HAVE_POCO_LIB) || defined (WOLFSSL_HAPROXY)
unsigned char *wolfSSL_SHA1(const unsigned char *d, size_t n, unsigned char *md)
{
(void) *d; (void) n; (void) *md;
WOLFSSL_ENTER("wolfSSL_SHA1");
WOLFSSL_STUB("wolfssl_SHA1");
return NULL;
}
char wolfSSL_CTX_use_certificate(WOLFSSL_CTX *ctx, WOLFSSL_X509 *x)
{
int ret;
WOLFSSL_ENTER("wolfSSL_CTX_use_certificate");
FreeDer(&ctx->certificate); /* Make sure previous is free'd */
ret = AllocDer(&ctx->certificate, x->derCert->length, CERT_TYPE,
ctx->heap);
if (ret != 0)
return 0;
XMEMCPY(ctx->certificate->buffer, x->derCert->buffer,
x->derCert->length);
#ifdef KEEP_OUR_CERT
if (ctx->ourCert != NULL && ctx->ownOurCert) {
FreeX509(ctx->ourCert);
XFREE(ctx->ourCert, ctx->heap, DYNAMIC_TYPE_X509);
}
ctx->ourCert = x;
ctx->ownOurCert = 0;
#endif
/* Update the available options with public keys. */
switch (x->pubKeyOID) {
case RSAk:
ctx->haveRSA = 1;
break;
#ifdef HAVE_ED25519
case ED25519k:
#endif
case ECDSAk:
ctx->haveECC = 1;
#ifdef HAVE_ECC
ctx->pkCurveOID = x->pkCurveOID;
#endif
break;
}
return WOLFSSL_SUCCESS;
}
int wolfSSL_BIO_read_filename(WOLFSSL_BIO *b, const char *name) {
#ifndef NO_FILESYSTEM
XFILE fp;
WOLFSSL_ENTER("wolfSSL_BIO_new_file");
if ((wolfSSL_BIO_get_fp(b, &fp) == WOLFSSL_SUCCESS) && (fp != NULL))
{
XFCLOSE(fp);
}
fp = XFOPEN(name, "r");
if (fp == NULL)
return WOLFSSL_BAD_FILE;
if (wolfSSL_BIO_set_fp(b, fp, BIO_CLOSE) != WOLFSSL_SUCCESS) {
XFCLOSE(fp);
return WOLFSSL_BAD_FILE;
}
/* file is closed when bio is free'd */
return WOLFSSL_SUCCESS;
#else
(void)name;
(void)b;
return WOLFSSL_NOT_IMPLEMENTED;
#endif
}
#ifdef HAVE_ECC
const char * wolfSSL_OBJ_nid2sn(int n) {
int i;
WOLFSSL_ENTER("wolfSSL_OBJ_nid2sn");
/* find based on NID and return name */
for (i = 0; i < ecc_sets[i].size; i++) {
if (n == ecc_sets[i].id) {
return ecc_sets[i].name;
}
}
return NULL;
}
int wolfSSL_OBJ_obj2nid(const WOLFSSL_ASN1_OBJECT *o) {
(void)o;
WOLFSSL_ENTER("wolfSSL_OBJ_obj2nid");
WOLFSSL_STUB("wolfSSL_OBJ_obj2nid");
return 0;
}
int wolfSSL_OBJ_sn2nid(const char *sn) {
int i;
WOLFSSL_ENTER("wolfSSL_OBJ_osn2nid");
/* Nginx uses this OpenSSL string. */
if (XSTRNCMP(sn, "prime256v1", 10) == 0)
sn = "SECP256R1";
if (XSTRNCMP(sn, "secp384r1", 10) == 0)
sn = "SECP384R1";
/* find based on name and return NID */
for (i = 0; i < ecc_sets[i].size; i++) {
if (XSTRNCMP(sn, ecc_sets[i].name, ECC_MAXNAME) == 0) {
return ecc_sets[i].id;
}
}
return -1;
}
#endif /* HAVE_ECC */
void wolfSSL_CTX_set_verify_depth(WOLFSSL_CTX *ctx, int depth) {
WOLFSSL_ENTER("wolfSSL_CTX_set_verify_depth");
#ifndef OPENSSL_EXTRA
(void)ctx;
(void)depth;
WOLFSSL_STUB("wolfSSL_CTX_set_verify_depth");
#else
ctx->verifyDepth = (byte)depth;
#endif
}
void wolfSSL_set_verify_depth(WOLFSSL *ssl, int depth) {
WOLFSSL_ENTER("wolfSSL_set_verify_depth");
#ifndef OPENSSL_EXTRA
(void)ssl;
(void)depth;
WOLFSSL_STUB("wolfSSL_set_verify_depth");
#else
ssl->options.verifyDepth = (byte)depth;
#endif
}
void* wolfSSL_get_app_data( const WOLFSSL *ssl) {
/* checkout exdata stuff... */
return wolfSSL_get_ex_data(ssl,0);
}
int wolfSSL_set_app_data(WOLFSSL *ssl, void *arg) {
return wolfSSL_set_ex_data(ssl,0,(char *)arg);
}
WOLFSSL_ASN1_OBJECT * wolfSSL_X509_NAME_ENTRY_get_object(WOLFSSL_X509_NAME_ENTRY *ne) {
(void)ne;
WOLFSSL_ENTER("wolfSSL_X509_NAME_ENTRY_get_object");
WOLFSSL_STUB("wolfSSL_X509_NAME_ENTRY_get_object");
return NULL;
}
WOLFSSL_X509_NAME_ENTRY *wolfSSL_X509_NAME_get_entry(
WOLFSSL_X509_NAME *name, int loc) {
int maxLoc = name->fullName.fullNameLen;
WOLFSSL_ENTER("wolfSSL_X509_NAME_get_entry");
if (loc < 0 || loc > maxLoc) {
WOLFSSL_MSG("Bad argument");
return NULL;
}
/* common name index case */
if (loc == name->fullName.cnIdx) {
/* get CN shortcut from x509 since it has null terminator */
name->cnEntry.data.data = name->x509->subjectCN;
name->cnEntry.data.length = name->fullName.cnLen;
name->cnEntry.data.type = ASN_COMMON_NAME;
name->cnEntry.set = 1;
return &(name->cnEntry);
}
/* additionall cases to check for go here */
WOLFSSL_MSG("Entry not found or implemented");
(void)name;
(void)loc;
return NULL;
}
void wolfSSL_sk_X509_NAME_pop_free(WOLF_STACK_OF(WOLFSSL_X509_NAME)* sk, void f (WOLFSSL_X509_NAME*)){
(void) sk;
(void) f;
WOLFSSL_ENTER("wolfSSL_sk_X509_NAME_pop_free");
WOLFSSL_STUB("wolfSSL_sk_X509_NAME_pop_free");
}
int wolfSSL_X509_check_private_key(WOLFSSL_X509 *x509, WOLFSSL_EVP_PKEY *key){
(void) x509;
(void) key;
WOLFSSL_ENTER("wolfSSL_X509_check_private_key");
WOLFSSL_STUB("wolfSSL_X509_check_private_key");
return WOLFSSL_SUCCESS;
}
WOLF_STACK_OF(WOLFSSL_X509_NAME) *wolfSSL_dup_CA_list( WOLF_STACK_OF(WOLFSSL_X509_NAME) *sk ){
(void) sk;
WOLFSSL_ENTER("wolfSSL_dup_CA_list");
WOLFSSL_STUB("wolfSSL_dup_CA_list");
return NULL;
}
#endif /* HAVE_LIGHTY || WOLFSSL_MYSQL_COMPATIBLE || HAVE_STUNNEL || WOLFSSL_NGINX || HAVE_POCO_LIB || WOLFSSL_HAPROXY */
#endif /* OPENSSL_EXTRA */
#ifdef OPENSSL_EXTRA
/* wolfSSL uses negative values for error states. This function returns an
* unsigned type so the value returned is the absolute value of the error.
