wolfssl/wolfcrypt/benchmark/benchmark.c

4673 lines
138 KiB
C

/* benchmark.c
*
* Copyright (C) 2006-2017 wolfSSL Inc.
*
* This file is part of wolfSSL.
*
* wolfSSL is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* wolfSSL is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1335, USA
*/
/* wolfCrypt benchmark */
#ifdef HAVE_CONFIG_H
#include <config.h>
#endif
#include <wolfssl/wolfcrypt/settings.h>
/* Macro to disable benchmark */
#ifndef NO_CRYPT_BENCHMARK
#if defined(XMALLOC_USER) || defined(FREESCALE_MQX)
/* MQX classic needs for EXIT_FAILURE */
#include <stdlib.h> /* we're using malloc / free direct here */
#endif
#ifdef WOLFSSL_STATIC_MEMORY
#include <wolfssl/wolfcrypt/memory.h>
static WOLFSSL_HEAP_HINT* HEAP_HINT;
#else
#define HEAP_HINT NULL
#endif /* WOLFSSL_STATIC_MEMORY */
#include <string.h>
#ifdef FREESCALE_MQX
#include <mqx.h>
#if MQX_USE_IO_OLD
#include <fio.h>
#else
#include <nio.h>
#endif
#elif defined(FREESCALE_KSDK_1_3)
#include "fsl_debug_console.h"
#include "fsl_os_abstraction.h"
#undef printf
#define printf PRINTF
#else
#include <stdio.h>
#endif
#include <wolfssl/wolfcrypt/random.h>
#include <wolfssl/wolfcrypt/des3.h>
#include <wolfssl/wolfcrypt/arc4.h>
#include <wolfssl/wolfcrypt/hc128.h>
#include <wolfssl/wolfcrypt/rabbit.h>
#include <wolfssl/wolfcrypt/chacha.h>
#include <wolfssl/wolfcrypt/chacha20_poly1305.h>
#include <wolfssl/wolfcrypt/aes.h>
#include <wolfssl/wolfcrypt/poly1305.h>
#include <wolfssl/wolfcrypt/camellia.h>
#include <wolfssl/wolfcrypt/md5.h>
#include <wolfssl/wolfcrypt/sha.h>
#include <wolfssl/wolfcrypt/sha256.h>
#include <wolfssl/wolfcrypt/sha512.h>
#include <wolfssl/wolfcrypt/sha3.h>
#include <wolfssl/wolfcrypt/rsa.h>
#include <wolfssl/wolfcrypt/asn.h>
#include <wolfssl/wolfcrypt/ripemd.h>
#include <wolfssl/wolfcrypt/cmac.h>
#ifndef NO_HMAC
#include <wolfssl/wolfcrypt/hmac.h>
#endif
#ifndef NO_PWDBASED
#include <wolfssl/wolfcrypt/pwdbased.h>
#endif
#ifdef HAVE_ECC
#include <wolfssl/wolfcrypt/ecc.h>
#endif
#ifdef HAVE_IDEA
#include <wolfssl/wolfcrypt/idea.h>
#endif
#ifdef HAVE_CURVE25519
#include <wolfssl/wolfcrypt/curve25519.h>
#endif
#ifdef HAVE_ED25519
#include <wolfssl/wolfcrypt/ed25519.h>
#endif
#include <wolfssl/wolfcrypt/dh.h>
#ifdef HAVE_NTRU
#include "libntruencrypt/ntru_crypto.h"
#endif
#include <wolfssl/wolfcrypt/random.h>
#include <wolfssl/wolfcrypt/error-crypt.h>
#include <wolfssl/wolfcrypt/types.h>
#ifndef EXIT_FAILURE
#define EXIT_FAILURE 1
#endif
/* only for stack size check */
#ifdef HAVE_STACK_SIZE
#include <wolfssl/ssl.h>
#include <wolfssl/test.h>
#endif
#ifdef WOLFSSL_ASYNC_CRYPT
#include <wolfssl/wolfcrypt/async.h>
#endif
/* Bit values for each algorithm that is able to be benchmarked.
* Common grouping of algorithms also.
* Each algorithm has a unique value for its type e.g. cipher.
*/
/* Cipher algorithms. */
#define BENCH_AES_CBC 0x00000001
#define BENCH_AES_GCM 0x00000002
#define BENCH_AES_ECB 0x00000004
#define BENCH_AES_XTS 0x00000008
#define BENCH_AES_CTR 0x00000010
#define BENCH_AES_CCM 0x00000020
#define BENCH_CAMELLIA 0x00000100
#define BENCH_ARC4 0x00000200
#define BENCH_HC128 0x00000400
#define BENCH_RABBIT 0x00000800
#define BENCH_CHACHA20 0x00001000
#define BENCH_CHACHA20_POLY1305 0x00002000
#define BENCH_DES 0x00004000
#define BENCH_IDEA 0x00008000
/* Digest algorithms. */
#define BENCH_MD5 0x00000001
#define BENCH_POLY1305 0x00000002
#define BENCH_SHA 0x00000004
#define BENCH_SHA224 0x00000010
#define BENCH_SHA256 0x00000020
#define BENCH_SHA384 0x00000040
#define BENCH_SHA512 0x00000080
#define BENCH_SHA2 (BENCH_SHA224 | BENCH_SHA256 | \
BENCH_SHA384 | BENCH_SHA512)
#define BENCH_SHA3_224 0x00000100
#define BENCH_SHA3_256 0x00000200
#define BENCH_SHA3_384 0x00000400
#define BENCH_SHA3_512 0x00000800
#define BENCH_SHA3 (BENCH_SHA3_224 | BENCH_SHA3_256 | \
BENCH_SHA3_384 | BENCH_SHA3_512)
#define BENCH_RIPEMD 0x00001000
#define BENCH_BLAKE2 0x00002000
/* MAC algorithms. */
#define BENCH_CMAC 0x00000001
#define BENCH_HMAC_MD5 0x00000002
#define BENCH_HMAC_SHA 0x00000004
#define BENCH_HMAC_SHA224 0x00000010
#define BENCH_HMAC_SHA256 0x00000020
#define BENCH_HMAC_SHA384 0x00000040
#define BENCH_HMAC_SHA512 0x00000080
#define BENCH_HMAC (BENCH_HMAC_MD5 | BENCH_HMAC_SHA | \
BENCH_HMAC_SHA224 | BENCH_HMAC_SHA256 | \
BENCH_HMAC_SHA384 | BENCH_HMAC_SHA512)
/* Asymmetric algorithms. */
#define BENCH_RSA_KEYGEN 0x00000001
#define BENCH_RSA 0x00000002
#define BENCH_DH 0x00000010
#define BENCH_NTRU 0x00000100
#define BENCH_NTRU_KEYGEN 0x00000200
#define BENCH_ECC_MAKEKEY 0x00001000
#define BENCH_ECC 0x00002000
#define BENCH_ECC_ENCRYPT 0x00004000
#define BENCH_CURVE25519_KEYGEN 0x00010000
#define BENCH_CURVE25519_KA 0x00020000
#define BENCH_ED25519_KEYGEN 0x00040000
#define BENCH_ED25519_SIGN 0x00080000
/* Other */
#define BENCH_RNG 0x00000001
#define BENCH_SCRYPT 0x00000002
/* Benchmark all compiled in algorithms.
* When 1, ignore other benchmark algorithm values.
* 0, only benchmark algorithm values set.
*/
static int bench_all = 1;
/* Cipher algorithms to benchmark. */
static int bench_cipher_algs = 0;
/* Digest algorithms to benchmark. */
static int bench_digest_algs = 0;
/* MAC algorithms to benchmark. */
static int bench_mac_algs = 0;
/* Asymmetric algorithms to benchmark. */
static int bench_asym_algs = 0;
/* Other cryptographic algorithms to benchmark. */
static int bench_other_algs = 0;
#if !defined(WOLFSSL_BENCHMARK_ALL) && !defined(NO_MAIN_DRIVER)
/* The mapping of command line option to bit values. */
typedef struct bench_alg {
/* Command line option string. */
const char* str;
/* Bit values to set. */
int val;
} bench_alg;
/* All recognized cipher algorithm choosing command line options. */
static const bench_alg bench_cipher_opt[] = {
{ "-cipher", -1 },
#ifdef HAVE_AES_CBC
{ "-aes_cbc", BENCH_AES_CBC },
#endif
#ifdef HAVE_AESGCM
{ "-aes_gcm", BENCH_AES_GCM },
#endif
#ifdef WOLFSSL_AES_DIRECT
{ "-aes_ecb", BENCH_AES_ECB },
#endif
#ifdef WOLFSSL_AES_XTS
{ "-aes_xts", BENCH_AES_XTS },
#endif
#ifdef WOLFSSL_AES_COUNTER
{ "-aes_ctr", BENCH_AES_CTR },
#endif
#ifdef HAVE_AESCCM
{ "-aes_ccm", BENCH_AES_CCM },
#endif
#ifdef HAVE_CAMELLIA
{ "-camellia", BENCH_CAMELLIA },
#endif
#ifndef NO_RC4
{ "-arc4", BENCH_ARC4 },
#endif
#ifdef HAVE_HC128
{ "-hc128", BENCH_HC128 },
#endif
#ifndef NO_RABBIT
{ "-rabbit", BENCH_RABBIT },
#endif
#ifdef HAVE_CHACHA
{ "-chacha20", BENCH_CHACHA20 },
#endif
#if defined(HAVE_CHACHA) && defined(HAVE_POLY1305)
{ "-chacha20_poly1305", BENCH_CHACHA20_POLY1305 },
#endif
#ifndef NO_DES3
{ "-des", BENCH_DES },
#endif
#ifdef HAVE_IDEA
{ "-idea", BENCH_IDEA },
#endif
{ NULL, 0}
};
/* All recognized digest algorithm choosing command line options. */
static const bench_alg bench_digest_opt[] = {
{ "-digest", -1 },
#ifndef NO_MD5
{ "-md5", BENCH_MD5 },
#endif
#ifdef HAVE_POLY1305
{ "-poly1305", BENCH_POLY1305 },
#endif
#ifndef NO_SHA
{ "-sha", BENCH_SHA },
#endif
#if defined(WOLFSSL_SHA224) || !defined(NO_SHA256) || defined(WOLFSSL_SHA384) \
|| defined(WOLFSSL_SHA512)
{ "-sha2", BENCH_SHA2 },
#endif
#ifdef WOLFSSL_SHA224
{ "-sha224", BENCH_SHA224 },
#endif
#ifndef NO_SHA256
{ "-sha256", BENCH_SHA256 },
#endif
#ifdef WOLFSSL_SHA384
{ "-sha384", BENCH_SHA384 },
#endif
#ifdef WOLFSSL_SHA512
{ "-sha512", BENCH_SHA512 },
#endif
#ifdef WOLFSSL_SHA3
{ "-sha3", BENCH_SHA3 },
#ifndef WOLFSSL_NOSHA3_224
{ "-sha3_224", BENCH_SHA3_224 },
#endif
#ifndef WOLFSSL_NOSHA3_256
{ "-sha3_256", BENCH_SHA3_256 },
#endif
#ifndef WOLFSSL_NOSHA3_384
{ "-sha3_384", BENCH_SHA3_384 },
#endif
#ifndef WOLFSSL_NOSHA3_512
{ "-sha3_512", BENCH_SHA3_512 },
#endif
#endif
#ifdef WOLFSSL_RIPEMD
{ "-ripemd", BENCH_RIPEMD },
#endif
#ifdef HAVE_BLAKE2
{ "-blake2", BENCH_BLAKE2 },
#endif
{ NULL, 0}
};
/* All recognized MAC algorithm choosing command line options. */
static const bench_alg bench_mac_opt[] = {
{ "-mac", -1 },
#ifdef WOLFSSL_CMAC
{ "-cmac", BENCH_CMAC },
#endif
#ifndef NO_HMAC
{ "-hmac", BENCH_HMAC },
#ifndef NO_MD5
{ "-hmac_md5", BENCH_HMAC_MD5 },
#endif
#ifndef NO_SHA
{ "-hmac_sha", BENCH_HMAC_SHA },
#endif
#ifdef WOLFSSL_SHA224
{ "-hmac_sha224", BENCH_HMAC_SHA224 },
#endif
#ifndef NO_SHA256
{ "-hmac_sha256", BENCH_HMAC_SHA256 },
#endif
#ifdef WOLFSSL_SHA384
{ "-hmac_sha384", BENCH_HMAC_SHA384 },
#endif
#ifdef WOLFSSL_SHA512
{ "-hmac_sha512", BENCH_HMAC_SHA512 },
#endif
#endif
{ NULL, 0}
};
/* All recognized asymmetric algorithm choosing command line options. */
static const bench_alg bench_asym_opt[] = {
{ "-asym", -1 },
#ifndef NO_RSA
#ifdef WOLFSSL_KEY_GEN
{ "-rsa_kg", BENCH_RSA_KEYGEN },
#endif
{ "-rsa", BENCH_RSA },
#endif
#ifndef NO_DH
{ "-dh", BENCH_DH },
#endif
#ifdef HAVE_NTRU
{ "-ntru", BENCH_NTRU },
{ "-ntru_kg", BENCH_NTRU_KEYGEN },
#endif
#ifdef HAVE_ECC
{ "-ecc_kg", BENCH_ECC_MAKEKEY },
{ "-ecc", BENCH_ECC },
#ifdef HAVE_ECC_ENCRYPT
{ "-ecc_enc", BENCH_ECC_ENCRYPT },
#endif
#endif
#ifdef HAVE_CURVE25519
{ "-curve25519_kg", BENCH_CURVE25519_KEYGEN },
#ifdef HAVE_CURVE25519_SHARED_SECRET
{ "-x25519", BENCH_CURVE25519_KA },
#endif
#endif
#ifdef HAVE_ED25519
{ "-ed25519_kg", BENCH_ED25519_KEYGEN },
{ "-ed25519", BENCH_ED25519_SIGN },
#endif
{ NULL, 0}
};
/* All recognized other cryptographic algorithm choosing command line options.