*/
unsigned long wolfSSL_ERR_peek_last_error_line(const char **file, int *line)
{
WOLFSSL_ENTER("wolfSSL_ERR_peek_last_error");
(void)line;
(void)file;
#if defined(WOLFSSL_NGINX) || defined(DEBUG_WOLFSSL) || defined(WOLFSSL_HAPROXY)
{
int ret;
if ((ret = wc_PeekErrorNode(-1, file, NULL, line)) < 0) {
WOLFSSL_MSG("Issue peeking at error node in queue");
return 0;
}
#ifdef WOLFSSL_NGINX
if (ret == -SSL_NO_PEM_HEADER)
return (ERR_LIB_PEM << 24) | PEM_R_NO_START_LINE;
#endif
return (unsigned long)ret;
}
#else
return (unsigned long)(0 - NOT_COMPILED_IN);
#endif
}
#ifndef NO_CERTS
int wolfSSL_CTX_use_PrivateKey(WOLFSSL_CTX *ctx, WOLFSSL_EVP_PKEY *pkey)
{
WOLFSSL_ENTER("wolfSSL_CTX_use_PrivateKey");
if (ctx == NULL || pkey == NULL) {
return WOLFSSL_FAILURE;
}
return wolfSSL_CTX_use_PrivateKey_buffer(ctx,
(const unsigned char*)pkey->pkey.ptr,
pkey->pkey_sz, PRIVATEKEY_TYPE);
}
#endif /* !NO_CERTS */
void* wolfSSL_CTX_get_ex_data(const WOLFSSL_CTX* ctx, int idx)
{
WOLFSSL_ENTER("wolfSSL_CTX_get_ex_data");
#ifdef HAVE_EX_DATA
if(ctx != NULL && idx < MAX_EX_DATA && idx >= 0) {
return ctx->ex_data[idx];
}
#else
(void)ctx;
(void)idx;
#endif
return NULL;
}
int wolfSSL_CTX_get_ex_new_index(long idx, void* arg, void* a, void* b,
void* c)
{
static int ctx_idx = 0;
WOLFSSL_ENTER("wolfSSL_CTX_get_ex_new_index");
(void)idx;
(void)arg;
(void)a;
(void)b;
(void)c;
return ctx_idx++;
}
int wolfSSL_CTX_set_ex_data(WOLFSSL_CTX* ctx, int idx, void* data)
{
WOLFSSL_ENTER("wolfSSL_CTX_set_ex_data");
#ifdef HAVE_EX_DATA
if (ctx != NULL && idx < MAX_EX_DATA)
{
ctx->ex_data[idx] = data;
return WOLFSSL_SUCCESS;
}
#else
(void)ctx;
(void)idx;
(void)data;
#endif
return WOLFSSL_FAILURE;
}
int wolfSSL_set_ex_data(WOLFSSL* ssl, int idx, void* data)
{
WOLFSSL_ENTER("wolfSSL_set_ex_data");
#if defined(HAVE_EX_DATA) || defined(FORTRESS)
if (ssl != NULL && idx < MAX_EX_DATA)
{
ssl->ex_data[idx] = data;
return WOLFSSL_SUCCESS;
}
#else
(void)ssl;
(void)idx;
(void)data;
#endif
return WOLFSSL_FAILURE;
}
int wolfSSL_get_ex_new_index(long idx, void* data, void* cb1, void* cb2,
void* cb3)
{
static int ssl_idx = 0;
WOLFSSL_ENTER("wolfSSL_get_ex_new_index");
(void)idx;
(void)data;
(void)cb1;
(void)cb2;
(void)cb3;
return ssl_idx++;
}
void* wolfSSL_get_ex_data(const WOLFSSL* ssl, int idx)
{
WOLFSSL_ENTER("wolfSSL_get_ex_data");
#if defined(HAVE_EX_DATA) || defined(FORTRESS)
if (ssl != NULL && idx < MAX_EX_DATA && idx >= 0)
return ssl->ex_data[idx];
#else
(void)ssl;
(void)idx;
#endif
return 0;
}
#ifndef NO_DSA
WOLFSSL_DSA *wolfSSL_PEM_read_bio_DSAparams(WOLFSSL_BIO *bp, WOLFSSL_DSA **x,
pem_password_cb *cb, void *u)
{
WOLFSSL_DSA* dsa;
DsaKey* key;
int length;
unsigned char* buf;
word32 bufSz;
int ret;
word32 idx = 0;
DerBuffer* pDer;
WOLFSSL_ENTER("wolfSSL_PEM_read_bio_DSAparams");
ret = wolfSSL_BIO_get_mem_data(bp, &buf);
if (ret <= 0) {
WOLFSSL_LEAVE("wolfSSL_PEM_read_bio_DSAparams", ret);
return NULL;
}
bufSz = (word32)ret;
if (cb != NULL || u != NULL) {
/*
* cb is for a call back when encountering encrypted PEM files
* if cb == NULL and u != NULL then u = null terminated password string
*/
WOLFSSL_MSG("Not yet supporting call back or password for encrypted PEM");
}
if ((ret = PemToDer(buf, (long)bufSz, DSA_PARAM_TYPE, &pDer, NULL, NULL,
NULL)) < 0 ) {
WOLFSSL_MSG("Issue converting from PEM to DER");
return NULL;
}
if ((ret = GetSequence(pDer->buffer, &idx, &length, pDer->length)) < 0) {
WOLFSSL_LEAVE("wolfSSL_PEM_read_bio_DSAparams", ret);
FreeDer(&pDer);
return NULL;
}
dsa = wolfSSL_DSA_new();
if (dsa == NULL) {
FreeDer(&pDer);
WOLFSSL_MSG("Error creating DSA struct");
return NULL;
}
key = (DsaKey*)dsa->internal;
if (key == NULL) {
FreeDer(&pDer);
wolfSSL_DSA_free(dsa);
WOLFSSL_MSG("Error finding DSA key struct");
return NULL;
}
if (GetInt(&key->p, pDer->buffer, &idx, pDer->length) < 0 ||
GetInt(&key->q, pDer->buffer, &idx, pDer->length) < 0 ||
GetInt(&key->g, pDer->buffer, &idx, pDer->length) < 0 ) {
WOLFSSL_MSG("dsa key error");
FreeDer(&pDer);
wolfSSL_DSA_free(dsa);
return NULL;
}
if (SetIndividualExternal(&dsa->p, &key->p) != WOLFSSL_SUCCESS) {
WOLFSSL_MSG("dsa p key error");
FreeDer(&pDer);
wolfSSL_DSA_free(dsa);
return NULL;
}
if (SetIndividualExternal(&dsa->q, &key->q) != WOLFSSL_SUCCESS) {
WOLFSSL_MSG("dsa q key error");
FreeDer(&pDer);
wolfSSL_DSA_free(dsa);
return NULL;
}
if (SetIndividualExternal(&dsa->g, &key->g) != WOLFSSL_SUCCESS) {
WOLFSSL_MSG("dsa g key error");
FreeDer(&pDer);
wolfSSL_DSA_free(dsa);
return NULL;
}
if (x != NULL) {
*x = dsa;
}
FreeDer(&pDer);
return dsa;
}
#endif /* NO_DSA */
#define WOLFSSL_BIO_INCLUDED
#include "src/bio.c"
#endif /* OPENSSL_EXTRA */
#if defined(HAVE_LIGHTY) || defined(HAVE_STUNNEL) \
|| defined(WOLFSSL_MYSQL_COMPATIBLE) || defined(OPENSSL_EXTRA) || defined(WOLFSSL_HAPROXY)
char * wolfSSL_OBJ_nid2ln(int n) {
(void)n;
WOLFSSL_ENTER("wolfSSL_OBJ_nid2ln");
WOLFSSL_STUB("wolfSSL_OBJ_nid2ln");
return NULL;
}
int wolfSSL_OBJ_txt2nid(const char* s) {
(void)s;
WOLFSSL_ENTER("wolfSSL_OBJ_txt2nid");
WOLFSSL_STUB("wolfSSL_OBJ_txt2nid");
return 0;
}
WOLFSSL_BIO *wolfSSL_BIO_new_file(const char *filename, const char *mode)
{
#ifndef NO_FILESYSTEM
WOLFSSL_BIO* bio;
XFILE fp;
WOLFSSL_ENTER("wolfSSL_BIO_new_file");
fp = XFOPEN(filename, mode);
if (fp == NULL)
return NULL;
bio = wolfSSL_BIO_new(wolfSSL_BIO_s_file());
if (bio == NULL) {
XFCLOSE(fp);
return bio;
}
if (wolfSSL_BIO_set_fp(bio, fp, BIO_CLOSE) != WOLFSSL_SUCCESS) {
XFCLOSE(fp);
wolfSSL_BIO_free(bio);
bio = NULL;
}
/* file is closed when BIO is free'd */
return bio;
#else
(void)filename;
(void)mode;
return NULL;
#endif
}
#ifndef NO_DH
WOLFSSL_DH *wolfSSL_PEM_read_bio_DHparams(WOLFSSL_BIO *bio, WOLFSSL_DH **x,
pem_password_cb *cb, void *u)
{
#ifndef NO_FILESYSTEM
WOLFSSL_DH* localDh = NULL;
unsigned char* mem = NULL;
word32 size;
long sz;
int ret;
DerBuffer *der = NULL;
byte* p = NULL;
byte* g = NULL;
word32 pSz = MAX_DH_SIZE;
word32 gSz = MAX_DH_SIZE;
int memAlloced = 0;
WOLFSSL_ENTER("wolfSSL_PEM_read_bio_DHparams");
(void)cb;
(void)u;
if (bio == NULL) {
WOLFSSL_MSG("Bad Function Argument bio is NULL");
return NULL;
}
if (bio->type == BIO_MEMORY) {
/* Use the buffer directly. */
ret = wolfSSL_BIO_get_mem_data(bio, &mem);
if (mem == NULL || ret <= 0) {
WOLFSSL_MSG("Failed to get data from bio struct");
goto end;
}
size = ret;
}
else if (bio->type == BIO_FILE) {
/* Read whole file into a new buffer. */
XFSEEK(bio->file, 0, SEEK_END);
sz = XFTELL(bio->file);
XFSEEK(bio->file, 0, SEEK_SET);
if (sz <= 0L)
goto end;
mem = (unsigned char*)XMALLOC(sz, NULL, DYNAMIC_TYPE_PEM);
if (mem == NULL)
goto end;
memAlloced = 1;
if (wolfSSL_BIO_read(bio, (char *)mem, (int)sz) <= 0)
goto end;
size = (word32)sz;
}
else {
WOLFSSL_MSG("BIO type not supported for reading DH parameters");
goto end;
}
ret = PemToDer(mem, size, DH_PARAM_TYPE, &der, NULL, NULL, NULL);
if (ret != 0)
goto end;
/* Use the object passed in, otherwise allocate a new object */
if (x != NULL)
localDh = *x;
if (localDh == NULL) {
localDh = (WOLFSSL_DH*)XMALLOC(sizeof(WOLFSSL_DH), NULL,
DYNAMIC_TYPE_OPENSSL);
if (localDh == NULL)
goto end;
XMEMSET(localDh, 0, sizeof(WOLFSSL_DH));
}
/* Load data in manually */