*/
static const bench_alg bench_other_opt[] = {
{ "-other", -1 },
#ifndef WC_NO_RNG
{ "-rng", BENCH_RNG },
#endif
#ifdef HAVE_SCRYPT
{ "-scrypt", BENCH_SCRYPT },
#endif
{ NULL, 0}
};
#endif
#ifdef HAVE_WNR
const char* wnrConfigFile = "wnr-example.conf";
#endif
#if defined(WOLFSSL_MDK_ARM)
extern FILE * wolfSSL_fopen(const char *fname, const char *mode);
#define fopen wolfSSL_fopen
#endif
#if defined(__GNUC__) && defined(__x86_64__) && !defined(NO_ASM) && !defined(WOLFSSL_SGX)
#define HAVE_GET_CYCLES
static INLINE word64 get_intel_cycles(void);
static THREAD_LS_T word64 total_cycles;
#define INIT_CYCLE_COUNTER
#define BEGIN_INTEL_CYCLES total_cycles = get_intel_cycles();
#define END_INTEL_CYCLES total_cycles = get_intel_cycles() - total_cycles;
/* s == size in bytes that 1 count represents, normally BENCH_SIZE */
#define SHOW_INTEL_CYCLES(b, n, s) \
XSNPRINTF(b + XSTRLEN(b), n - XSTRLEN(b), " Cycles per byte = %6.2f\n", \
count == 0 ? 0 : (float)total_cycles / ((word64)count*s))
#elif defined(LINUX_CYCLE_COUNT)
#include <linux/perf_event.h>
#include <sys/syscall.h>
#include <unistd.h>
static THREAD_LS_T word64 begin_cycles;
static THREAD_LS_T word64 total_cycles;
static THREAD_LS_T int cycles = -1;
static THREAD_LS_T struct perf_event_attr atr;
#define INIT_CYCLE_COUNTER do { \
atr.type = PERF_TYPE_HARDWARE; \
atr.config = PERF_COUNT_HW_CPU_CYCLES; \
cycles = (int)syscall(__NR_perf_event_open, &atr, 0, -1, -1, 0); \
} while (0);
#define BEGIN_INTEL_CYCLES read(cycles, &begin_cycles, sizeof(begin_cycles));
#define END_INTEL_CYCLES do { \
read(cycles, &total_cycles, sizeof(total_cycles)); \
total_cycles = total_cycles - begin_cycles; \
} while (0);
/* s == size in bytes that 1 count represents, normally BENCH_SIZE */
#define SHOW_INTEL_CYCLES(b, n, s) \
XSNPRINTF(b + XSTRLEN(b), n - XSTRLEN(b), " Cycles per byte = %6.2f\n", \
(float)total_cycles / (count*s))
#else
#define INIT_CYCLE_COUNTER
#define BEGIN_INTEL_CYCLES
#define END_INTEL_CYCLES
#define SHOW_INTEL_CYCLES(b, n, s) b[XSTRLEN(b)] = '\n'
#endif
/* let's use buffers, we have them */
#if !defined(USE_CERT_BUFFERS_1024) && !defined(USE_CERT_BUFFERS_2048)
#define USE_CERT_BUFFERS_2048
#endif
#if defined(USE_CERT_BUFFERS_1024) || defined(USE_CERT_BUFFERS_2048) \
|| !defined(NO_DH)
/* include test cert and key buffers for use with NO_FILESYSTEM */
#include <wolfssl/certs_test.h>
#endif
#ifdef HAVE_BLAKE2
#include <wolfssl/wolfcrypt/blake2.h>
#endif
#ifdef _MSC_VER
/* 4996 warning to use MS extensions e.g., strcpy_s instead of strncpy */
#pragma warning(disable: 4996)
#endif
#include "wolfcrypt/benchmark/benchmark.h"
#ifdef WOLFSSL_CURRTIME_REMAP
#define current_time WOLFSSL_CURRTIME_REMAP
#elif !defined(HAVE_STACK_SIZE)
double current_time(int);
#endif
#if defined(DEBUG_WOLFSSL) && !defined(HAVE_VALGRIND) && \
!defined(HAVE_STACK_SIZE)
#ifdef __cplusplus
extern "C" {
#endif
WOLFSSL_API int wolfSSL_Debugging_ON(void);
WOLFSSL_API void wolfSSL_Debugging_OFF(void);
#ifdef __cplusplus
} /* extern "C" */
#endif
#endif
#if !defined(NO_RSA) || !defined(NO_DH) \
|| defined(WOLFSSL_KEYGEN) || defined(HAVE_ECC) \
|| defined(HAVE_CURVE25519) || defined(HAVE_ED25519)
#define HAVE_LOCAL_RNG
static THREAD_LS_T WC_RNG rng;
#endif
#if defined(HAVE_ED25519) || defined(HAVE_CURVE25519) || defined(HAVE_ECC) || \
defined(HAVE_ECC) || defined(HAVE_NTRU) || !defined(NO_DH) || \
!defined(NO_RSA) || defined(HAVE_SCRYPT)
#define BENCH_ASYM
#endif
/* Asynchronous helper macros */
static THREAD_LS_T int devId = INVALID_DEVID;
#ifdef WOLFSSL_ASYNC_CRYPT
static WOLF_EVENT_QUEUE eventQueue;
#define BENCH_ASYNC_GET_DEV(obj) (&(obj)->asyncDev)
#define BENCH_ASYNC_GET_NAME(doAsync) (doAsync) ? "HW" : "SW"
#define BENCH_MAX_PENDING (WOLF_ASYNC_MAX_PENDING)
#ifndef WC_NO_ASYNC_THREADING
typedef struct ThreadData {
pthread_t thread_id;
} ThreadData;
static ThreadData* g_threadData;
static int g_threadCount;
#endif
static int bench_async_check(int* ret, WC_ASYNC_DEV* asyncDev,
int callAgain, int* times, int limit, int* pending)
{
int allowNext = 0;
/* this state can be set from a different thread */
WOLF_EVENT_STATE state = asyncDev->event.state;
/* if algo doesn't require calling again then use this flow */
if (state == WOLF_EVENT_STATE_DONE) {
if (callAgain) {
/* needs called again, so allow it and handle completion in bench_async_handle */
allowNext = 1;
}
else {
*ret = asyncDev->event.ret;
asyncDev->event.state = WOLF_EVENT_STATE_READY;
(*times)++;
if (*pending > 0) /* to support case where async blocks */
(*pending)--;
if ((*times + *pending) < limit)
allowNext = 1;
}
}
/* if slot is available and we haven't reached limit, start another */
else if (state == WOLF_EVENT_STATE_READY && (*times + *pending) < limit) {
allowNext = 1;
}
return allowNext;
}
static int bench_async_handle(int* ret, WC_ASYNC_DEV* asyncDev,
int callAgain, int* times, int* pending)
{
WOLF_EVENT_STATE state = asyncDev->event.state;
if (*ret == WC_PENDING_E) {
if (state == WOLF_EVENT_STATE_DONE) {
*ret = asyncDev->event.ret;
asyncDev->event.state = WOLF_EVENT_STATE_READY;
(*times)++;
(*pending)--;
}
else {
(*pending)++;
*ret = wc_AsyncHandle(asyncDev, &eventQueue,
callAgain ? WC_ASYNC_FLAG_CALL_AGAIN : WC_ASYNC_FLAG_NONE);
}
}
else if (*ret >= 0) {
*ret = asyncDev->event.ret;
asyncDev->event.state = WOLF_EVENT_STATE_READY;
(*times)++;
if (*pending > 0) /* to support case where async blocks */
(*pending)--;
}
return (*ret >= 0) ? 1 : 0;
}
static INLINE int bench_async_poll(int* pending)
{
int ret, asyncDone = 0;
ret = wolfAsync_EventQueuePoll(&eventQueue, NULL, NULL, 0,
WOLF_POLL_FLAG_CHECK_HW, &asyncDone);
if (ret != 0) {
printf("Async poll failed %d\n", ret);
return ret;
}
if (asyncDone == 0) {
#ifndef WC_NO_ASYNC_THREADING
/* give time to other threads */
wc_AsyncThreadYield();
#endif
}
(void)pending;
return asyncDone;
}
#else
#define BENCH_MAX_PENDING (1)
#define BENCH_ASYNC_GET_NAME(doAsync) ""
#define BENCH_ASYNC_GET_DEV(obj) NULL
static INLINE int bench_async_check(int* ret, void* asyncDev,
int callAgain, int* times, int limit, int* pending)
{
(void)ret;
(void)asyncDev;
(void)callAgain;
(void)times;
(void)limit;
(void)pending;
return 1;
}
static INLINE int bench_async_handle(int* ret, void* asyncDev,
int callAgain, int* times, int* pending)
{
(void)asyncDev;
(void)callAgain;
(void)pending;
if (*ret >= 0) {
/* operation completed */
(*times)++;
return 1;
}
return 0;
}
#define bench_async_poll(p)
#endif /* WOLFSSL_ASYNC_CRYPT */
/* maximum runtime for each benchmark */
#define BENCH_MIN_RUNTIME_SEC 1.0f
#if defined(HAVE_AESGCM) || defined(HAVE_AESCCM)
#define AES_AUTH_ADD_SZ 13
#define AES_AUTH_TAG_SZ 16
#define BENCH_CIPHER_ADD AES_AUTH_TAG_SZ
#endif
#ifndef BENCH_CIPHER_ADD
#define BENCH_CIPHER_ADD 0
#endif
/* use kB instead of mB for embedded benchmarking */
#ifdef BENCH_EMBEDDED
enum BenchmarkBounds {
numBlocks = 25, /* how many kB to test (en/de)cryption */
scryptCnt = 1,
ntimes = 2,
genTimes = BENCH_MAX_PENDING,
agreeTimes = 2
};
static word32 bench_size = (1024ul);
#else
enum BenchmarkBounds {
numBlocks = 5, /* how many megs to test (en/de)cryption */
scryptCnt = 10,
ntimes = 100,
genTimes = BENCH_MAX_PENDING, /* must be at least BENCH_MAX_PENDING */
agreeTimes = 100
};
static word32 bench_size = (1024*1024ul);
#endif
static int base2 = 1;
/* for compatibility */
#define BENCH_SIZE bench_size
/* globals for cipher tests */
static THREAD_LS_T byte* bench_plain = NULL;
static THREAD_LS_T byte* bench_cipher = NULL;
static const XGEN_ALIGN byte bench_key_buf[] =
{
0x01,0x23,0x45,0x67,0x89,0xab,0xcd,0xef,
0xfe,0xde,0xba,0x98,0x76,0x54,0x32,0x10,
0x89,0xab,0xcd,0xef,0x01,0x23,0x45,0x67,
0x01,0x23,0x45,0x67,0x89,0xab,0xcd,0xef
};
static const XGEN_ALIGN byte bench_iv_buf[] =
{
0x12,0x34,0x56,0x78,0x90,0xab,0xcd,0xef,
0x01,0x01,0x01,0x01,0x01,0x01,0x01,0x01,
0x11,0x21,0x31,0x41,0x51,0x61,0x71,0x81
};
static THREAD_LS_T byte* bench_key = NULL;
static THREAD_LS_T byte* bench_iv = NULL;
#ifdef WOLFSSL_STATIC_MEMORY
#ifdef BENCH_EMBEDDED
static byte gBenchMemory[50000];
#else
static byte gBenchMemory[400000];
#endif
#endif
/******************************************************************************/