p = (byte*)XMALLOC(pSz, NULL, DYNAMIC_TYPE_PUBLIC_KEY);
g = (byte*)XMALLOC(gSz, NULL, DYNAMIC_TYPE_PUBLIC_KEY);
if (p == NULL || g == NULL)
goto end;
/* Extract the p and g as data from the DER encoded DH parameters. */
ret = wc_DhParamsLoad(der->buffer, der->length, p, &pSz, g, &gSz);
if (ret != 0) {
if (x != NULL && localDh != *x)
XFREE(localDh, NULL, DYNAMIC_TYPE_OPENSSL);
localDh = NULL;
goto end;
}
if (x != NULL)
*x = localDh;
/* Put p and g in as big numbers. */
if (localDh->p != NULL) {
wolfSSL_BN_free(localDh->p);
localDh->p = NULL;
}
if (localDh->g != NULL) {
wolfSSL_BN_free(localDh->g);
localDh->g = NULL;
}
localDh->p = wolfSSL_BN_bin2bn(p, pSz, NULL);
localDh->g = wolfSSL_BN_bin2bn(g, gSz, NULL);
if (localDh->p == NULL || localDh->g == NULL) {
if (x != NULL && localDh != *x)
wolfSSL_DH_free(localDh);
localDh = NULL;
}
end:
if (memAlloced) XFREE(mem, NULL, DYNAMIC_TYPE_PEM);
if (der != NULL) FreeDer(&der);
XFREE(p, NULL, DYNAMIC_TYPE_PUBLIC_KEY);
XFREE(g, NULL, DYNAMIC_TYPE_PUBLIC_KEY);
return localDh;
#else
(void)bio;
(void)x;
(void)cb;
(void)u;
return NULL;
#endif
}
#endif
int wolfSSL_PEM_write_bio_X509(WOLFSSL_BIO *bio, WOLFSSL_X509 *cert)
{
byte* certDer;
int derSz;
int pemSz;
int ret;
WOLFSSL_ENTER("wolfSSL_PEM_write_bio_X509");
if (bio == NULL || cert == NULL) {
return WOLFSSL_FAILURE;
}
if (bio->type != BIO_MEMORY) {
WOLFSSL_MSG("BIO type not supported for writing X509 as PEM");
return WOLFSSL_FAILURE;
}
certDer = cert->derCert->buffer;
derSz = cert->derCert->length;
/* Get PEM encoded length and allocate memory for it. */
pemSz = wc_DerToPem(certDer, derSz, NULL, 0, CERT_TYPE);
if (pemSz < 0) {
WOLFSSL_LEAVE("wolfSSL_PEM_write_bio_X509", pemSz);
return WOLFSSL_FAILURE;
}
if (bio->mem != NULL) {
XFREE(bio->mem, NULL, DYNAMIC_TYPE_OPENSSL);
}
bio->mem = (byte*)XMALLOC(pemSz, NULL, DYNAMIC_TYPE_OPENSSL);
if (bio->mem == NULL) {
return WOLFSSL_FAILURE;
}
bio->memLen = pemSz;
ret = wc_DerToPemEx(certDer, derSz, bio->mem, bio->memLen, NULL, CERT_TYPE);
if (ret < 0) {
WOLFSSL_LEAVE("wolfSSL_PEM_write_bio_X509", ret);
return WOLFSSL_FAILURE;
}
return WOLFSSL_SUCCESS;
}
#if defined(OPENSSL_EXTRA) && !defined(NO_DH)
/* Intialize ctx->dh with dh's params. Return WOLFSSL_SUCCESS on ok */
long wolfSSL_CTX_set_tmp_dh(WOLFSSL_CTX* ctx, WOLFSSL_DH* dh)
{
int pSz, gSz;
byte *p, *g;
int ret=0;
WOLFSSL_ENTER("wolfSSL_CTX_set_tmp_dh");
if(!ctx || !dh)
return BAD_FUNC_ARG;
/* Get needed size for p and g */
pSz = wolfSSL_BN_bn2bin(dh->p, NULL);
gSz = wolfSSL_BN_bn2bin(dh->g, NULL);
if(pSz <= 0 || gSz <= 0)
return WOLFSSL_FATAL_ERROR;
p = (byte*)XMALLOC(pSz, ctx->heap, DYNAMIC_TYPE_PUBLIC_KEY);
if(!p)
return MEMORY_E;
g = (byte*)XMALLOC(gSz, ctx->heap, DYNAMIC_TYPE_PUBLIC_KEY);
if(!g) {
XFREE(p, ctx->heap, DYNAMIC_TYPE_PUBLIC_KEY);
return MEMORY_E;
}
pSz = wolfSSL_BN_bn2bin(dh->p, p);
gSz = wolfSSL_BN_bn2bin(dh->g, g);
if(pSz >= 0 && gSz >= 0) /* Conversion successful */
ret = wolfSSL_CTX_SetTmpDH(ctx, p, pSz, g, gSz);
XFREE(p, ctx->heap, DYNAMIC_TYPE_PUBLIC_KEY);
XFREE(g, ctx->heap, DYNAMIC_TYPE_PUBLIC_KEY);
return pSz > 0 && gSz > 0 ? ret : WOLFSSL_FATAL_ERROR;
}
#endif /* OPENSSL_EXTRA && !NO_DH */
#endif /* HAVE_LIGHTY || HAVE_STUNNEL || WOLFSSL_MYSQL_COMPATIBLE || WOLFSSL_HAPROXY */
/* stunnel compatibility functions*/
#if defined(OPENSSL_EXTRA) && (defined(HAVE_STUNNEL) || defined(WOLFSSL_NGINX))
void WOLFSSL_ERR_remove_thread_state(void* pid)
{
(void) pid;
return;
}
#ifndef NO_FILESYSTEM
/***TBD ***/
void wolfSSL_print_all_errors_fp(XFILE *fp)
{
(void)fp;
}
#endif
int wolfSSL_SESSION_set_ex_data(WOLFSSL_SESSION* session, int idx, void* data)
{
WOLFSSL_ENTER("wolfSSL_SESSION_set_ex_data");
#ifdef HAVE_EX_DATA
if(session != NULL && idx < MAX_EX_DATA) {
session->ex_data[idx] = data;
return WOLFSSL_SUCCESS;
}
#endif
return WOLFSSL_FAILURE;
}
int wolfSSL_SESSION_get_ex_new_index(long idx, void* data, void* cb1,
void* cb2, CRYPTO_free_func* cb3)
{
WOLFSSL_ENTER("wolfSSL_SESSION_get_ex_new_index");
(void)idx;
(void)cb1;
(void)cb2;
(void)cb3;
if(XSTRNCMP((const char*)data, "redirect index", 14) == 0) {
return 0;
}
else if(XSTRNCMP((const char*)data, "addr index", 10) == 0) {
return 1;
}
return WOLFSSL_FAILURE;
}
void* wolfSSL_SESSION_get_ex_data(const WOLFSSL_SESSION* session, int idx)
{
WOLFSSL_ENTER("wolfSSL_SESSION_get_ex_data");
#ifdef HAVE_EX_DATA
if (session != NULL && idx < MAX_EX_DATA && idx >= 0)
return session->ex_data[idx];
#endif
return NULL;
}
int wolfSSL_CRYPTO_set_mem_ex_functions(void *(*m) (size_t, const char *, int),
void *(*r) (void *, size_t, const char *,
int), void (*f) (void *))
{
(void) m;
(void) r;
(void) f;
WOLFSSL_ENTER("wolfSSL_CRYPTO_set_mem_ex_functions");
WOLFSSL_STUB("wolfSSL_CRYPTO_set_mem_ex_functions");
return WOLFSSL_FAILURE;
}
WOLFSSL_DH *wolfSSL_DH_generate_parameters(int prime_len, int generator,
void (*callback) (int, int, void *), void *cb_arg)
{
(void)prime_len;
(void)generator;
(void)callback;
(void)cb_arg;
WOLFSSL_ENTER("wolfSSL_DH_generate_parameters");
WOLFSSL_STUB("wolfSSL_DH_generate_parameters");
return NULL;
}
int wolfSSL_DH_generate_parameters_ex(WOLFSSL_DH* dh, int prime_len, int generator,
void (*callback) (int, int, void *))
{
(void)prime_len;
(void)generator;
(void)callback;
(void)dh;
WOLFSSL_ENTER("wolfSSL_DH_generate_parameters_ex");
WOLFSSL_STUB("wolfSSL_DH_generate_parameters_ex");
return -1;
}
void wolfSSL_ERR_load_crypto_strings(void)
{
WOLFSSL_ENTER("wolfSSL_ERR_load_crypto_strings");
WOLFSSL_ENTER("wolfSSL_ERR_load_crypto_strings");
return;
}
unsigned long wolfSSL_ERR_peek_last_error(void)
{
WOLFSSL_ENTER("wolfSSL_ERR_peek_last_error");
#ifdef WOLFSSL_NGINX
{
int ret;
if ((ret = wc_PeekErrorNode(-1, NULL, NULL, NULL)) < 0) {
WOLFSSL_MSG("Issue peeking at error node in queue");
return 0;
}
if (ret == -SSL_NO_PEM_HEADER)
return (ERR_LIB_PEM << 24) | PEM_R_NO_START_LINE;
return (unsigned long)ret;
}
#else
return (unsigned long)(0 - NOT_COMPILED_IN);
#endif
}
int wolfSSL_FIPS_mode(void)
{
WOLFSSL_ENTER("wolfSSL_FIPS_mode");
WOLFSSL_STUB("wolfSSL_FIPS_mode");
return WOLFSSL_FAILURE;
}
int wolfSSL_FIPS_mode_set(int r)
{
(void)r;
WOLFSSL_ENTER("wolfSSL_FIPS_mode_set");
WOLFSSL_STUB("wolfSSL_FIPS_mode_set");
return WOLFSSL_FAILURE;
}
int wolfSSL_RAND_set_rand_method(const void *meth)
{
(void) meth;
WOLFSSL_ENTER("wolfSSL_RAND_set_rand_method");
WOLFSSL_STUB("wolfSSL_RAND_set_rand_method");
return WOLFSSL_FAILURE;
}
int wolfSSL_CIPHER_get_bits(const WOLFSSL_CIPHER *c, int *alg_bits)
{
int ret = WOLFSSL_FAILURE;
WOLFSSL_ENTER("wolfSSL_CIPHER_get_bits");
if(c != NULL && c->ssl != NULL) {
ret = 8 * c->ssl->specs.key_size;
if(alg_bits != NULL) {
*alg_bits = ret;
}
}
return ret;
}
int wolfSSL_sk_X509_NAME_num(const WOLF_STACK_OF(WOLFSSL_X509_NAME) *s)
{
WOLFSSL_ENTER("wolfSSL_sk_X509_NAME_num");
if (s == NULL)
return -1;
return (int)s->num;
}
int wolfSSL_sk_X509_num(const WOLF_STACK_OF(WOLFSSL_X509) *s)
{
WOLFSSL_ENTER("wolfSSL_sk_X509_num");
if (s == NULL)
return -1;
return (int)s->num;
}
int wolfSSL_X509_NAME_print_ex(WOLFSSL_BIO* bio, WOLFSSL_X509_NAME* name,
int indent, unsigned long flags)
{
int i;
(void)flags;
WOLFSSL_ENTER("wolfSSL_X509_NAME_print_ex");
for (i = 0; i < indent; i++) {
if (wolfSSL_BIO_write(bio, " ", 1) != 1)
return WOLFSSL_FAILURE;
}
if (flags == XN_FLAG_RFC2253) {
if (wolfSSL_BIO_write(bio, name->name + 1, name->sz - 2)
!= name->sz - 2)
return WOLFSSL_FAILURE;
}
else if (wolfSSL_BIO_write(bio, name->name, name->sz) != name->sz)
return WOLFSSL_FAILURE;
return WOLFSSL_SUCCESS;
}
WOLFSSL_ASN1_BIT_STRING* wolfSSL_X509_get0_pubkey_bitstr(const WOLFSSL_X509* x)
{
(void)x;
WOLFSSL_ENTER("wolfSSL_X509_get0_pubkey_bitstr");
WOLFSSL_STUB("wolfSSL_X509_get0_pubkey_bitstr");
return NULL;
}
int wolfSSL_CTX_add_session(WOLFSSL_CTX* ctx, WOLFSSL_SESSION* session)
{
(void)ctx;
(void)session;
WOLFSSL_ENTER("wolfSSL_CTX_add_session");
WOLFSSL_STUB("wolfSSL_CTX_add_session");
return WOLFSSL_SUCCESS;
}
int wolfSSL_get_state(const WOLFSSL* ssl)
{
(void)ssl;
WOLFSSL_ENTER("wolfSSL_get_state");
WOLFSSL_STUB("wolfSSL_get_state");
return WOLFSSL_FAILURE;
}
void* wolfSSL_sk_X509_NAME_value(const WOLF_STACK_OF(WOLFSSL_X509_NAME)* sk, int i)
{
WOLFSSL_ENTER("wolfSSL_sk_X509_NAME_value");
for (; sk != NULL && i > 0; i--)
sk = sk->next;
if (i != 0 || sk == NULL)
return NULL;
return sk->data.name;
}
void* wolfSSL_sk_X509_value(WOLF_STACK_OF(WOLFSSL_X509)* sk, int i)
{
WOLFSSL_ENTER("wolfSSL_sk_X509_value");
for (; sk != NULL && i > 0; i--)
sk = sk->next;
if (i != 0 || sk == NULL)
return NULL;
return sk->data.x509;
}
int wolfSSL_version(WOLFSSL* ssl)
{
WOLFSSL_ENTER("wolfSSL_version");
if (ssl->version.major == SSLv3_MAJOR) {
switch (ssl->version.minor) {
case SSLv3_MINOR :
return SSL3_VERSION;
case TLSv1_MINOR :
case TLSv1_1_MINOR :
case TLSv1_2_MINOR :
case TLSv1_3_MINOR :
return TLS1_VERSION;
default:
return WOLFSSL_FAILURE;
}
}
else if (ssl->version.major == DTLS_MAJOR) {
switch (ssl->version.minor) {
case DTLS_MINOR :
case DTLSv1_2_MINOR :
return DTLS1_VERSION;
default:
return WOLFSSL_FAILURE;
}
}
return WOLFSSL_FAILURE;
}
WOLF_STACK_OF(WOLFSSL_X509)* wolfSSL_get_peer_cert_chain(const WOLFSSL* ssl)
{
(void)ssl;
WOLFSSL_ENTER("wolfSSL_get_peer_cert_chain");
WOLFSSL_STUB("wolfSSL_get_peer_cert_chain");
return NULL;
}
WOLFSSL_CTX* wolfSSL_get_SSL_CTX(WOLFSSL* ssl)
{
WOLFSSL_ENTER("wolfSSL_get_SSL_CTX");
return ssl->ctx;
}
int wolfSSL_X509_NAME_get_sz(WOLFSSL_X509_NAME* name)
{
WOLFSSL_ENTER("wolfSSL_X509_NAME_get_sz");
if(!name)
return -1;
return name->sz;
}
#ifdef HAVE_SNI
int wolfSSL_set_tlsext_host_name(WOLFSSL* ssl, const char* host_name)
{
int ret;
WOLFSSL_ENTER("wolfSSL_set_tlsext_host_name");
ret = wolfSSL_UseSNI(ssl, WOLFSSL_SNI_HOST_NAME,
host_name, (word16)XSTRLEN(host_name));
WOLFSSL_LEAVE("wolfSSL_set_tlsext_host_name", ret);
return ret;
}
#ifndef NO_WOLFSSL_SERVER
const char * wolfSSL_get_servername(WOLFSSL* ssl, byte type)
{
void * serverName = NULL;
if (ssl == NULL)
return NULL;
TLSX_SNI_GetRequest(ssl->extensions, type, &serverName);
return (const char *)serverName;
}
#endif /* NO_WOLFSSL_SERVER */
#endif /* HAVE_SNI */
WOLFSSL_CTX* wolfSSL_set_SSL_CTX(WOLFSSL* ssl, WOLFSSL_CTX* ctx)
{
if (ssl && ctx && SetSSL_CTX(ssl, ctx, 0) == WOLFSSL_SUCCESS)
return ssl->ctx;
return NULL;
}
VerifyCallback wolfSSL_CTX_get_verify_callback(WOLFSSL_CTX* ctx)
{
WOLFSSL_ENTER("wolfSSL_CTX_get_verify_callback");
if(ctx)
return ctx->verifyCallback;
return NULL;
}
void wolfSSL_CTX_set_servername_callback(WOLFSSL_CTX* ctx, CallbackSniRecv cb)
{
WOLFSSL_ENTER("wolfSSL_CTX_set_servername_callback");
if (ctx)
ctx->sniRecvCb = cb;
}
int wolfSSL_CTX_set_tlsext_servername_callback(WOLFSSL_CTX* ctx,
CallbackSniRecv cb)
{
WOLFSSL_ENTER("wolfSSL_CTX_set_tlsext_servername_callback");
if (ctx) {
ctx->sniRecvCb = cb;
return 1;
}
return 0;
}
void wolfSSL_CTX_set_servername_arg(WOLFSSL_CTX* ctx, void* arg)
{
WOLFSSL_ENTER("wolfSSL_CTX_set_servername_arg");
if (ctx)
ctx->sniRecvCbArg = arg;
}
long wolfSSL_CTX_clear_options(WOLFSSL_CTX* ctx, long opt)
{
WOLFSSL_ENTER("SSL_CTX_clear_options");
WOLFSSL_STUB("SSL_CTX_clear_options");
(void)ctx;
(void)opt;
return opt;
}
void wolfSSL_THREADID_set_callback(void(*threadid_func)(void*))
{
WOLFSSL_ENTER("wolfSSL_THREADID_set_callback");
WOLFSSL_STUB("wolfSSL_THREADID_set_callback");
(void)threadid_func;
return;
}
void wolfSSL_THREADID_set_numeric(void* id, unsigned long val)
{
WOLFSSL_ENTER("wolfSSL_THREADID_set_numeric");
WOLFSSL_STUB("wolfSSL_THREADID_set_numeric");
(void)id;
(void)val;
return;
}
WOLF_STACK_OF(WOLFSSL_X509)* wolfSSL_X509_STORE_get1_certs(WOLFSSL_X509_STORE_CTX* ctx,
WOLFSSL_X509_NAME* name)
{
WOLFSSL_ENTER("wolfSSL_X509_STORE_get1_certs");
WOLFSSL_STUB("wolfSSL_X509_STORE_get1_certs");
(void)ctx;
(void)name;
return NULL;
}
void wolfSSL_sk_X509_pop_free(WOLF_STACK_OF(WOLFSSL_X509)* sk, void f (WOLFSSL_X509*)){
(void) sk;
(void) f;
WOLFSSL_ENTER("wolfSSL_sk_X509_pop_free");
WOLFSSL_STUB("wolfSSL_sk_X509_pop_free");
}
#endif /* OPENSSL_EXTRA and HAVE_STUNNEL */
#if defined(OPENSSL_EXTRA) && (defined(HAVE_STUNNEL) || defined(WOLFSSL_NGINX))\
|| defined(WOLFSSL_HAPROXY)
const byte* wolfSSL_SESSION_get_id(WOLFSSL_SESSION* sess, unsigned int* idLen)
{
WOLFSSL_ENTER("wolfSSL_SESSION_get_id");
if(!sess || !idLen) {
WOLFSSL_MSG("Bad func args. Please provide idLen");
return NULL;
}
*idLen = sess->sessionIDSz;
return sess->sessionID;
}
#endif
#if (defined(OPENSSL_EXTRA) && defined(HAVE_STUNNEL)) \
|| defined(WOLFSSL_MYSQL_COMPATIBLE) || defined(WOLFSSL_NGINX)
int wolfSSL_CTX_get_verify_mode(WOLFSSL_CTX* ctx)
{
int mode = 0;
WOLFSSL_ENTER("wolfSSL_CTX_get_verify_mode");
if(!ctx)
return WOLFSSL_FATAL_ERROR;
if (ctx->verifyPeer)
mode |= WOLFSSL_VERIFY_PEER;
else if (ctx->verifyNone)
mode |= WOLFSSL_VERIFY_NONE;
if (ctx->failNoCert)
mode |= WOLFSSL_VERIFY_FAIL_IF_NO_PEER_CERT;
if (ctx->failNoCertxPSK)
mode |= WOLFSSL_VERIFY_FAIL_EXCEPT_PSK;
WOLFSSL_LEAVE("wolfSSL_CTX_get_verify_mode", mode);
return mode;
}
#endif
#if defined(OPENSSL_EXTRA) && defined(HAVE_CURVE25519)
/* return 1 if success, 0 if error
* output keys are little endian format
*/
int wolfSSL_EC25519_generate_key(unsigned char *priv, unsigned int *privSz,
unsigned char *pub, unsigned int *pubSz)
{
#ifndef WOLFSSL_KEY_GEN
WOLFSSL_MSG("No Key Gen built in");
(void) priv;
(void) privSz;
(void) pub;
(void) pubSz;
return WOLFSSL_FAILURE;
#else /* WOLFSSL_KEY_GEN */
int ret = WOLFSSL_FAILURE;
int initTmpRng = 0;
WC_RNG *rng = NULL;
#ifdef WOLFSSL_SMALL_STACK
WC_RNG *tmpRNG = NULL;
#else
WC_RNG tmpRNG[1];
#endif
WOLFSSL_ENTER("wolfSSL_EC25519_generate_key");
if (priv == NULL || privSz == NULL || *privSz < CURVE25519_KEYSIZE ||
pub == NULL || pubSz == NULL || *pubSz < CURVE25519_KEYSIZE) {
WOLFSSL_MSG("Bad arguments");
return WOLFSSL_FAILURE;
}
#ifdef WOLFSSL_SMALL_STACK
tmpRNG = (WC_RNG*)XMALLOC(sizeof(WC_RNG), NULL, DYNAMIC_TYPE_RNG);
if (tmpRNG == NULL)
return WOLFSSL_FAILURE;
#endif
if (wc_InitRng(tmpRNG) == 0) {
rng = tmpRNG;
initTmpRng = 1;
}
else {
WOLFSSL_MSG("Bad RNG Init, trying global");
if (initGlobalRNG == 0)
WOLFSSL_MSG("Global RNG no Init");
else
rng = &globalRNG;
}
if (rng) {
curve25519_key key;
if (wc_curve25519_init(&key) != MP_OKAY)
WOLFSSL_MSG("wc_curve25519_init failed");
else if (wc_curve25519_make_key(rng, CURVE25519_KEYSIZE, &key)!=MP_OKAY)