/* Begin Stats Functions */
/******************************************************************************/
#if defined(WOLFSSL_ASYNC_CRYPT) && !defined(WC_NO_ASYNC_THREADING)
typedef enum bench_stat_type {
BENCH_STAT_ASYM,
BENCH_STAT_SYM,
} bench_stat_type_t;
typedef struct bench_stats {
struct bench_stats* next;
struct bench_stats* prev;
const char* algo;
const char* desc;
double perfsec;
int strength;
int doAsync;
int finishCount;
bench_stat_type_t type;
int lastRet;
} bench_stats_t;
static bench_stats_t* bench_stats_head;
static bench_stats_t* bench_stats_tail;
static pthread_mutex_t bench_lock = PTHREAD_MUTEX_INITIALIZER;
static bench_stats_t* bench_stats_add(bench_stat_type_t type,
const char* algo, int strength, const char* desc, int doAsync,
double perfsec, int ret)
{
bench_stats_t* stat;
/* protect bench_stats_head and bench_stats_tail access */
pthread_mutex_lock(&bench_lock);
/* locate existing in list */
for (stat = bench_stats_head; stat != NULL; stat = stat->next) {
/* match based on algo, strength and desc */
if (stat->algo == algo && stat->strength == strength && stat->desc == desc && stat->doAsync == doAsync) {
break;
}
}
if (stat == NULL) {
/* allocate new and put on list */
stat = (bench_stats_t*)XMALLOC(sizeof(bench_stats_t), NULL, DYNAMIC_TYPE_INFO);
if (stat) {
XMEMSET(stat, 0, sizeof(bench_stats_t));
/* add to list */
stat->next = NULL;
if (bench_stats_tail == NULL) {
bench_stats_head = stat;
}
else {
bench_stats_tail->next = stat;
stat->prev = bench_stats_tail;
}
bench_stats_tail = stat; /* add to the end either way */
}
}
if (stat) {
int isLast = 0;
stat->type = type;
stat->algo = algo;
stat->strength = strength;
stat->desc = desc;
stat->doAsync = doAsync;
stat->perfsec += perfsec;
stat->finishCount++;
if (stat->lastRet > ret)
stat->lastRet = ret; /* track last error */
if (stat->finishCount == g_threadCount) {
isLast = 1;
}
pthread_mutex_unlock(&bench_lock);
/* wait until remaining are complete */
while (stat->finishCount < g_threadCount) {
wc_AsyncThreadYield();
}
/* print final stat */
if (isLast) {
if (stat->type == BENCH_STAT_SYM) {
printf("%-12s%s %8.3f MB/s\n", stat->desc,
BENCH_ASYNC_GET_NAME(stat->doAsync), stat->perfsec);
}
else {
printf("%-5s %4d %-9s %s %.3f ops/sec\n",
stat->algo, stat->strength, stat->desc,
BENCH_ASYNC_GET_NAME(stat->doAsync), stat->perfsec);
}
}
}
else {
pthread_mutex_unlock(&bench_lock);
}
return stat;
}
#endif /* WOLFSSL_ASYNC_CRYPT && !WC_NO_ASYNC_THREADING */
static INLINE void bench_stats_init(void)
{
#if defined(WOLFSSL_ASYNC_CRYPT) && !defined(WC_NO_ASYNC_THREADING)
bench_stats_head = NULL;
bench_stats_tail = NULL;
#endif
INIT_CYCLE_COUNTER
}
static INLINE void bench_stats_start(int* count, double* start)
{
*count = 0;
*start = current_time(1);
BEGIN_INTEL_CYCLES
}
static INLINE int bench_stats_sym_check(double start)
{
return ((current_time(0) - start) < BENCH_MIN_RUNTIME_SEC);
}
/* countSz is number of bytes that 1 count represents. Normally bench_size,
* except for AES direct that operates on AES_BLOCK_SIZE blocks */
static void bench_stats_sym_finish(const char* desc, int doAsync, int count,
int countSz, double start, int ret)
{
double total, persec = 0, blocks = count;
const char* blockType;
char msg[128] = {0};
END_INTEL_CYCLES
total = current_time(0) - start;
/* calculate actual bytes */
blocks *= countSz;
if (base2) {
/* determine if we should show as KB or MB */
if (blocks > (1024 * 1024)) {
blocks /= (1024 * 1024);
blockType = "MB";
}
else if (blocks > 1024) {
blocks /= 1024; /* make KB */
blockType = "KB";
}
else {
blockType = "bytes";
}
}
else {
/* determine if we should show as kB or mB */
if (blocks > (1000 * 1000)) {
blocks /= (1000 * 1000);
blockType = "mB";
}
else if (blocks > 1000) {
blocks /= 1000; /* make kB */
blockType = "kB";
}
else {
blockType = "bytes";
}
}
/* caclulcate blocks per second */
if (total > 0) {
persec = (1 / total) * blocks;
}
XSNPRINTF(msg, sizeof(msg), "%-16s%s %5.0f %s took %5.3f seconds, %8.3f %s/s",
desc, BENCH_ASYNC_GET_NAME(doAsync), blocks, blockType, total,
persec, blockType);
SHOW_INTEL_CYCLES(msg, sizeof(msg), countSz);
printf("%s", msg);
/* show errors */
if (ret < 0) {
printf("Benchmark %s failed: %d\n", desc, ret);
}
#if defined(WOLFSSL_ASYNC_CRYPT) && !defined(WC_NO_ASYNC_THREADING)
/* Add to thread stats */
bench_stats_add(BENCH_STAT_SYM, NULL, 0, desc, doAsync, persec, ret);
#endif
(void)doAsync;
(void)ret;
}
#ifdef BENCH_ASYM
static void bench_stats_asym_finish(const char* algo, int strength,
const char* desc, int doAsync, int count, double start, int ret)
{
double total, each = 0, opsSec, milliEach;
total = current_time(0) - start;
if (count > 0)
each = total / count; /* per second */
opsSec = count / total; /* ops second */
milliEach = each * 1000; /* milliseconds */
printf("%-6s %5d %-9s %s %6d ops took %5.3f sec, avg %5.3f ms,"
" %.3f ops/sec\n", algo, strength, desc, BENCH_ASYNC_GET_NAME(doAsync),
count, total, milliEach, opsSec);
/* show errors */
if (ret < 0) {
printf("Benchmark %s %s %d failed: %d\n", algo, desc, strength, ret);
}
#if defined(WOLFSSL_ASYNC_CRYPT) && !defined(WC_NO_ASYNC_THREADING)
/* Add to thread stats */
bench_stats_add(BENCH_STAT_ASYM, algo, strength, desc, doAsync, opsSec, ret);
#endif
(void)doAsync;
(void)ret;
}
#endif /* BENCH_ASYM */
static INLINE void bench_stats_free(void)
{
#if defined(WOLFSSL_ASYNC_CRYPT) && !defined(WC_NO_ASYNC_THREADING)
bench_stats_t* stat;
for (stat = bench_stats_head; stat != NULL; ) {
bench_stats_t* next = stat->next;
XFREE(stat, NULL, DYNAMIC_TYPE_INFO);
stat = next;
}
bench_stats_head = NULL;
bench_stats_tail = NULL;
#endif
}
/******************************************************************************/
/* End Stats Functions */
/******************************************************************************/
static void* benchmarks_do(void* args)
{
int bench_buf_size;
#ifdef WOLFSSL_ASYNC_CRYPT
#ifndef WC_NO_ASYNC_THREADING
ThreadData* threadData = (ThreadData*)args;
if (wolfAsync_DevOpenThread(&devId, &threadData->thread_id) < 0)
#else
if (wolfAsync_DevOpen(&devId) < 0)
#endif
{
printf("Async device open failed\nRunning without async\n");
}
#endif /* WOLFSSL_ASYNC_CRYPT */
(void)args;
#ifdef WOLFSSL_ASYNC_CRYPT
if (wolfEventQueue_Init(&eventQueue) != 0) {
printf("Async event queue init failure!\n");
}
#endif
#if defined(HAVE_LOCAL_RNG)
{
int rngRet;
#ifndef HAVE_FIPS
rngRet = wc_InitRng_ex(&rng, HEAP_HINT, devId);
#else
rngRet = wc_InitRng(&rng);
#endif
if (rngRet < 0) {
printf("InitRNG failed\n");
return NULL;
}
}
#endif
/* setup bench plain, cipher, key and iv globals */
/* make sure bench buffer is multiple of 16 (AES block size) */
bench_buf_size = (int)bench_size + BENCH_CIPHER_ADD;
if (bench_buf_size % 16)
bench_buf_size += 16 - (bench_buf_size % 16);
bench_plain = (byte*)XMALLOC((size_t)bench_buf_size, HEAP_HINT, DYNAMIC_TYPE_WOLF_BIGINT);
bench_cipher = (byte*)XMALLOC((size_t)bench_buf_size, HEAP_HINT, DYNAMIC_TYPE_WOLF_BIGINT);
if (bench_plain == NULL || bench_cipher == NULL) {
XFREE(bench_plain, HEAP_HINT, DYNAMIC_TYPE_WOLF_BIGINT);
XFREE(bench_cipher, HEAP_HINT, DYNAMIC_TYPE_WOLF_BIGINT);
bench_plain = bench_cipher = NULL;
printf("Benchmark block buffer alloc failed!\n");
goto exit;
}
XMEMSET(bench_plain, 0, (size_t)bench_buf_size);
XMEMSET(bench_cipher, 0, (size_t)bench_buf_size);
#ifdef WOLFSSL_ASYNC_CRYPT
bench_key = (byte*)XMALLOC(sizeof(bench_key_buf), HEAP_HINT, DYNAMIC_TYPE_WOLF_BIGINT);
bench_iv = (byte*)XMALLOC(sizeof(bench_iv_buf), HEAP_HINT, DYNAMIC_TYPE_WOLF_BIGINT);
if (bench_key == NULL || bench_iv == NULL) {
XFREE(bench_key, HEAP_HINT, DYNAMIC_TYPE_WOLF_BIGINT);
XFREE(bench_iv, HEAP_HINT, DYNAMIC_TYPE_WOLF_BIGINT);
bench_key = bench_iv = NULL;
printf("Benchmark cipher buffer alloc failed!\n");
goto exit;
}
XMEMCPY(bench_key, bench_key_buf, sizeof(bench_key_buf));
XMEMCPY(bench_iv, bench_iv_buf, sizeof(bench_iv_buf));
#else
bench_key = (byte*)bench_key_buf;
bench_iv = (byte*)bench_iv_buf;
#endif
#ifndef WC_NO_RNG
if (bench_all || (bench_other_algs & BENCH_RNG))
bench_rng();
#endif /* WC_NO_RNG */
#ifndef NO_AES
#ifdef HAVE_AES_CBC
if (bench_all || (bench_cipher_algs & BENCH_AES_CBC)) {
#ifndef NO_SW_BENCH
bench_aescbc(0);
#endif
#if defined(WOLFSSL_ASYNC_CRYPT) && defined(WC_ASYNC_ENABLE_AES)
bench_aescbc(1);
#endif
}
#endif
#ifdef HAVE_AESGCM
if (bench_all || (bench_cipher_algs & BENCH_AES_GCM)) {
#ifndef NO_SW_BENCH
bench_aesgcm(0);
#endif
#if defined(WOLFSSL_ASYNC_CRYPT) && defined(WC_ASYNC_ENABLE_AES)
bench_aesgcm(1);
#endif
}
#endif
#ifdef WOLFSSL_AES_DIRECT
if (bench_all || (bench_cipher_algs & BENCH_AES_ECB)) {
#ifndef NO_SW_BENCH
bench_aesecb(0);
#endif
#if defined(WOLFSSL_ASYNC_CRYPT) && defined(WC_ASYNC_ENABLE_AES)
bench_aesecb(1);
#endif
}
#endif
#ifdef WOLFSSL_AES_XTS
if (bench_all || (bench_cipher_algs & BENCH_AES_XTS))
bench_aesxts();
#endif
#ifdef WOLFSSL_AES_COUNTER
if (bench_all || (bench_cipher_algs & BENCH_AES_CTR))
bench_aesctr();
#endif
#ifdef HAVE_AESCCM
if (bench_all || (bench_cipher_algs & BENCH_AES_CCM))
bench_aesccm();
#endif
#endif /* !NO_AES */
#ifdef HAVE_CAMELLIA
if (bench_all || (bench_cipher_algs & BENCH_CAMELLIA))
bench_camellia();
#endif
#ifndef NO_RC4
if (bench_all || (bench_cipher_algs & BENCH_ARC4)) {
#ifndef NO_SW_BENCH
bench_arc4(0);
#endif
#if defined(WOLFSSL_ASYNC_CRYPT) && defined(WC_ASYNC_ENABLE_ARC4)
bench_arc4(1);
#endif
}
#endif
#ifdef HAVE_HC128
if (bench_all || (bench_cipher_algs & BENCH_HC128))
bench_hc128();
#endif
#ifndef NO_RABBIT
if (bench_all || (bench_cipher_algs & BENCH_RABBIT))
bench_rabbit();
#endif
#ifdef HAVE_CHACHA
if (bench_all || (bench_cipher_algs & BENCH_CHACHA20))
bench_chacha();
#endif
#if defined(HAVE_CHACHA) && defined(HAVE_POLY1305)
if (bench_all || (bench_cipher_algs & BENCH_CHACHA20_POLY1305))
bench_chacha20_poly1305_aead();
#endif
#ifndef NO_DES3
if (bench_all || (bench_cipher_algs & BENCH_DES)) {
#ifndef NO_SW_BENCH
bench_des(0);
#endif
#if defined(WOLFSSL_ASYNC_CRYPT) && defined(WC_ASYNC_ENABLE_3DES)
bench_des(1);
#endif
}
#endif
#ifdef HAVE_IDEA
if (bench_all || (bench_cipher_algs & BENCH_IDEA))
bench_idea();
#endif
#ifndef NO_MD5
if (bench_all || (bench_digest_algs & BENCH_MD5)) {
#ifndef NO_SW_BENCH
bench_md5(0);
#endif
#if defined(WOLFSSL_ASYNC_CRYPT) && defined(WC_ASYNC_ENABLE_MD5)
bench_md5(1);
#endif
}
#endif
#ifdef HAVE_POLY1305
if (bench_all || (bench_digest_algs & BENCH_POLY1305))
bench_poly1305();
#endif
#ifndef NO_SHA
if (bench_all || (bench_digest_algs & BENCH_SHA)) {
#ifndef NO_SW_BENCH
bench_sha(0);
#endif
#if defined(WOLFSSL_ASYNC_CRYPT) && defined(WC_ASYNC_ENABLE_SHA)
bench_sha(1);
#endif
}
#endif
#ifdef WOLFSSL_SHA224
if (bench_all || (bench_digest_algs & BENCH_SHA224)) {
#ifndef NO_SW_BENCH
bench_sha224(0);
#endif
#if defined(WOLFSSL_ASYNC_CRYPT) && defined(WC_ASYNC_ENABLE_SHA224)
bench_sha224(1);
#endif
}
#endif
#ifndef NO_SHA256
if (bench_all || (bench_digest_algs & BENCH_SHA256)) {
#ifndef NO_SW_BENCH
bench_sha256(0);
#endif
#if defined(WOLFSSL_ASYNC_CRYPT) && defined(WC_ASYNC_ENABLE_SHA256)
bench_sha256(1);
#endif
}
#endif
#ifdef WOLFSSL_SHA384
if (bench_all || (bench_digest_algs & BENCH_SHA384)) {
#ifndef NO_SW_BENCH
bench_sha384(0);
#endif
#if defined(WOLFSSL_ASYNC_CRYPT) && defined(WC_ASYNC_ENABLE_SHA384)
bench_sha384(1);
#endif
}
#endif
#ifdef WOLFSSL_SHA512
if (bench_all || (bench_digest_algs & BENCH_SHA512)) {
#ifndef NO_SW_BENCH
bench_sha512(0);
#endif
#if defined(WOLFSSL_ASYNC_CRYPT) && defined(WC_ASYNC_ENABLE_SHA512)
bench_sha512(1);
#endif
}
#endif
#ifdef WOLFSSL_SHA3
#ifndef WOLFSSL_NOSHA3_224
if (bench_all || (bench_digest_algs & BENCH_SHA3_224)) {
#ifndef NO_SW_BENCH
bench_sha3_224(0);
#endif
#if defined(WOLFSSL_ASYNC_CRYPT) && defined(WC_ASYNC_ENABLE_SHA3)
bench_sha3_224(1);
#endif
}
#endif /* WOLFSSL_NOSHA3_224 */
#ifndef WOLFSSL_NOSHA3_256
if (bench_all || (bench_digest_algs & BENCH_SHA3_256)) {
#ifndef NO_SW_BENCH
bench_sha3_256(0);
#endif
#if defined(WOLFSSL_ASYNC_CRYPT) && defined(WC_ASYNC_ENABLE_SHA3)
bench_sha3_256(1);
#endif
}
#endif /* WOLFSSL_NOSHA3_256 */
#ifndef WOLFSSL_NOSHA3_384
if (bench_all || (bench_digest_algs & BENCH_SHA3_384)) {
#ifndef NO_SW_BENCH
bench_sha3_384(0);
#endif
#if defined(WOLFSSL_ASYNC_CRYPT) && defined(WC_ASYNC_ENABLE_SHA3)
bench_sha3_384(1);
#endif
}
#endif /* WOLFSSL_NOSHA3_384 */
#ifndef WOLFSSL_NOSHA3_512
if (bench_all || (bench_digest_algs & BENCH_SHA3_512)) {
#ifndef NO_SW_BENCH
bench_sha3_512(0);
#endif
#if defined(WOLFSSL_ASYNC_CRYPT) && defined(WC_ASYNC_ENABLE_SHA512)
bench_sha3_512(1);
#endif
}
#endif /* WOLFSSL_NOSHA3_512 */
#endif
#ifdef WOLFSSL_RIPEMD
if (bench_all || (bench_digest_algs & BENCH_RIPEMD))
bench_ripemd();
#endif
#ifdef HAVE_BLAKE2
if (bench_all || (bench_digest_algs & BENCH_BLAKE2))
bench_blake2();
#endif
#ifdef WOLFSSL_CMAC
if (bench_all || (bench_mac_algs & BENCH_CMAC))
bench_cmac();
#endif
#ifndef NO_HMAC
#ifndef NO_MD5
if (bench_all || (bench_mac_algs & BENCH_HMAC_MD5)) {
#ifndef NO_SW_BENCH
bench_hmac_md5(0);
#endif
#if defined(WOLFSSL_ASYNC_CRYPT) && defined(WC_ASYNC_ENABLE_HMAC)
bench_hmac_md5(1);
#endif
}
#endif
#ifndef NO_SHA
if (bench_all || (bench_mac_algs & BENCH_HMAC_SHA)) {
#ifndef NO_SW_BENCH
bench_hmac_sha(0);
#endif
#if defined(WOLFSSL_ASYNC_CRYPT) && defined(WC_ASYNC_ENABLE_SHA)
bench_hmac_sha(1);
#endif
}
#endif
#ifdef WOLFSSL_SHA224
if (bench_all || (bench_mac_algs & BENCH_HMAC_SHA224)) {
#ifndef NO_SW_BENCH
bench_hmac_sha224(0);
#endif
#if defined(WOLFSSL_ASYNC_CRYPT) && defined(WC_ASYNC_ENABLE_SHA224)
bench_hmac_sha224(1);
#endif
}
#endif
#ifndef NO_SHA256
if (bench_all || (bench_mac_algs & BENCH_HMAC_SHA256)) {
#ifndef NO_SW_BENCH
bench_hmac_sha256(0);
#endif
#if defined(WOLFSSL_ASYNC_CRYPT) && defined(WC_ASYNC_ENABLE_SHA256)
bench_hmac_sha256(1);
#endif
}
#endif
#ifdef WOLFSSL_SHA384
if (bench_all || (bench_mac_algs & BENCH_HMAC_SHA384)) {
#ifndef NO_SW_BENCH
bench_hmac_sha384(0);
#endif
#if defined(WOLFSSL_ASYNC_CRYPT) && defined(WC_ASYNC_ENABLE_SHA384)
bench_hmac_sha384(1);
#endif
}
#endif
#ifdef WOLFSSL_SHA512
if (bench_all || (bench_mac_algs & BENCH_HMAC_SHA512)) {
#ifndef NO_SW_BENCH
bench_hmac_sha512(0);
#endif
#if defined(WOLFSSL_ASYNC_CRYPT) && defined(WC_ASYNC_ENABLE_SHA512)
bench_hmac_sha512(1);
#endif
}
#endif
#endif /* NO_HMAC */
#ifdef HAVE_SCRYPT
if (bench_all || (bench_other_algs & BENCH_SCRYPT))
bench_scrypt();
#endif
#ifndef NO_RSA
#ifdef WOLFSSL_KEY_GEN
if (bench_all || (bench_asym_algs & BENCH_RSA_KEYGEN)) {
#ifndef NO_SW_BENCH
bench_rsaKeyGen(0);
#endif
#if defined(WOLFSSL_ASYNC_CRYPT) && defined(WC_ASYNC_ENABLE_RSA)
/* async supported in simulator only */
#ifdef WOLFSSL_ASYNC_CRYPT_TEST
bench_rsaKeyGen(1);
#endif
#endif
}
#endif
if (bench_all || (bench_asym_algs & BENCH_RSA)) {
#ifndef NO_SW_BENCH
bench_rsa(0);
#endif
#if defined(WOLFSSL_ASYNC_CRYPT) && defined(WC_ASYNC_ENABLE_RSA)
bench_rsa(1);
#endif
}
#endif
#ifndef NO_DH
if (bench_all || (bench_asym_algs & BENCH_DH)) {
#ifndef NO_SW_BENCH
bench_dh(0);
#endif
#if defined(WOLFSSL_ASYNC_CRYPT) && defined(WC_ASYNC_ENABLE_DH)
bench_dh(1);
#endif
}
#endif
#ifdef HAVE_NTRU
if (bench_all || (bench_asym_algs & BENCH_NTRU))
bench_ntru();
if (bench_all || (bench_asym_algs & BENCH_NTRU_KEYGEN))
bench_ntruKeyGen();
#endif
#ifdef HAVE_ECC
if (bench_all || (bench_asym_algs & BENCH_ECC_MAKEKEY)) {
#ifndef NO_SW_BENCH
bench_eccMakeKey(0);
#endif
#if defined(WOLFSSL_ASYNC_CRYPT) && defined(WC_ASYNC_ENABLE_ECC)
/* async supported in simulator only */
#ifdef WOLFSSL_ASYNC_CRYPT_TEST
bench_eccMakeKey(1);
#endif
#endif
}
if (bench_all || (bench_asym_algs & BENCH_ECC)) {
#ifndef NO_SW_BENCH
bench_ecc(0);
#endif
#if defined(WOLFSSL_ASYNC_CRYPT) && defined(WC_ASYNC_ENABLE_ECC)
bench_ecc(1);
#endif
}
#ifdef HAVE_ECC_ENCRYPT
if (bench_all || (bench_asym_algs & BENCH_ECC_ENCRYPT))
bench_eccEncrypt();
#endif
#endif
#ifdef HAVE_CURVE25519
if (bench_all || (bench_asym_algs & BENCH_CURVE25519_KEYGEN))
bench_curve25519KeyGen();
#ifdef HAVE_CURVE25519_SHARED_SECRET
if (bench_all || (bench_asym_algs & BENCH_CURVE25519_KA))
bench_curve25519KeyAgree();
#endif
#endif
#ifdef HAVE_ED25519
if (bench_all || (bench_asym_algs & BENCH_ED25519_KEYGEN))
bench_ed25519KeyGen();
if (bench_all || (bench_asym_algs & BENCH_ED25519_SIGN))