WOLFSSL_MSG("wc_curve25519_make_key failed");
/* export key pair */
else if (wc_curve25519_export_key_raw_ex(&key, priv, privSz, pub,
pubSz, EC25519_LITTLE_ENDIAN)
!= MP_OKAY)
WOLFSSL_MSG("wc_curve25519_export_key_raw_ex failed");
else
ret = WOLFSSL_SUCCESS;
wc_curve25519_free(&key);
}
if (initTmpRng)
wc_FreeRng(tmpRNG);
#ifdef WOLFSSL_SMALL_STACK
XFREE(tmpRNG, NULL, DYNAMIC_TYPE_RNG);
#endif
return ret;
#endif /* WOLFSSL_KEY_GEN */
}
/* return 1 if success, 0 if error
* input and output keys are little endian format
*/
int wolfSSL_EC25519_shared_key(unsigned char *shared, unsigned int *sharedSz,
const unsigned char *priv, unsigned int privSz,
const unsigned char *pub, unsigned int pubSz)
{
#ifndef WOLFSSL_KEY_GEN
WOLFSSL_MSG("No Key Gen built in");
(void) shared;
(void) sharedSz;
(void) priv;
(void) privSz;
(void) pub;
(void) pubSz;
return WOLFSSL_FAILURE;
#else /* WOLFSSL_KEY_GEN */
int ret = WOLFSSL_FAILURE;
curve25519_key privkey, pubkey;
WOLFSSL_ENTER("wolfSSL_EC25519_shared_key");
if (shared == NULL || sharedSz == NULL || *sharedSz < CURVE25519_KEYSIZE ||
priv == NULL || privSz < CURVE25519_KEYSIZE ||
pub == NULL || pubSz < CURVE25519_KEYSIZE) {
WOLFSSL_MSG("Bad arguments");
return WOLFSSL_FAILURE;
}
/* import private key */
if (wc_curve25519_init(&privkey) != MP_OKAY) {
WOLFSSL_MSG("wc_curve25519_init privkey failed");
return ret;
}
if (wc_curve25519_import_private_ex(priv, privSz, &privkey,
EC25519_LITTLE_ENDIAN) != MP_OKAY) {
WOLFSSL_MSG("wc_curve25519_import_private_ex failed");
wc_curve25519_free(&privkey);
return ret;
}
/* import public key */
if (wc_curve25519_init(&pubkey) != MP_OKAY) {
WOLFSSL_MSG("wc_curve25519_init pubkey failed");
wc_curve25519_free(&privkey);
return ret;
}
if (wc_curve25519_import_public_ex(pub, pubSz, &pubkey,
EC25519_LITTLE_ENDIAN) != MP_OKAY) {
WOLFSSL_MSG("wc_curve25519_import_public_ex failed");
wc_curve25519_free(&privkey);
wc_curve25519_free(&pubkey);
return ret;
}
if (wc_curve25519_shared_secret_ex(&privkey, &pubkey,
shared, sharedSz,
EC25519_LITTLE_ENDIAN) != MP_OKAY)
WOLFSSL_MSG("wc_curve25519_shared_secret_ex failed");
else
ret = WOLFSSL_SUCCESS;
wc_curve25519_free(&privkey);
wc_curve25519_free(&pubkey);
return ret;
#endif /* WOLFSSL_KEY_GEN */
}
#endif /* OPENSSL_EXTRA && HAVE_CURVE25519 */
#if defined(OPENSSL_EXTRA) && defined(HAVE_ED25519)
/* return 1 if success, 0 if error
* output keys are little endian format
*/
int wolfSSL_ED25519_generate_key(unsigned char *priv, unsigned int *privSz,
unsigned char *pub, unsigned int *pubSz)
{
#ifndef WOLFSSL_KEY_GEN
WOLFSSL_MSG("No Key Gen built in");
(void) priv;
(void) privSz;
(void) pub;
(void) pubSz;
return WOLFSSL_FAILURE;
#else /* WOLFSSL_KEY_GEN */
int ret = WOLFSSL_FAILURE;
int initTmpRng = 0;
WC_RNG *rng = NULL;
#ifdef WOLFSSL_SMALL_STACK
WC_RNG *tmpRNG = NULL;
#else
WC_RNG tmpRNG[1];
#endif
WOLFSSL_ENTER("wolfSSL_ED25519_generate_key");
if (priv == NULL || privSz == NULL || *privSz < ED25519_PRV_KEY_SIZE ||
pub == NULL || pubSz == NULL || *pubSz < ED25519_PUB_KEY_SIZE) {
WOLFSSL_MSG("Bad arguments");
return WOLFSSL_FAILURE;
}
#ifdef WOLFSSL_SMALL_STACK
tmpRNG = (WC_RNG*)XMALLOC(sizeof(WC_RNG), NULL, DYNAMIC_TYPE_RNG);
if (tmpRNG == NULL)
return WOLFSSL_FATAL_ERROR;
#endif
if (wc_InitRng(tmpRNG) == 0) {
rng = tmpRNG;
initTmpRng = 1;
}
else {
WOLFSSL_MSG("Bad RNG Init, trying global");
if (initGlobalRNG == 0)
WOLFSSL_MSG("Global RNG no Init");
else
rng = &globalRNG;
}
if (rng) {
ed25519_key key;
if (wc_ed25519_init(&key) != MP_OKAY)
WOLFSSL_MSG("wc_ed25519_init failed");
else if (wc_ed25519_make_key(rng, ED25519_KEY_SIZE, &key)!=MP_OKAY)
WOLFSSL_MSG("wc_ed25519_make_key failed");
/* export private key */
else if (wc_ed25519_export_key(&key, priv, privSz, pub, pubSz)!=MP_OKAY)
WOLFSSL_MSG("wc_ed25519_export_key failed");
else
ret = WOLFSSL_SUCCESS;
wc_ed25519_free(&key);
}
if (initTmpRng)
wc_FreeRng(tmpRNG);
#ifdef WOLFSSL_SMALL_STACK
XFREE(tmpRNG, NULL, DYNAMIC_TYPE_RNG);
#endif
return ret;
#endif /* WOLFSSL_KEY_GEN */
}
/* return 1 if success, 0 if error
* input and output keys are little endian format
* priv is a buffer containing private and public part of key
*/
int wolfSSL_ED25519_sign(const unsigned char *msg, unsigned int msgSz,
const unsigned char *priv, unsigned int privSz,
unsigned char *sig, unsigned int *sigSz)
{
#ifndef WOLFSSL_KEY_GEN
WOLFSSL_MSG("No Key Gen built in");
(void) msg;
(void) msgSz;
(void) priv;
(void) privSz;
(void) sig;
(void) sigSz;
return WOLFSSL_FAILURE;
#else /* WOLFSSL_KEY_GEN */
ed25519_key key;
int ret = WOLFSSL_FAILURE;
WOLFSSL_ENTER("wolfSSL_ED25519_sign");
if (priv == NULL || privSz != ED25519_PRV_KEY_SIZE ||
msg == NULL || sig == NULL || *sigSz < ED25519_SIG_SIZE) {
WOLFSSL_MSG("Bad arguments");
return WOLFSSL_FAILURE;
}
/* import key */
if (wc_ed25519_init(&key) != MP_OKAY) {
WOLFSSL_MSG("wc_curve25519_init failed");
return ret;
}
if (wc_ed25519_import_private_key(priv, privSz/2,
priv+(privSz/2), ED25519_PUB_KEY_SIZE,
&key) != MP_OKAY){
WOLFSSL_MSG("wc_ed25519_import_private failed");
wc_ed25519_free(&key);
return ret;
}
if (wc_ed25519_sign_msg(msg, msgSz, sig, sigSz, &key) != MP_OKAY)
WOLFSSL_MSG("wc_curve25519_shared_secret_ex failed");
else
ret = WOLFSSL_SUCCESS;
wc_ed25519_free(&key);
return ret;
#endif /* WOLFSSL_KEY_GEN */
}
/* return 1 if success, 0 if error
* input and output keys are little endian format
* pub is a buffer containing public part of key
*/
int wolfSSL_ED25519_verify(const unsigned char *msg, unsigned int msgSz,
const unsigned char *pub, unsigned int pubSz,
const unsigned char *sig, unsigned int sigSz)
{
#ifndef WOLFSSL_KEY_GEN
WOLFSSL_MSG("No Key Gen built in");
(void) msg;
(void) msgSz;
(void) pub;
(void) pubSz;
(void) sig;
(void) sigSz;
return WOLFSSL_FAILURE;
#else /* WOLFSSL_KEY_GEN */
ed25519_key key;
int ret = WOLFSSL_FAILURE, check = 0;
WOLFSSL_ENTER("wolfSSL_ED25519_verify");
if (pub == NULL || pubSz != ED25519_PUB_KEY_SIZE ||
msg == NULL || sig == NULL || sigSz != ED25519_SIG_SIZE) {
WOLFSSL_MSG("Bad arguments");
return WOLFSSL_FAILURE;
}
/* import key */
if (wc_ed25519_init(&key) != MP_OKAY) {
WOLFSSL_MSG("wc_curve25519_init failed");
return ret;
}
if (wc_ed25519_import_public(pub, pubSz, &key) != MP_OKAY){
WOLFSSL_MSG("wc_ed25519_import_public failed");
wc_ed25519_free(&key);
return ret;
}
if ((ret = wc_ed25519_verify_msg((byte*)sig, sigSz, msg, msgSz,
&check, &key)) != MP_OKAY) {
WOLFSSL_MSG("wc_ed25519_verify_msg failed");
}
else if (!check)
WOLFSSL_MSG("wc_ed25519_verify_msg failed (signature invalid)");
else
ret = WOLFSSL_SUCCESS;
wc_ed25519_free(&key);
return ret;
#endif /* WOLFSSL_KEY_GEN */
}
#endif /* OPENSSL_EXTRA && HAVE_ED25519 */
#ifdef WOLFSSL_JNI
int wolfSSL_set_jobject(WOLFSSL* ssl, void* objPtr)
{
WOLFSSL_ENTER("wolfSSL_set_jobject");
if (ssl != NULL)
{
ssl->jObjectRef = objPtr;
return WOLFSSL_SUCCESS;
}
return WOLFSSL_FAILURE;
}
void* wolfSSL_get_jobject(WOLFSSL* ssl)
{
WOLFSSL_ENTER("wolfSSL_get_jobject");
if (ssl != NULL)
return ssl->jObjectRef;
return NULL;
}
#endif /* WOLFSSL_JNI */
#ifdef WOLFSSL_ASYNC_CRYPT
int wolfSSL_CTX_AsyncPoll(WOLFSSL_CTX* ctx, WOLF_EVENT** events, int maxEvents,
WOLF_EVENT_FLAG flags, int* eventCount)