bench_ed25519KeySign();
#endif
exit:
/* free benchmark buffers */
XFREE(bench_plain, HEAP_HINT, DYNAMIC_TYPE_WOLF_BIGINT);
XFREE(bench_cipher, HEAP_HINT, DYNAMIC_TYPE_WOLF_BIGINT);
#ifdef WOLFSSL_ASYNC_CRYPT
XFREE(bench_key, HEAP_HINT, DYNAMIC_TYPE_WOLF_BIGINT);
XFREE(bench_iv, HEAP_HINT, DYNAMIC_TYPE_WOLF_BIGINT);
#endif
#ifdef WOLFSSL_ASYNC_CRYPT
/* free event queue */
wolfEventQueue_Free(&eventQueue);
#endif
#if defined(HAVE_LOCAL_RNG)
wc_FreeRng(&rng);
#endif
#ifdef WOLFSSL_ASYNC_CRYPT
wolfAsync_DevClose(&devId);
#endif
return NULL;
}
int benchmark_init(void)
{
int ret = 0;
#ifdef WOLFSSL_STATIC_MEMORY
ret = wc_LoadStaticMemory(&HEAP_HINT, gBenchMemory, sizeof(gBenchMemory),
WOLFMEM_GENERAL, 1);
if (ret != 0) {
printf("unable to load static memory %d\n", ret);
}
#endif /* WOLFSSL_STATIC_MEMORY */
if ((ret = wolfCrypt_Init()) != 0) {
printf("wolfCrypt_Init failed %d\n", ret);
return EXIT_FAILURE;
}
bench_stats_init();
#if defined(DEBUG_WOLFSSL) && !defined(HAVE_VALGRIND)
wolfSSL_Debugging_ON();
#endif
printf("wolfCrypt Benchmark (block bytes %d, min %.1f sec each)\n",
BENCH_SIZE, BENCH_MIN_RUNTIME_SEC);
#ifdef HAVE_WNR
ret = wc_InitNetRandom(wnrConfigFile, NULL, 5000);
if (ret != 0) {
printf("Whitewood netRandom config init failed %d\n", ret);
}
#endif /* HAVE_WNR */
return ret;
}
int benchmark_free(void)
{
int ret;
#ifdef HAVE_WNR
ret = wc_FreeNetRandom();
if (ret < 0) {
printf("Failed to free netRandom context %d\n", ret);
}
#endif
bench_stats_free();
if ((ret = wolfCrypt_Cleanup()) != 0) {
printf("error %d with wolfCrypt_Cleanup\n", ret);
}
return ret;
}
/* so embedded projects can pull in tests on their own */
#ifdef HAVE_STACK_SIZE
THREAD_RETURN WOLFSSL_THREAD benchmark_test(void* args)
#else
int benchmark_test(void *args)
#endif
{
int ret;
(void)args;
ret = benchmark_init();
if (ret != 0)
EXIT_TEST(ret);
#if defined(WOLFSSL_ASYNC_CRYPT) && !defined(WC_NO_ASYNC_THREADING)
{
int i;
int numCpus = wc_AsyncGetNumberOfCpus();
printf("CPUs: %d\n", numCpus);
g_threadData = (ThreadData*)XMALLOC(sizeof(ThreadData) * numCpus,
HEAP_HINT, DYNAMIC_TYPE_TMP_BUFFER);
if (g_threadData == NULL) {
printf("Thread data alloc failed!\n");
EXIT_TEST(EXIT_FAILURE);
}
g_threadCount = numCpus;
/* Create threads */
for (i = 0; i < numCpus; i++) {
ret = wc_AsyncThreadCreate(&g_threadData[i].thread_id,
benchmarks_do, &g_threadData[i]);
if (ret != 0) {
printf("Error creating benchmark thread %d\n", ret);
EXIT_TEST(EXIT_FAILURE);
}
}
/* Start threads */
for (i = 0; i < numCpus; i++) {
wc_AsyncThreadJoin(&g_threadData[i].thread_id);
}
XFREE(g_threadData, HEAP_HINT, DYNAMIC_TYPE_TMP_BUFFER);
}
#else
benchmarks_do(NULL);
#endif
ret = benchmark_free();
EXIT_TEST(ret);
}
#ifndef WC_NO_RNG
void bench_rng(void)
{
int ret, i, count;
double start;
int pos, len, remain;
WC_RNG myrng;
#ifndef HAVE_FIPS
ret = wc_InitRng_ex(&myrng, HEAP_HINT, devId);
#else
ret = wc_InitRng(&myrng);
#endif
if (ret < 0) {
printf("InitRNG failed %d\n", ret);
return;
}
bench_stats_start(&count, &start);
do {
for (i = 0; i < numBlocks; i++) {
/* Split request to handle large RNG request */
pos = 0;
remain = (int)BENCH_SIZE;
while (remain > 0) {
len = remain;
if (len > RNG_MAX_BLOCK_LEN)
len = RNG_MAX_BLOCK_LEN;
ret = wc_RNG_GenerateBlock(&myrng, &bench_plain[pos], (word32)len);
if (ret < 0)
goto exit_rng;
remain -= len;
pos += len;
}
}
count += i;
} while (bench_stats_sym_check(start));
exit_rng:
bench_stats_sym_finish("RNG", 0, count, bench_size, start, ret);
wc_FreeRng(&myrng);
}
#endif /* WC_NO_RNG */
#ifndef NO_AES
#ifdef HAVE_AES_CBC
static void bench_aescbc_internal(int doAsync, const byte* key, word32 keySz,
const byte* iv, const char* encLabel,
const char* decLabel)
{
int ret = 0, i, count = 0, times, pending = 0;
Aes enc[BENCH_MAX_PENDING];
double start;
/* clear for done cleanup */
XMEMSET(enc, 0, sizeof(enc));
/* init keys */
for (i = 0; i < BENCH_MAX_PENDING; i++) {
if ((ret = wc_AesInit(&enc[i], HEAP_HINT,
doAsync ? devId : INVALID_DEVID)) != 0) {
printf("AesInit failed, ret = %d\n", ret);
goto exit;
}
ret = wc_AesSetKey(&enc[i], key, keySz, iv, AES_ENCRYPTION);
if (ret != 0) {
printf("AesSetKey failed, ret = %d\n", ret);
goto exit;
}
}
bench_stats_start(&count, &start);
do {
for (times = 0; times < numBlocks || pending > 0; ) {
bench_async_poll(&pending);
/* while free pending slots in queue, submit ops */
for (i = 0; i < BENCH_MAX_PENDING; i++) {
if (bench_async_check(&ret, BENCH_ASYNC_GET_DEV(&enc[i]), 0, &times, numBlocks, &pending)) {
ret = wc_AesCbcEncrypt(&enc[i], bench_plain, bench_cipher,
BENCH_SIZE);
if (!bench_async_handle(&ret, BENCH_ASYNC_GET_DEV(&enc[i]), 0, &times, &pending)) {
goto exit_aes_enc;
}
}
} /* for i */
} /* for times */
count += times;
} while (bench_stats_sym_check(start));
exit_aes_enc:
bench_stats_sym_finish(encLabel, doAsync, count, bench_size, start, ret);
if (ret < 0) {
goto exit;
}
#ifdef HAVE_AES_DECRYPT
/* init keys */
for (i = 0; i < BENCH_MAX_PENDING; i++) {
ret = wc_AesSetKey(&enc[i], key, keySz, iv, AES_DECRYPTION);
if (ret != 0) {
printf("AesSetKey failed, ret = %d\n", ret);
goto exit;
}
}
bench_stats_start(&count, &start);
do {
for (times = 0; times < numBlocks || pending > 0; ) {
bench_async_poll(&pending);
/* while free pending slots in queue, submit ops */
for (i = 0; i < BENCH_MAX_PENDING; i++) {
if (bench_async_check(&ret, BENCH_ASYNC_GET_DEV(&enc[i]), 0, &times, numBlocks, &pending)) {
ret = wc_AesCbcDecrypt(&enc[i], bench_plain, bench_cipher,
BENCH_SIZE);
if (!bench_async_handle(&ret, BENCH_ASYNC_GET_DEV(&enc[i]), 0, &times, &pending)) {
goto exit_aes_dec;
}
}
} /* for i */
} /* for times */
count += times;
} while (bench_stats_sym_check(start));
exit_aes_dec:
bench_stats_sym_finish(decLabel, doAsync, count, bench_size, start, ret);
#endif /* HAVE_AES_DECRYPT */
exit:
for (i = 0; i < BENCH_MAX_PENDING; i++) {
wc_AesFree(&enc[i]);
}
}
void bench_aescbc(int doAsync)
{
bench_aescbc_internal(doAsync, bench_key, 16, bench_iv,
"AES-128-CBC-enc", "AES-128-CBC-dec");
bench_aescbc_internal(doAsync, bench_key, 24, bench_iv,
"AES-192-CBC-enc", "AES-192-CBC-dec");
bench_aescbc_internal(doAsync, bench_key, 32, bench_iv,
"AES-256-CBC-enc", "AES-256-CBC-dec");
}
#endif /* HAVE_AES_CBC */
#ifdef HAVE_AESGCM
static void bench_aesgcm_internal(int doAsync, const byte* key, word32 keySz,
const byte* iv, word32 ivSz,
const char* encLabel, const char* decLabel)
{
int ret = 0, i, count = 0, times, pending = 0;
Aes enc[BENCH_MAX_PENDING];
double start;
DECLARE_VAR(bench_additional, byte, AES_AUTH_ADD_SZ, HEAP_HINT);
DECLARE_VAR(bench_tag, byte, AES_AUTH_TAG_SZ, HEAP_HINT);
/* clear for done cleanup */
XMEMSET(enc, 0, sizeof(enc));
#ifdef WOLFSSL_ASYNC_CRYPT
if (bench_additional)
#endif
{ XMEMSET(bench_additional, 0, AES_AUTH_ADD_SZ); }
#ifdef WOLFSSL_ASYNC_CRYPT
if (bench_tag)
#endif
{ XMEMSET(bench_tag, 0, AES_AUTH_TAG_SZ); }
/* init keys */
for (i = 0; i < BENCH_MAX_PENDING; i++) {
if ((ret = wc_AesInit(&enc[i], HEAP_HINT,
doAsync ? devId : INVALID_DEVID)) != 0) {
printf("AesInit failed, ret = %d\n", ret);
goto exit;
}
ret = wc_AesGcmSetKey(&enc[i], key, keySz);
if (ret != 0) {
printf("AesGcmSetKey failed, ret = %d\n", ret);
goto exit;
}
}
/* GCM uses same routine in backend for both encrypt and decrypt */
bench_stats_start(&count, &start);
do {
for (times = 0; times < numBlocks || pending > 0; ) {
bench_async_poll(&pending);
/* while free pending slots in queue, submit ops */
for (i = 0; i < BENCH_MAX_PENDING; i++) {
if (bench_async_check(&ret, BENCH_ASYNC_GET_DEV(&enc[i]), 0, &times, numBlocks, &pending)) {
ret = wc_AesGcmEncrypt(&enc[i], bench_cipher,
bench_plain, BENCH_SIZE,
iv, ivSz, bench_tag, AES_AUTH_TAG_SZ,
bench_additional, AES_AUTH_ADD_SZ);
if (!bench_async_handle(&ret, BENCH_ASYNC_GET_DEV(&enc[i]), 0, &times, &pending)) {
goto exit_aes_gcm;
}
}
} /* for i */
} /* for times */
count += times;
} while (bench_stats_sym_check(start));
exit_aes_gcm:
bench_stats_sym_finish(encLabel, doAsync, count, bench_size, start, ret);
/* GCM uses same routine in backend for both encrypt and decrypt */
bench_stats_start(&count, &start);
do {
for (times = 0; times < numBlocks || pending > 0; ) {
bench_async_poll(&pending);
/* while free pending slots in queue, submit ops */
for (i = 0; i < BENCH_MAX_PENDING; i++) {
if (bench_async_check(&ret, BENCH_ASYNC_GET_DEV(&enc[i]), 0, &times, numBlocks, &pending)) {
ret = wc_AesGcmDecrypt(&enc[i], bench_plain,
bench_cipher, BENCH_SIZE,
iv, ivSz, bench_tag, AES_AUTH_TAG_SZ,
bench_additional, AES_AUTH_ADD_SZ);
if (!bench_async_handle(&ret, BENCH_ASYNC_GET_DEV(&enc[i]), 0, &times, &pending)) {
goto exit_aes_gcm_dec;
}
}
} /* for i */
} /* for times */
count += times;
} while (bench_stats_sym_check(start));
exit_aes_gcm_dec:
bench_stats_sym_finish(decLabel, doAsync, count, bench_size, start, ret);
exit:
if (ret < 0) {
printf("bench_aesgcm failed: %d\n", ret);
}
for (i = 0; i < BENCH_MAX_PENDING; i++) {
wc_AesFree(&enc[i]);
}
FREE_VAR(bench_additional, HEAP_HINT);
FREE_VAR(bench_tag, HEAP_HINT);
}
void bench_aesgcm(int doAsync)
{
bench_aesgcm_internal(doAsync, bench_key, 16, bench_iv, 12,
"AES-128-GCM-enc", "AES-128-GCM-dec");
bench_aesgcm_internal(doAsync, bench_key, 24, bench_iv, 12,
"AES-192-GCM-enc", "AES-192-GCM-dec");
bench_aesgcm_internal(doAsync, bench_key, 32, bench_iv, 12,
"AES-256-GCM-enc", "AES-256-GCM-dec");
}
#endif /* HAVE_AESGCM */
#ifdef WOLFSSL_AES_DIRECT
static void bench_aesecb_internal(int doAsync, const byte* key, word32 keySz,
const char* encLabel, const char* decLabel)
{
int ret, i, count = 0, times, pending = 0;
Aes enc[BENCH_MAX_PENDING];
double start;
/* clear for done cleanup */
XMEMSET(enc, 0, sizeof(enc));
/* init keys */
for (i = 0; i < BENCH_MAX_PENDING; i++) {
if ((ret = wc_AesInit(&enc[i], HEAP_HINT,
doAsync ? devId : INVALID_DEVID)) != 0) {
printf("AesInit failed, ret = %d\n", ret);
goto exit;
}
ret = wc_AesSetKey(&enc[i], key, keySz, bench_iv, AES_ENCRYPTION);
if (ret != 0) {
printf("AesSetKey failed, ret = %d\n", ret);
goto exit;
}
}
bench_stats_start(&count, &start);
do {
for (times = 0; times < numBlocks || pending > 0; ) {
bench_async_poll(&pending);
/* while free pending slots in queue, submit ops */
for (i = 0; i < BENCH_MAX_PENDING; i++) {
if (bench_async_check(&ret, BENCH_ASYNC_GET_DEV(&enc[i]), 0, &times, numBlocks, &pending)) {
wc_AesEncryptDirect(&enc[i], bench_cipher, bench_plain);
ret = 0;
if (!bench_async_handle(&ret, BENCH_ASYNC_GET_DEV(&enc[i]), 0, &times, &pending)) {
goto exit_aes_enc;
}
}
} /* for i */
} /* for times */
count += times;
} while (bench_stats_sym_check(start));
exit_aes_enc:
bench_stats_sym_finish(encLabel, doAsync, count, AES_BLOCK_SIZE,
start, ret);
#ifdef HAVE_AES_DECRYPT
/* init keys */
for (i = 0; i < BENCH_MAX_PENDING; i++) {
ret = wc_AesSetKey(&enc[i], key, keySz, bench_iv, AES_DECRYPTION);
if (ret != 0) {
printf("AesSetKey failed, ret = %d\n", ret);
goto exit;
}
}
bench_stats_start(&count, &start);
do {
for (times = 0; times < numBlocks || pending > 0; ) {
bench_async_poll(&pending);
/* while free pending slots in queue, submit ops */
for (i = 0; i < BENCH_MAX_PENDING; i++) {
if (bench_async_check(&ret, BENCH_ASYNC_GET_DEV(&enc[i]), 0, &times, numBlocks, &pending)) {
wc_AesDecryptDirect(&enc[i], bench_plain,
bench_cipher);
ret = 0;
if (!bench_async_handle(&ret, BENCH_ASYNC_GET_DEV(&enc[i]), 0, &times, &pending)) {
goto exit_aes_dec;
}
}
} /* for i */
} /* for times */
count += times;
} while (bench_stats_sym_check(start));
exit_aes_dec:
bench_stats_sym_finish(decLabel, doAsync, count, AES_BLOCK_SIZE,
start, ret);
#endif /* HAVE_AES_DECRYPT */
exit:
for (i = 0; i < BENCH_MAX_PENDING; i++) {
wc_AesFree(&enc[i]);
}
}
void bench_aesecb(int doAsync)
{
bench_aesecb_internal(doAsync, bench_key, 16,
"AES-128-ECB-enc", "AES-128-ECB-dec");
bench_aesecb_internal(doAsync, bench_key, 24,
"AES-192-ECB-enc", "AES-192-ECB-dec");
bench_aesecb_internal(doAsync, bench_key, 32,
"AES-256-ECB-enc", "AES-256-ECB-dec");
}
#endif /* WOLFSSL_AES_DIRECT */
#ifdef WOLFSSL_AES_XTS
void bench_aesxts(void)
{
XtsAes aes;
double start;
int i, count, ret;
static unsigned char k1[] = {
0xa1, 0xb9, 0x0c, 0xba, 0x3f, 0x06, 0xac, 0x35,
0x3b, 0x2c, 0x34, 0x38, 0x76, 0x08, 0x17, 0x62,
0x09, 0x09, 0x23, 0x02, 0x6e, 0x91, 0x77, 0x18,
0x15, 0xf2, 0x9d, 0xab, 0x01, 0x93, 0x2f, 0x2f
};
static unsigned char i1[] = {
0x4f, 0xae, 0xf7, 0x11, 0x7c, 0xda, 0x59, 0xc6,
0x6e, 0x4b, 0x92, 0x01, 0x3e, 0x76, 0x8a, 0xd5
};
ret = wc_AesXtsSetKey(&aes, k1, sizeof(k1), AES_ENCRYPTION,
HEAP_HINT, devId);
if (ret != 0) {
printf("wc_AesXtsSetKey failed, ret = %d\n", ret);
return;
}
bench_stats_start(&count, &start);
do {
for (i = 0; i < numBlocks; i++) {
if ((ret = wc_AesXtsEncrypt(&aes, bench_plain, bench_cipher,
BENCH_SIZE, i1, sizeof(i1))) != 0) {
printf("wc_AesXtsEncrypt failed, ret = %d\n", ret);
return;
}
}
count += i;
} while (bench_stats_sym_check(start));
bench_stats_sym_finish("AES-XTS-enc", 0, count, bench_size, start, ret);
wc_AesXtsFree(&aes);
/* decryption benchmark */
ret = wc_AesXtsSetKey(&aes, k1, sizeof(k1), AES_DECRYPTION,
HEAP_HINT, devId);
if (ret != 0) {
printf("wc_AesXtsSetKey failed, ret = %d\n", ret);
return;
}
bench_stats_start(&count, &start);
do {
for (i = 0; i < numBlocks; i++) {
if ((ret = wc_AesXtsDecrypt(&aes, bench_plain, bench_cipher,
BENCH_SIZE, i1, sizeof(i1))) != 0) {
printf("wc_AesXtsDecrypt failed, ret = %d\n", ret);
return;
}
}
count += i;
} while (bench_stats_sym_check(start));
bench_stats_sym_finish("AES-XTS-dec", 0, count, bench_size, start, ret);
wc_AesXtsFree(&aes);
}
#endif /* WOLFSSL_AES_XTS */
#ifdef WOLFSSL_AES_COUNTER
static void bench_aesctr_internal(const byte* key, word32 keySz, const byte* iv,
const char* label)
{
Aes enc;
double start;
int i, count, ret;
wc_AesSetKeyDirect(&enc, key, keySz, iv, AES_ENCRYPTION);
bench_stats_start(&count, &start);
do {
for (i = 0; i < numBlocks; i++) {
if((ret = wc_AesCtrEncrypt(&enc, bench_plain, bench_cipher, BENCH_SIZE)) != 0) {
printf("wc_AesCtrEncrypt failed, ret = %d\n", ret);
return;
}
}
count += i;
} while (bench_stats_sym_check(start));
bench_stats_sym_finish(label, 0, count, bench_size, start, ret);
}
void bench_aesctr(void)
{
bench_aesctr_internal(bench_key, 16, bench_iv, "AES-128-CTR");
bench_aesctr_internal(bench_key, 24, bench_iv, "AES-192-CTR");
bench_aesctr_internal(bench_key, 32, bench_iv, "AES-256-CTR");
}
#endif /* WOLFSSL_AES_COUNTER */
#ifdef HAVE_AESCCM
void bench_aesccm(void)
{
Aes enc;
double start;
int ret, i, count;
DECLARE_VAR(bench_additional, byte, AES_AUTH_ADD_SZ, HEAP_HINT);
DECLARE_VAR(bench_tag, byte, AES_AUTH_TAG_SZ, HEAP_HINT);
XMEMSET(bench_tag, 0, AES_AUTH_TAG_SZ);
XMEMSET(bench_additional, 0, AES_AUTH_ADD_SZ);
if ((ret = wc_AesCcmSetKey(&enc, bench_key, 16)) != 0) {
printf("wc_AesCcmSetKey failed, ret = %d\n", ret);
return;
}
bench_stats_start(&count, &start);
do {
for (i = 0; i < numBlocks; i++) {
wc_AesCcmEncrypt(&enc, bench_cipher, bench_plain, BENCH_SIZE,
bench_iv, 12, bench_tag, AES_AUTH_TAG_SZ,
bench_additional, AES_AUTH_ADD_SZ);
}
count += i;
} while (bench_stats_sym_check(start));
bench_stats_sym_finish("AES-CCM", 0, count, bench_size, start, ret);
FREE_VAR(bench_additional, HEAP_HINT);
FREE_VAR(bench_tag, HEAP_HINT);
}
#endif /* HAVE_AESCCM */
#endif /* !NO_AES */
#ifdef HAVE_POLY1305
void bench_poly1305()
{
Poly1305 enc;
byte mac[16];
double start;
int ret, i, count;
ret = wc_Poly1305SetKey(&enc, bench_key, 32);
if (ret != 0) {
printf("Poly1305SetKey failed, ret = %d\n", ret);
return;
}
bench_stats_start(&count, &start);
do {
for (i = 0; i < numBlocks; i++) {
ret = wc_Poly1305Update(&enc, bench_plain, BENCH_SIZE);
if (ret != 0) {
printf("Poly1305Update failed: %d\n", ret);
break;
}
}
wc_Poly1305Final(&enc, mac);
count += i;
} while (bench_stats_sym_check(start));
bench_stats_sym_finish("POLY1305", 0, count, bench_size, start, ret);
}
#endif /* HAVE_POLY1305 */
#ifdef HAVE_CAMELLIA
void bench_camellia(void)
{
Camellia cam;
double start;
int ret, i, count;
ret = wc_CamelliaSetKey(&cam, bench_key, 16, bench_iv);
if (ret != 0) {
printf("CamelliaSetKey failed, ret = %d\n", ret);
return;
}
bench_stats_start(&count, &start);
do {
for (i = 0; i < numBlocks; i++) {
ret = wc_CamelliaCbcEncrypt(&cam, bench_plain, bench_cipher,
BENCH_SIZE);
if (ret < 0) {