{
if (ctx == NULL) {
return BAD_FUNC_ARG;
}
return wolfAsync_EventQueuePoll(&ctx->event_queue, NULL,
events, maxEvents, flags, eventCount);
}
int wolfSSL_AsyncPoll(WOLFSSL* ssl, WOLF_EVENT_FLAG flags)
{
int ret, eventCount = 0;
WOLF_EVENT* events[1];
if (ssl == NULL) {
return BAD_FUNC_ARG;
}
ret = wolfAsync_EventQueuePoll(&ssl->ctx->event_queue, ssl,
events, sizeof(events)/sizeof(events), flags, &eventCount);
if (ret == 0) {
ret = eventCount;
}
return ret;
}
#endif /* WOLFSSL_ASYNC_CRYPT */
#ifdef OPENSSL_EXTRA
unsigned long wolfSSL_ERR_peek_error_line_data(const char **file, int *line,
const char **data, int *flags)
{
WOLFSSL_ENTER("wolfSSL_ERR_peek_error_line_data");
(void)line;
(void)file;
/* No data or flags stored - error display only in Nginx. */
if (data != NULL) {
*data = "";
}
if (flags != NULL) {
*flags = 0;
}
#if defined(WOLFSSL_NGINX) || defined(WOLFSSL_HAPROXY) || \
defined(WOLFSSL_MYSQL_COMPATIBLE)
{
int ret = 0;
while (1) {
if ((ret = wc_PeekErrorNode(-1, file, NULL, line)) < 0) {
WOLFSSL_MSG("Issue peeking at error node in queue");
return 0;
}
ret = -ret;
if (ret == SSL_NO_PEM_HEADER)
return (ERR_LIB_PEM << 24) | PEM_R_NO_START_LINE;
if (ret != WANT_READ && ret != WANT_WRITE &&
ret != ZERO_RETURN && ret != WOLFSSL_ERROR_ZERO_RETURN &&
ret != SOCKET_PEER_CLOSED_E && ret != SOCKET_ERROR_E)
break;
wc_RemoveErrorNode(-1);
}
return (unsigned long)ret;
}
#else
return (unsigned long)(0 - NOT_COMPILED_IN);
#endif
}
#endif
#if defined(WOLFSSL_NGINX) || defined(WOLFSSL_HAPROXY)
WOLF_STACK_OF(WOLFSSL_CIPHER) *wolfSSL_get_ciphers_compat(const WOLFSSL *ssl)
{
(void)ssl;
WOLFSSL_STUB("wolfSSL_get_ciphers_compat");
return NULL;
}
void wolfSSL_OPENSSL_config(char *config_name)
{
WOLFSSL_STUB("wolfSSL_OPENSSL_config");
(void)config_name;
}
int wolfSSL_X509_get_ex_new_index(int idx, void *arg, void *a, void *b, void *c)
{
static int x509_idx = 0;
WOLFSSL_ENTER("wolfSSL_X509_get_ex_new_index");
(void)idx;
(void)arg;
(void)a;
(void)b;
(void)c;
return x509_idx++;
}
void *wolfSSL_X509_get_ex_data(X509 *x509, int idx)
{
WOLFSSL_ENTER("wolfSSL_X509_get_ex_data");
#ifdef HAVE_EX_DATA
if (x509 != NULL && idx < MAX_EX_DATA && idx >= 0) {
return x509->ex_data[idx];
}
#else
(void)x509;
(void)idx;
#endif
return NULL;
}
int wolfSSL_X509_set_ex_data(X509 *x509, int idx, void *data)
{
WOLFSSL_ENTER("wolfSSL_X509_set_ex_data");
#ifdef HAVE_EX_DATA
if (x509 != NULL && idx < MAX_EX_DATA)
{
x509->ex_data[idx] = data;
return WOLFSSL_SUCCESS;
}
#else
(void)x509;
(void)idx;
(void)data;
#endif
return WOLFSSL_FAILURE;
}
int wolfSSL_X509_NAME_digest(const WOLFSSL_X509_NAME *name,
const WOLFSSL_EVP_MD *type, unsigned char *md, unsigned int *len)
{
WOLFSSL_ENTER("wolfSSL_X509_NAME_digest");
if (name == NULL || type == NULL)
return WOLFSSL_FAILURE;
#ifndef NO_FILESYSTEM
return wolfSSL_EVP_Digest((unsigned char*)name->fullName.fullName,
name->fullName.fullNameLen, md, len, type, NULL);
#else
(void)md;
(void)len;
return NOT_COMPILED_IN;
#endif
}
long wolfSSL_SSL_CTX_get_timeout(const WOLFSSL_CTX *ctx)
{
WOLFSSL_ENTER("wolfSSL_SSL_CTX_get_timeout");
if (ctx == NULL)
return 0;
return ctx->timeout;
}
#ifdef HAVE_ECC
int wolfSSL_SSL_CTX_set_tmp_ecdh(WOLFSSL_CTX *ctx, WOLFSSL_EC_KEY *ecdh)
{
WOLFSSL_ENTER("wolfSSL_SSL_CTX_set_tmp_ecdh");
if (ctx == NULL || ecdh == NULL)
return BAD_FUNC_ARG;
ctx->ecdhCurveOID = ecdh->group->curve_oid;
return WOLFSSL_SUCCESS;
}
#endif
/* Assumes that the session passed in is from the cache. */
int wolfSSL_SSL_CTX_remove_session(WOLFSSL_CTX *ctx, WOLFSSL_SESSION *s)
{
WOLFSSL_ENTER("wolfSSL_SSL_CTX_remove_session");
if (ctx == NULL || s == NULL)
return BAD_FUNC_ARG;
#ifdef HAVE_EXT_CACHE
if (!ctx->internalCacheOff)
#endif
{
/* Don't remove session just timeout session. */
s->timeout = 0;
}
#ifdef HAVE_EXT_CACHE
if (ctx->rem_sess_cb != NULL)
ctx->rem_sess_cb(ctx, s);
#endif
return 0;
}
BIO *wolfSSL_SSL_get_rbio(const WOLFSSL *s)
{
WOLFSSL_ENTER("wolfSSL_SSL_get_rbio");
(void)s;
/* Nginx sets the buffer size if the read BIO is different to write BIO.
* The setting buffer size doesn't do anything so return NULL for both.
*/
return NULL;
}
BIO *wolfSSL_SSL_get_wbio(const WOLFSSL *s)
{
WOLFSSL_ENTER("wolfSSL_SSL_get_wbio");
(void)s;
/* Nginx sets the buffer size if the read BIO is different to write BIO.
* The setting buffer size doesn't do anything so return NULL for both.
*/
return NULL;
}
int wolfSSL_SSL_do_handshake(WOLFSSL *s)
{
WOLFSSL_ENTER("wolfSSL_SSL_do_handshake");
if (s == NULL)
return WOLFSSL_FAILURE;
if (s->options.side == WOLFSSL_CLIENT_END)
return wolfSSL_connect(s);
return wolfSSL_accept(s);
}
int wolfSSL_SSL_in_init(WOLFSSL *s)
{
WOLFSSL_ENTER("wolfSSL_SSL_in_init");
if (s == NULL)
return WOLFSSL_FAILURE;
if (s->options.side == WOLFSSL_CLIENT_END)
return s->options.connectState < SECOND_REPLY_DONE;
return s->options.acceptState < ACCEPT_THIRD_REPLY_DONE;
}
#ifndef NO_SESSION_CACHE
WOLFSSL_SESSION *wolfSSL_SSL_get0_session(const WOLFSSL *ssl)
{
WOLFSSL_SESSION *session;
WOLFSSL_ENTER("wolfSSL_SSL_get0_session");
if (ssl == NULL) {
return NULL;
}
session = wolfSSL_get_session((WOLFSSL*)ssl);
#ifdef HAVE_EXT_CACHE
((WOLFSSL*)ssl)->extSession = session;
#endif
return session;
}
#endif /* NO_SESSION_CACHE */
int wolfSSL_X509_check_host(X509 *x, const char *chk, size_t chklen,
unsigned int flags, char **peername)
{
int ret;
DecodedCert dCert;
WOLFSSL_ENTER("wolfSSL_X509_check_host");
/* flags and peername not needed for Nginx. */
(void)flags;
(void)peername;
InitDecodedCert(&dCert, x->derCert->buffer, x->derCert->length, NULL);
ret = ParseCertRelative(&dCert, CERT_TYPE, 0, NULL);
if (ret != 0)
return WOLFSSL_FAILURE;
ret = CheckHostName(&dCert, (char *)chk, chklen);
FreeDecodedCert(&dCert);
if (ret != 0)
return WOLFSSL_FAILURE;
return WOLFSSL_SUCCESS;
}
int wolfSSL_i2a_ASN1_INTEGER(BIO *bp, const WOLFSSL_ASN1_INTEGER *a)
{
static char num[16] = { '0', '1', '2', '3', '4', '5', '6', '7',
'8', '9', 'a', 'b', 'c', 'd', 'e', 'f' };
int i;
word32 j;
word32 len = 0;
WOLFSSL_ENTER("wolfSSL_i2a_ASN1_INTEGER");
if (bp == NULL || a == NULL)
return WOLFSSL_FAILURE;
/* Skip ASN.1 INTEGER (type) byte. */
i = 1;
/* When indefinte length, can't determine length with data available. */
if (a->data[i] == 0x80)
return 0;
/* One length byte if less than 0x80. */
if (a->data[i] < 0x80)
len = a->data[i++];
/* Multiple length byte if greater than 0x80. */
else if (a->data[i] > 0x80) {
switch (a->data[i++] - 0x80) {
case 4:
len |= a->data[i++] << 24;
FALL_THROUGH;
case 3:
len |= a->data[i++] << 16;
FALL_THROUGH;
case 2:
len |= a->data[i++] << 8;
FALL_THROUGH;
case 1:
len |= a->data[i++];
break;
default:
/* Not supporting greater than 4 bytes of length. */
return 0;
}
}
/* Zero length integer is the value zero. */
if (len == 0) {
wolfSSL_BIO_write(bp, "00", 2);
return 2;
}
/* Don't do negative - just write out every byte. */
for (j = 0; j < len; i++,j++) {
wolfSSL_BIO_write(bp, &num[a->data[i] >> 4], 1);
wolfSSL_BIO_write(bp, &num[a->data[i] & 0xf], 1);
}
/* Two nibbles written for each byte. */
return len * 2;
}
#ifdef HAVE_SESSION_TICKET
/* Expected return values from implementations of OpenSSL ticket key callback.
*/
#define TICKET_KEY_CB_RET_FAILURE -1
#define TICKET_KEY_CB_RET_NOT_FOUND 0
#define TICKET_KEY_CB_RET_OK 1
#define TICKET_KEY_CB_RET_RENEW 2
/* The ticket key callback as used in OpenSSL is stored here. */
static int (*ticketKeyCb)(WOLFSSL *ssl, unsigned char *name, unsigned char *iv,
WOLFSSL_EVP_CIPHER_CTX *ectx, WOLFSSL_HMAC_CTX *hctx, int enc) = NULL;
/* Implementation of session ticket encryption/decryption using OpenSSL
* callback to initialize the cipher and HMAC.
*
* ssl The SSL/TLS object.
* keyName The key name - used to identify the key to be used.
* iv The IV to use.
* mac The MAC of the encrypted data.
* enc Encrypt ticket.
* encTicket The ticket data.
* encTicketLen The length of the ticket data.
* encLen The encrypted/decrypted ticket length - output length.
* ctx Ignored. Application specific data.
* returns WOLFSSL_TICKET_RET_OK to indicate success,
* WOLFSSL_TICKET_RET_CREATE if a new ticket is required and
* WOLFSSL_TICKET_RET_FATAL on error.
*/
static int wolfSSL_TicketKeyCb(WOLFSSL* ssl,
unsigned char keyName[WOLFSSL_TICKET_NAME_SZ],
unsigned char iv[WOLFSSL_TICKET_IV_SZ],
unsigned char mac[WOLFSSL_TICKET_MAC_SZ],
int enc, unsigned char* encTicket,
int encTicketLen, int* encLen, void* ctx)
{
byte digest[MAX_DIGEST_SIZE];
WOLFSSL_EVP_CIPHER_CTX evpCtx;
WOLFSSL_HMAC_CTX hmacCtx;
unsigned int mdSz = 0;
int len = 0;
int ret = WOLFSSL_TICKET_RET_FATAL;
int res;
(void)ctx;
if (ticketKeyCb == NULL)
return WOLFSSL_TICKET_RET_FATAL;
wolfSSL_EVP_CIPHER_CTX_init(&evpCtx);
/* Initialize the cipher and HMAC. */
res = ticketKeyCb(ssl, keyName, iv, &evpCtx, &hmacCtx, enc);
if (res != TICKET_KEY_CB_RET_OK && res != TICKET_KEY_CB_RET_RENEW)
return WOLFSSL_TICKET_RET_FATAL;
if (enc)
{
/* Encrypt in place. */
if (!wolfSSL_EVP_CipherUpdate(&evpCtx, encTicket, &len,
encTicket, encTicketLen))
goto end;
encTicketLen = len;
if (!wolfSSL_EVP_EncryptFinal(&evpCtx, &encTicket[encTicketLen], &len))
goto end;
/* Total length of encrypted data. */
encTicketLen += len;
*encLen = encTicketLen;
/* HMAC the encrypted data into the parameter 'mac'. */
wolfSSL_HMAC_Update(&hmacCtx, encTicket, encTicketLen);
wolfSSL_HMAC_Final(&hmacCtx, mac, &mdSz);
}
else
{
/* HMAC the encrypted data and compare it to the passed in data. */
wolfSSL_HMAC_Update(&hmacCtx, encTicket, encTicketLen);
wolfSSL_HMAC_Final(&hmacCtx, digest, &mdSz);
if (XMEMCMP(mac, digest, mdSz) != 0)
goto end;
/* Decrypt the ticket data in place. */
if (!wolfSSL_EVP_CipherUpdate(&evpCtx, encTicket, &len,
encTicket, encTicketLen))
goto end;
encTicketLen = len;
if (!wolfSSL_EVP_DecryptFinal(&evpCtx, &encTicket[encTicketLen], &len))
goto end;
/* Total length of decrypted data. */
*encLen = encTicketLen + len;
}
ret = (res == TICKET_KEY_CB_RET_RENEW) ? WOLFSSL_TICKET_RET_CREATE :
WOLFSSL_TICKET_RET_OK;
end:
return ret;
}
/* Set the callback to use when encrypting/decrypting tickets.
*
* ctx The SSL/TLS context object.
* cb The OpenSSL session ticket callback.
* returns WOLFSSL_SUCCESS to indicate success.
*/
int wolfSSL_CTX_set_tlsext_ticket_key_cb(WOLFSSL_CTX *ctx, int (*cb)(
WOLFSSL *ssl, unsigned char *name, unsigned char *iv,
WOLFSSL_EVP_CIPHER_CTX *ectx, WOLFSSL_HMAC_CTX *hctx, int enc))
{
/* Store callback in a global. */
ticketKeyCb = cb;
/* Set the ticket encryption callback to be a wrapper around OpenSSL
* callback.
*/
ctx->ticketEncCb = wolfSSL_TicketKeyCb;
return WOLFSSL_SUCCESS;
}
#endif /* HAVE_SESSION_TICKET */
#ifdef HAVE_OCSP
/* Not an OpenSSL API. */
int wolfSSL_get_ocsp_response(WOLFSSL* ssl, byte** response)
{
*response = ssl->ocspResp;
return ssl->ocspRespSz;
}
/* Not an OpenSSL API. */
char* wolfSSL_get_ocsp_url(WOLFSSL* ssl)
{
return ssl->url;
}
/* Not an OpenSSL API. */
int wolfSSL_set_ocsp_url(WOLFSSL* ssl, char* url)
{
if (ssl == NULL)
return WOLFSSL_FAILURE;
ssl->url = url;
return WOLFSSL_SUCCESS;
}
int wolfSSL_CTX_get_extra_chain_certs(WOLFSSL_CTX* ctx, WOLF_STACK_OF(X509)** chain)
{
word32 idx;
word32 length;
WOLFSSL_STACK* node;
WOLFSSL_STACK* last = NULL;
if (ctx == NULL || chain == NULL) {
chain = NULL;
return WOLFSSL_FAILURE;
}
if (ctx->x509Chain != NULL) {
*chain = ctx->x509Chain;
return WOLFSSL_SUCCESS;
}
/* If there are no chains then success! */
*chain = NULL;
if (ctx->certChain == NULL || ctx->certChain->length == 0) {
return WOLFSSL_SUCCESS;
}
/* Create a new stack of WOLFSSL_X509 object from chain buffer. */
for (idx = 0; idx < ctx->certChain->length; ) {
node = (WOLFSSL_STACK*)XMALLOC(sizeof(WOLFSSL_STACK), NULL,
DYNAMIC_TYPE_OPENSSL);
if (node == NULL)
return WOLFSSL_FAILURE;
node->next = NULL;
/* 3 byte length | X509 DER data */
ato24(ctx->certChain->buffer + idx, &length);
idx += 3;
/* Create a new X509 from DER encoded data. */
node->data.x509 = wolfSSL_X509_d2i(NULL, ctx->certChain->buffer + idx,
length);
if (node->data.x509 == NULL) {
XFREE(node, NULL, DYNAMIC_TYPE_OPENSSL);
/* Return as much of the chain as we created. */
ctx->x509Chain = *chain;
return WOLFSSL_FAILURE;
}
idx += length;
/* Add object to the end of the stack. */
if (last == NULL) {
node->num = 1;
*chain = node;
}
else {
(*chain)->num++;
last->next = node;
}
last = node;
}
ctx->x509Chain = *chain;
return WOLFSSL_SUCCESS;
}
int wolfSSL_CTX_set_tlsext_status_cb(WOLFSSL_CTX* ctx,
int(*cb)(WOLFSSL*, void*))
{
if (ctx == NULL || ctx->cm == NULL)
return WOLFSSL_FAILURE;
/* Ensure stapling is on for callback to be used. */
wolfSSL_CTX_EnableOCSPStapling(ctx);
if (ctx->cm->ocsp_stapling == NULL)
return WOLFSSL_FAILURE;
ctx->cm->ocsp_stapling->statusCb = cb;
return WOLFSSL_SUCCESS;
}
int wolfSSL_X509_STORE_CTX_get1_issuer(WOLFSSL_X509 **issuer,
WOLFSSL_X509_STORE_CTX *ctx, WOLFSSL_X509 *x)
{
WOLFSSL_STACK* node;
Signer* ca = NULL;
#ifdef WOLFSSL_SMALL_STACK
DecodedCert* cert = NULL;
#else
DecodedCert cert[1];
#endif
if (issuer == NULL || ctx == NULL || x == NULL)
return WOLFSSL_FATAL_ERROR;
if (ctx->chain != NULL) {
for (node = ctx->chain; node != NULL; node = node->next) {
if (wolfSSL_X509_check_issued(node->data.x509, x) == X509_V_OK) {
*issuer = x;
return WOLFSSL_SUCCESS;
}
}
}
#ifdef WOLFSSL_SMALL_STACK
cert = (DecodedCert*)XMALLOC(sizeof(DecodedCert), NULL, DYNAMIC_TYPE_DCERT);
if (cert == NULL)
return WOLFSSL_FAILURE;
#endif
/* Use existing CA retrieval APIs that use DecodedCert. */
InitDecodedCert(cert, x->derCert->buffer, x->derCert->length, NULL);
if (ParseCertRelative(cert, CERT_TYPE, 0, NULL) == 0) {
#ifndef NO_SKID