printf("CamelliaCbcEncrypt failed: %d\n", ret);
return;
}
}
count += i;
} while (bench_stats_sym_check(start));
bench_stats_sym_finish("Camellia", 0, count, bench_size, start, ret);
}
#endif
#ifndef NO_DES3
void bench_des(int doAsync)
{
int ret = 0, i, count = 0, times, pending = 0;
Des3 enc[BENCH_MAX_PENDING];
double start;
/* clear for done cleanup */
XMEMSET(enc, 0, sizeof(enc));
/* init keys */
for (i = 0; i < BENCH_MAX_PENDING; i++) {
if ((ret = wc_Des3Init(&enc[i], HEAP_HINT,
doAsync ? devId : INVALID_DEVID)) != 0) {
printf("Des3Init failed, ret = %d\n", ret);
goto exit;
}
ret = wc_Des3_SetKey(&enc[i], bench_key, bench_iv, DES_ENCRYPTION);
if (ret != 0) {
printf("Des3_SetKey failed, ret = %d\n", ret);
goto exit;
}
}
bench_stats_start(&count, &start);
do {
for (times = 0; times < numBlocks || pending > 0; ) {
bench_async_poll(&pending);
/* while free pending slots in queue, submit ops */
for (i = 0; i < BENCH_MAX_PENDING; i++) {
if (bench_async_check(&ret, BENCH_ASYNC_GET_DEV(&enc[i]), 0, &times, numBlocks, &pending)) {
ret = wc_Des3_CbcEncrypt(&enc[i], bench_plain, bench_cipher,
BENCH_SIZE);
if (!bench_async_handle(&ret, BENCH_ASYNC_GET_DEV(&enc[i]), 0, &times, &pending)) {
goto exit_3des;
}
}
} /* for i */
} /* for times */
count += times;
} while (bench_stats_sym_check(start));
exit_3des:
bench_stats_sym_finish("3DES", doAsync, count, bench_size, start, ret);
exit:
for (i = 0; i < BENCH_MAX_PENDING; i++) {
wc_Des3Free(&enc[i]);
}
}
#endif /* !NO_DES3 */
#ifdef HAVE_IDEA
void bench_idea(void)
{
Idea enc;
double start;
int ret = 0, i, count;
ret = wc_IdeaSetKey(&enc, bench_key, IDEA_KEY_SIZE, bench_iv,
IDEA_ENCRYPTION);
if (ret != 0) {
printf("Des3_SetKey failed, ret = %d\n", ret);
return;
}
bench_stats_start(&count, &start);
do {
for (i = 0; i < numBlocks; i++) {
wc_IdeaCbcEncrypt(&enc, bench_plain, bench_cipher, BENCH_SIZE);
}
count += i;
} while (bench_stats_sym_check(start));
bench_stats_sym_finish("IDEA", 0, count, bench_size, start, ret);
}
#endif /* HAVE_IDEA */
#ifndef NO_RC4
void bench_arc4(int doAsync)
{
int ret = 0, i, count = 0, times, pending = 0;
Arc4 enc[BENCH_MAX_PENDING];
double start;
/* clear for done cleanup */
XMEMSET(enc, 0, sizeof(enc));
/* init keys */
for (i = 0; i < BENCH_MAX_PENDING; i++) {
if ((ret = wc_Arc4Init(&enc[i], HEAP_HINT,
doAsync ? devId : INVALID_DEVID)) != 0) {
printf("Arc4Init failed, ret = %d\n", ret);
goto exit;
}
ret = wc_Arc4SetKey(&enc[i], bench_key, 16);
if (ret != 0) {
printf("Arc4SetKey failed, ret = %d\n", ret);
goto exit;
}
}
bench_stats_start(&count, &start);
do {
for (times = 0; times < numBlocks || pending > 0; ) {
bench_async_poll(&pending);
/* while free pending slots in queue, submit ops */
for (i = 0; i < BENCH_MAX_PENDING; i++) {
if (bench_async_check(&ret, BENCH_ASYNC_GET_DEV(&enc[i]), 0, &times, numBlocks, &pending)) {
ret = wc_Arc4Process(&enc[i], bench_cipher, bench_plain,
BENCH_SIZE);
if (!bench_async_handle(&ret, BENCH_ASYNC_GET_DEV(&enc[i]), 0, &times, &pending)) {
goto exit_arc4;
}
}
} /* for i */
} /* for times */
count += times;
} while (bench_stats_sym_check(start));
exit_arc4:
bench_stats_sym_finish("ARC4", doAsync, count, bench_size, start, ret);
exit:
for (i = 0; i < BENCH_MAX_PENDING; i++) {
wc_Arc4Free(&enc[i]);
}
}
#endif /* !NO_RC4 */
#ifdef HAVE_HC128
void bench_hc128(void)
{
HC128 enc;
double start;
int i, count;
wc_Hc128_SetKey(&enc, bench_key, bench_iv);
bench_stats_start(&count, &start);
do {
for (i = 0; i < numBlocks; i++) {
wc_Hc128_Process(&enc, bench_cipher, bench_plain, BENCH_SIZE);
}
count += i;
} while (bench_stats_sym_check(start));
bench_stats_sym_finish("HC128", 0, count, bench_size, start, 0);
}
#endif /* HAVE_HC128 */
#ifndef NO_RABBIT
void bench_rabbit(void)
{
Rabbit enc;
double start;
int i, count;
wc_RabbitSetKey(&enc, bench_key, bench_iv);
bench_stats_start(&count, &start);
do {
for (i = 0; i < numBlocks; i++) {
wc_RabbitProcess(&enc, bench_cipher, bench_plain, BENCH_SIZE);
}
count += i;
} while (bench_stats_sym_check(start));
bench_stats_sym_finish("RABBIT", 0, count, bench_size, start, 0);
}
#endif /* NO_RABBIT */
#ifdef HAVE_CHACHA
void bench_chacha(void)
{
ChaCha enc;
double start;
int i, count;
wc_Chacha_SetKey(&enc, bench_key, 16);
bench_stats_start(&count, &start);
do {
for (i = 0; i < numBlocks; i++) {
wc_Chacha_SetIV(&enc, bench_iv, 0);
wc_Chacha_Process(&enc, bench_cipher, bench_plain, BENCH_SIZE);
}
count += i;
} while (bench_stats_sym_check(start));
bench_stats_sym_finish("CHACHA", 0, count, bench_size, start, 0);
}
#endif /* HAVE_CHACHA*/
#if defined(HAVE_CHACHA) && defined(HAVE_POLY1305)
void bench_chacha20_poly1305_aead(void)
{
double start;
int ret = 0, i, count;
byte authTag[CHACHA20_POLY1305_AEAD_AUTHTAG_SIZE];
XMEMSET(authTag, 0, sizeof(authTag));
bench_stats_start(&count, &start);
do {
for (i = 0; i < numBlocks; i++) {
ret = wc_ChaCha20Poly1305_Encrypt(bench_key, bench_iv, NULL, 0,
bench_plain, BENCH_SIZE, bench_cipher, authTag);
if (ret < 0) {
printf("wc_ChaCha20Poly1305_Encrypt error: %d\n", ret);
break;
}
}
count += i;
} while (bench_stats_sym_check(start));
bench_stats_sym_finish("CHA-POLY", 0, count, bench_size, start, ret);
}
#endif /* HAVE_CHACHA && HAVE_POLY1305 */
#ifndef NO_MD5
void bench_md5(int doAsync)
{
wc_Md5 hash[BENCH_MAX_PENDING];
double start;
int ret = 0, i, count = 0, times, pending = 0;
DECLARE_ARRAY(digest, byte, BENCH_MAX_PENDING, WC_MD5_DIGEST_SIZE, HEAP_HINT);
/* clear for done cleanup */
XMEMSET(hash, 0, sizeof(hash));
/* init keys */
for (i = 0; i < BENCH_MAX_PENDING; i++) {
ret = wc_InitMd5_ex(&hash[i], HEAP_HINT,
doAsync ? devId : INVALID_DEVID);
if (ret != 0) {
printf("InitMd5_ex failed, ret = %d\n", ret);
goto exit;
}
#ifdef WOLFSSL_PIC32MZ_HASH
wc_Md5SizeSet(&hash[i], numBlocks * BENCH_SIZE);
#endif
}
bench_stats_start(&count, &start);
do {
for (times = 0; times < numBlocks || pending > 0; ) {
bench_async_poll(&pending);
/* while free pending slots in queue, submit ops */
for (i = 0; i < BENCH_MAX_PENDING; i++) {
if (bench_async_check(&ret, BENCH_ASYNC_GET_DEV(&hash[i]), 0, &times, numBlocks, &pending)) {
ret = wc_Md5Update(&hash[i], bench_plain,
BENCH_SIZE);
if (!bench_async_handle(&ret, BENCH_ASYNC_GET_DEV(&hash[i]), 0, &times, &pending)) {
goto exit_md5;
}
}
} /* for i */
} /* for times */
count += times;
times = 0;
do {
bench_async_poll(&pending);
for (i = 0; i < BENCH_MAX_PENDING; i++) {
if (bench_async_check(&ret, BENCH_ASYNC_GET_DEV(&hash[i]), 0, &times, numBlocks, &pending)) {
ret = wc_Md5Final(&hash[i], digest[i]);
if (!bench_async_handle(&ret, BENCH_ASYNC_GET_DEV(&hash[i]), 0, &times, &pending)) {
goto exit_md5;
}
}
} /* for i */
} while (pending > 0);
} while (bench_stats_sym_check(start));
exit_md5:
bench_stats_sym_finish("MD5", doAsync, count, bench_size, start, ret);
exit:
#ifdef WOLFSSL_ASYNC_CRYPT
for (i = 0; i < BENCH_MAX_PENDING; i++) {
wc_Md5Free(&hash[i]);
}
#endif
FREE_ARRAY(digest, BENCH_MAX_PENDING, HEAP_HINT);
}
#endif /* !NO_MD5 */
#ifndef NO_SHA
void bench_sha(int doAsync)
{
wc_Sha hash[BENCH_MAX_PENDING];
double start;
int ret = 0, i, count = 0, times, pending = 0;
DECLARE_ARRAY(digest, byte, BENCH_MAX_PENDING, WC_SHA_DIGEST_SIZE, HEAP_HINT);
/* clear for done cleanup */
XMEMSET(hash, 0, sizeof(hash));
/* init keys */
for (i = 0; i < BENCH_MAX_PENDING; i++) {
ret = wc_InitSha_ex(&hash[i], HEAP_HINT,
doAsync ? devId : INVALID_DEVID);
if (ret != 0) {
printf("InitSha failed, ret = %d\n", ret);
goto exit;
}
#ifdef WOLFSSL_PIC32MZ_HASH
wc_ShaSizeSet(&hash[i], numBlocks * BENCH_SIZE);
#endif
}
bench_stats_start(&count, &start);
do {
for (times = 0; times < numBlocks || pending > 0; ) {
bench_async_poll(&pending);
/* while free pending slots in queue, submit ops */
for (i = 0; i < BENCH_MAX_PENDING; i++) {
if (bench_async_check(&ret, BENCH_ASYNC_GET_DEV(&hash[i]), 0, &times, numBlocks, &pending)) {
ret = wc_ShaUpdate(&hash[i], bench_plain,
BENCH_SIZE);
if (!bench_async_handle(&ret, BENCH_ASYNC_GET_DEV(&hash[i]), 0, &times, &pending)) {
goto exit_sha;
}
}
} /* for i */
} /* for times */
count += times;
times = 0;
do {
bench_async_poll(&pending);
for (i = 0; i < BENCH_MAX_PENDING; i++) {