if (cert->extAuthKeyIdSet)
ca = GetCA(ctx->store->cm, cert->extAuthKeyId);
if (ca == NULL)
ca = GetCAByName(ctx->store->cm, cert->issuerHash);
#else /* NO_SKID */
ca = GetCA(ctx->store->cm, cert->issuerHash);
#endif /* NO SKID */
}
FreeDecodedCert(cert);
#ifdef WOLFSSL_SMALL_STACK
XFREE(cert, NULL, DYNAMIC_TYPE_DCERT);
#endif
if (ca == NULL)
return WOLFSSL_FAILURE;
*issuer = (WOLFSSL_X509 *)XMALLOC(sizeof(WOLFSSL_X509), 0,
DYNAMIC_TYPE_OPENSSL);
if (*issuer == NULL)
return WOLFSSL_FAILURE;
/* Create an empty certificate as CA doesn't have a certificate. */
XMEMSET(*issuer, 0, sizeof(WOLFSSL_X509));
/* TODO: store the full certificate and dup when required. */
/* Result is ignored when passed to wolfSSL_OCSP_cert_to_id(). */
return WOLFSSL_SUCCESS;
}
void wolfSSL_X509_email_free(WOLF_STACK_OF(WOLFSSL_STRING) *sk)
{
WOLFSSL_STACK *curr;
while (sk != NULL) {
curr = sk;
sk = sk->next;
XFREE(curr, NULL, DYNAMIC_TYPE_OPENSSL);
}
}
WOLF_STACK_OF(WOLFSSL_STRING) *wolfSSL_X509_get1_ocsp(WOLFSSL_X509 *x)
{
WOLFSSL_STACK *list = NULL;
if (x->authInfoSz == 0)
return NULL;
list = (WOLFSSL_STACK*)XMALLOC(sizeof(WOLFSSL_STACK), NULL,
DYNAMIC_TYPE_OPENSSL);
if (list == NULL)
return NULL;
list->data.string = (char*)x->authInfo;
list->next = NULL;
return list;
}
int wolfSSL_X509_check_issued(WOLFSSL_X509 *issuer, WOLFSSL_X509 *subject)
{
WOLFSSL_X509_NAME *issuerName = wolfSSL_X509_get_issuer_name(subject);
WOLFSSL_X509_NAME *subjectName = wolfSSL_X509_get_subject_name(issuer);
if (issuerName == NULL || subjectName == NULL)
return X509_V_ERR_SUBJECT_ISSUER_MISMATCH;
/* Literal matching of encoded names and key ids. */
if (issuerName->sz != subjectName->sz ||
XMEMCMP(issuerName->name, subjectName->name, subjectName->sz) != 0) {
return X509_V_ERR_SUBJECT_ISSUER_MISMATCH;
}
if (subject->authKeyId != NULL && issuer->subjKeyId != NULL) {
if (subject->authKeyIdSz != issuer->subjKeyIdSz ||
XMEMCMP(subject->authKeyId, issuer->subjKeyId,
issuer->subjKeyIdSz) != 0) {
return X509_V_ERR_SUBJECT_ISSUER_MISMATCH;
}
}
return X509_V_OK;
}
WOLFSSL_X509* wolfSSL_X509_dup(WOLFSSL_X509 *x)
{
return wolfSSL_X509_d2i(NULL, x->derCert->buffer, x->derCert->length);
}
char* wolfSSL_sk_WOLFSSL_STRING_value(WOLF_STACK_OF(WOLFSSL_STRING)* strings,
int idx)
{
for (; idx > 0 && strings != NULL; idx--)
strings = strings->next;
if (strings == NULL)
return NULL;
return strings->data.string;
}
#endif /* HAVE_OCSP */
#ifdef HAVE_ALPN
void wolfSSL_get0_alpn_selected(const WOLFSSL *ssl, const unsigned char **data,
unsigned int *len)
{
word16 nameLen;
if (ssl != NULL && data != NULL && len != NULL) {
TLSX_ALPN_GetRequest(ssl->extensions, (void **)data, &nameLen);
*len = nameLen;
}
}
int wolfSSL_select_next_proto(unsigned char **out, unsigned char *outLen,
const unsigned char *in, unsigned int inLen,
const unsigned char *clientNames,
unsigned int clientLen)
{
unsigned int i, j;
byte lenIn, lenClient;
if (out == NULL || outLen == NULL || in == NULL || clientNames == NULL)
return OPENSSL_NPN_UNSUPPORTED;
for (i = 0; i < inLen; i += lenIn) {
lenIn = in[i++];
for (j = 0; j < clientLen; j += lenClient) {
lenClient = clientNames[j++];
if (lenIn != lenClient)
continue;
if (XMEMCMP(in + i, clientNames + j, lenIn) == 0) {
*out = (unsigned char *)(in + i);
*outLen = lenIn;
return OPENSSL_NPN_NEGOTIATED;
}
}
}
*out = (unsigned char *)clientNames + 1;
*outLen = clientNames[0];
return OPENSSL_NPN_NO_OVERLAP;
}
void wolfSSL_CTX_set_alpn_select_cb(WOLFSSL_CTX *ctx,
int (*cb) (WOLFSSL *ssl,
const unsigned char **out,
unsigned char *outlen,
const unsigned char *in,
unsigned int inlen,
void *arg), void *arg)
{
if (ctx != NULL) {
ctx->alpnSelect = cb;
ctx->alpnSelectArg = arg;
}
}
void wolfSSL_CTX_set_next_protos_advertised_cb(WOLFSSL_CTX *s,
int (*cb) (WOLFSSL *ssl,
const unsigned char
**out,
unsigned int *outlen,
void *arg), void *arg)
{
(void)s;
(void)cb;
(void)arg;
WOLFSSL_STUB("wolfSSL_CTX_set_next_protos_advertised_cb");
}
void wolfSSL_CTX_set_next_proto_select_cb(WOLFSSL_CTX *s,
int (*cb) (WOLFSSL *ssl,
unsigned char **out,
unsigned char *outlen,
const unsigned char *in,
unsigned int inlen,
void *arg), void *arg)
{
(void)s;
(void)cb;
(void)arg;
WOLFSSL_STUB("wolfSSL_CTX_set_next_proto_select_cb");
}
void wolfSSL_get0_next_proto_negotiated(const WOLFSSL *s, const unsigned char **data,
unsigned *len)
{
(void)s;
(void)data;
(void)len;
WOLFSSL_STUB("wolfSSL_get0_next_proto_negotiated");
}
#endif /* HAVE_ALPN */
#endif /* WOLFSSL_NGINX / WOLFSSL_HAPROXY */
#if defined(OPENSSL_EXTRA) && defined(HAVE_ECC)
WOLFSSL_API int wolfSSL_CTX_set1_curves_list(WOLFSSL_CTX* ctx, char* names)
{
int idx, start = 0, len;
int curve;
char name[MAX_CURVE_NAME_SZ];
/* Disable all curves so that only the ones the user wants are enabled. */
ctx->disabledCurves = (word32)-1;
for (idx = 1; names[idx-1] != '\0'; idx++) {
if (names[idx] != ':' && names[idx] != '\0')
continue;
len = idx - 1 - start;
if (len > MAX_CURVE_NAME_SZ - 1)
return WOLFSSL_FAILURE;
XMEMCPY(name, names + start, len);
name[len] = 0;
if ((XSTRNCMP(name, "prime256v1", len) == 0) ||
(XSTRNCMP(name, "secp256r1", len) == 0) ||
(XSTRNCMP(name, "P-256", len) == 0)) {
curve = WOLFSSL_ECC_SECP256R1;
}
else if ((XSTRNCMP(name, "secp384r1", len) == 0) ||
(XSTRNCMP(name, "P-384", len) == 0)) {
curve = WOLFSSL_ECC_SECP384R1;
}
else if ((XSTRNCMP(name, "secp521r1", len) == 0) ||
(XSTRNCMP(name, "P-521", len) == 0)) {
curve = WOLFSSL_ECC_SECP521R1;
}
else if (XSTRNCMP(name, "X25519", len) == 0)
curve = WOLFSSL_ECC_X25519;
else if ((curve = wc_ecc_get_curve_id_from_name(name)) < 0)
return WOLFSSL_FAILURE;
/* Switch the bit to off and therefore is enabled. */
ctx->disabledCurves &= ~(1 << curve);
start = idx + 1;
}
return WOLFSSL_SUCCESS;
}
#endif
#ifdef OPENSSL_EXTRA
int wolfSSL_CTX_set_msg_callback(WOLFSSL_CTX *ctx, SSL_Msg_Cb cb)
{
WOLFSSL_STUB("SSL_CTX_set_msg_callback");
(void)ctx;
(void)cb;
return WOLFSSL_FAILURE;
}
int wolfSSL_set_msg_callback(WOLFSSL *ssl, SSL_Msg_Cb cb)
{
WOLFSSL_STUB("SSL_set_msg_callback");
(void)ssl;
(void)cb;
return WOLFSSL_FAILURE;
}
int wolfSSL_CTX_set_msg_callback_arg(WOLFSSL_CTX *ctx, void* arg)
{
WOLFSSL_STUB("SSL_CTX_set_msg_callback_arg");
(void)ctx;
(void)arg;
return WOLFSSL_FAILURE;
}
int wolfSSL_set_msg_callback_arg(WOLFSSL *ssl, void* arg)
{
WOLFSSL_STUB("SSL_set_msg_callback_arg");
(void)ssl;
(void)arg;
return WOLFSSL_FAILURE;
}
#endif
#endif /* WOLFCRYPT_ONLY */