if (bench_async_check(&ret, BENCH_ASYNC_GET_DEV(&hash[i]), 0, &times, numBlocks, &pending)) {
ret = wc_ShaFinal(&hash[i], digest[i]);
if (!bench_async_handle(&ret, BENCH_ASYNC_GET_DEV(&hash[i]), 0, &times, &pending)) {
goto exit_sha;
}
}
} /* for i */
} while (pending > 0);
} while (bench_stats_sym_check(start));
exit_sha:
bench_stats_sym_finish("SHA", doAsync, count, bench_size, start, ret);
exit:
for (i = 0; i < BENCH_MAX_PENDING; i++) {
wc_ShaFree(&hash[i]);
}
FREE_ARRAY(digest, BENCH_MAX_PENDING, HEAP_HINT);
}
#endif /* NO_SHA */
#ifdef WOLFSSL_SHA224
void bench_sha224(int doAsync)
{
wc_Sha224 hash[BENCH_MAX_PENDING];
double start;
int ret, i, count = 0, times, pending = 0;
DECLARE_ARRAY(digest, byte, BENCH_MAX_PENDING, WC_SHA224_DIGEST_SIZE, HEAP_HINT);
/* clear for done cleanup */
XMEMSET(hash, 0, sizeof(hash));
/* init keys */
for (i = 0; i < BENCH_MAX_PENDING; i++) {
ret = wc_InitSha224_ex(&hash[i], HEAP_HINT,
doAsync ? devId : INVALID_DEVID);
if (ret != 0) {
printf("InitSha224_ex failed, ret = %d\n", ret);
goto exit;
}
}
bench_stats_start(&count, &start);
do {
for (times = 0; times < numBlocks || pending > 0; ) {
bench_async_poll(&pending);
/* while free pending slots in queue, submit ops */
for (i = 0; i < BENCH_MAX_PENDING; i++) {
if (bench_async_check(&ret, BENCH_ASYNC_GET_DEV(&hash[i]), 0, &times, numBlocks, &pending)) {
ret = wc_Sha224Update(&hash[i], bench_plain,
BENCH_SIZE);
if (!bench_async_handle(&ret, BENCH_ASYNC_GET_DEV(&hash[i]), 0, &times, &pending)) {
goto exit_sha224;
}
}
} /* for i */
} /* for times */
count += times;
times = 0;
do {
bench_async_poll(&pending);
for (i = 0; i < BENCH_MAX_PENDING; i++) {
if (bench_async_check(&ret, BENCH_ASYNC_GET_DEV(&hash[i]), 0, &times, numBlocks, &pending)) {
ret = wc_Sha224Final(&hash[i], digest[i]);
if (!bench_async_handle(&ret, BENCH_ASYNC_GET_DEV(&hash[i]), 0, &times, &pending)) {
goto exit_sha224;
}
}
} /* for i */
} while (pending > 0);
} while (bench_stats_sym_check(start));
exit_sha224:
bench_stats_sym_finish("SHA-224", doAsync, count, bench_size, start, ret);
exit:
for (i = 0; i < BENCH_MAX_PENDING; i++) {
wc_Sha224Free(&hash[i]);
}
FREE_ARRAY(digest, BENCH_MAX_PENDING, HEAP_HINT);
}
#endif
#ifndef NO_SHA256
void bench_sha256(int doAsync)
{
wc_Sha256 hash[BENCH_MAX_PENDING];
double start;
int ret = 0, i, count = 0, times, pending = 0;
DECLARE_ARRAY(digest, byte, BENCH_MAX_PENDING, WC_SHA256_DIGEST_SIZE, HEAP_HINT);
/* clear for done cleanup */
XMEMSET(hash, 0, sizeof(hash));
/* init keys */
for (i = 0; i < BENCH_MAX_PENDING; i++) {
ret = wc_InitSha256_ex(&hash[i], HEAP_HINT,
doAsync ? devId : INVALID_DEVID);
if (ret != 0) {
printf("InitSha256_ex failed, ret = %d\n", ret);
goto exit;
}
#ifdef WOLFSSL_PIC32MZ_HASH
wc_Sha256SizeSet(&hash[i], numBlocks * BENCH_SIZE);
#endif
}
bench_stats_start(&count, &start);
do {
for (times = 0; times < numBlocks || pending > 0; ) {
bench_async_poll(&pending);
/* while free pending slots in queue, submit ops */
for (i = 0; i < BENCH_MAX_PENDING; i++) {
if (bench_async_check(&ret, BENCH_ASYNC_GET_DEV(&hash[i]), 0, &times, numBlocks, &pending)) {
ret = wc_Sha256Update(&hash[i], bench_plain,
BENCH_SIZE);
if (!bench_async_handle(&ret, BENCH_ASYNC_GET_DEV(&hash[i]), 0, &times, &pending)) {
goto exit_sha256;
}
}
} /* for i */
} /* for times */
count += times;
times = 0;
do {
bench_async_poll(&pending);
for (i = 0; i < BENCH_MAX_PENDING; i++) {
if (bench_async_check(&ret, BENCH_ASYNC_GET_DEV(&hash[i]), 0, &times, numBlocks, &pending)) {
ret = wc_Sha256Final(&hash[i], digest[i]);
if (!bench_async_handle(&ret, BENCH_ASYNC_GET_DEV(&hash[i]), 0, &times, &pending)) {
goto exit_sha256;
}
}
} /* for i */
} while (pending > 0);
} while (bench_stats_sym_check(start));
exit_sha256:
bench_stats_sym_finish("SHA-256", doAsync, count, bench_size, start, ret);
exit:
for (i = 0; i < BENCH_MAX_PENDING; i++) {
wc_Sha256Free(&hash[i]);
}
FREE_ARRAY(digest, BENCH_MAX_PENDING, HEAP_HINT);
}
#endif
#ifdef WOLFSSL_SHA384
void bench_sha384(int doAsync)
{
wc_Sha384 hash[BENCH_MAX_PENDING];
double start;
int ret = 0, i, count = 0, times, pending = 0;
DECLARE_ARRAY(digest, byte, BENCH_MAX_PENDING, WC_SHA384_DIGEST_SIZE, HEAP_HINT);
/* clear for done cleanup */
XMEMSET(hash, 0, sizeof(hash));
/* init keys */
for (i = 0; i < BENCH_MAX_PENDING; i++) {
ret = wc_InitSha384_ex(&hash[i], HEAP_HINT,
doAsync ? devId : INVALID_DEVID);
if (ret != 0) {
printf("InitSha384_ex failed, ret = %d\n", ret);
goto exit;
}
}
bench_stats_start(&count, &start);
do {
for (times = 0; times < numBlocks || pending > 0; ) {
bench_async_poll(&pending);
/* while free pending slots in queue, submit ops */
for (i = 0; i < BENCH_MAX_PENDING; i++) {
if (bench_async_check(&ret, BENCH_ASYNC_GET_DEV(&hash[i]), 0, &times, numBlocks, &pending)) {
ret = wc_Sha384Update(&hash[i], bench_plain,
BENCH_SIZE);
if (!bench_async_handle(&ret, BENCH_ASYNC_GET_DEV(&hash[i]), 0, &times, &pending)) {
goto exit_sha384;
}
}
} /* for i */
} /* for times */
count += times;
times = 0;
do {
bench_async_poll(&pending);
for (i = 0; i < BENCH_MAX_PENDING; i++) {
if (bench_async_check(&ret, BENCH_ASYNC_GET_DEV(&hash[i]), 0, &times, numBlocks, &pending)) {
ret = wc_Sha384Final(&hash[i], digest[i]);
if (!bench_async_handle(&ret, BENCH_ASYNC_GET_DEV(&hash[i]), 0, &times, &pending)) {
goto exit_sha384;
}
}
} /* for i */
} while (pending > 0);
} while (bench_stats_sym_check(start));
exit_sha384:
bench_stats_sym_finish("SHA-384", doAsync, count, bench_size, start, ret);
exit:
for (i = 0; i < BENCH_MAX_PENDING; i++) {
wc_Sha384Free(&hash[i]);
}
FREE_ARRAY(digest, BENCH_MAX_PENDING, HEAP_HINT);
}
#endif
#ifdef WOLFSSL_SHA512
void bench_sha512(int doAsync)
{
wc_Sha512 hash[BENCH_MAX_PENDING];
double start;
int ret = 0, i, count = 0, times, pending = 0;
DECLARE_ARRAY(digest, byte, BENCH_MAX_PENDING, WC_SHA512_DIGEST_SIZE, HEAP_HINT);
/* clear for done cleanup */
XMEMSET(hash, 0, sizeof(hash));
/* init keys */
for (i = 0; i < BENCH_MAX_PENDING; i++) {
ret = wc_InitSha512_ex(&hash[i], HEAP_HINT,
doAsync ? devId : INVALID_DEVID);
if (ret != 0) {
printf("InitSha512_ex failed, ret = %d\n", ret);
goto exit;
}
}
bench_stats_start(&count, &start);
do {
for (times = 0; times < numBlocks || pending > 0; ) {
bench_async_poll(&pending);
/* while free pending slots in queue, submit ops */
for (i = 0; i < BENCH_MAX_PENDING; i++) {
if (bench_async_check(&ret, BENCH_ASYNC_GET_DEV(&hash[i]), 0, &times, numBlocks, &pending)) {
ret = wc_Sha512Update(&hash[i], bench_plain,
BENCH_SIZE);
if (!bench_async_handle(&ret, BENCH_ASYNC_GET_DEV(&hash[i]), 0, &times, &pending)) {
goto exit_sha512;
}
}
} /* for i */
} /* for times */
count += times;
times = 0;
do {
bench_async_poll(&pending);
for (i = 0; i < BENCH_MAX_PENDING; i++) {
if (bench_async_check(&ret, BENCH_ASYNC_GET_DEV(&hash[i]), 0, &times, numBlocks, &pending)) {
ret = wc_Sha512Final(&hash[i], digest[i]);
if (!bench_async_handle(&ret, BENCH_ASYNC_GET_DEV(&hash[i]), 0, &times, &pending)) {
goto exit_sha512;
}
}
} /* for i */
} while (pending > 0);
} while (bench_stats_sym_check(start));
exit_sha512:
bench_stats_sym_finish("SHA-512", doAsync, count, bench_size, start, ret);
exit:
for (i = 0; i < BENCH_MAX_PENDING; i++) {
wc_Sha512Free(&hash[i]);
}
FREE_ARRAY(digest, BENCH_MAX_PENDING, HEAP_HINT);
}
#endif
#ifdef WOLFSSL_SHA3
#ifndef WOLFSSL_NOSHA3_224
void bench_sha3_224(int doAsync)
{
Sha3 hash[BENCH_MAX_PENDING];
double start;
int ret = 0, i, count = 0, times, pending = 0;
DECLARE_ARRAY(digest, byte, BENCH_MAX_PENDING, SHA3_224_DIGEST_SIZE, HEAP_HINT);
/* clear for done cleanup */
XMEMSET(hash, 0, sizeof(hash));
/* init keys */
for (i = 0; i < BENCH_MAX_PENDING; i++) {
ret = wc_InitSha3_224(&hash[i], HEAP_HINT,
doAsync ? devId : INVALID_DEVID);
if (ret != 0) {
printf("InitSha3_224 failed, ret = %d\n", ret);
goto exit;
}
}
bench_stats_start(&count, &start);
do {
for (times = 0; times < numBlocks || pending > 0; ) {
bench_async_poll(&pending);
/* while free pending slots in queue, submit ops */
for (i = 0; i < BENCH_MAX_PENDING; i++) {
if (bench_async_check(&ret, BENCH_ASYNC_GET_DEV(&hash[i]), 0, &times, numBlocks, &pending)) {
ret = wc_Sha3_224_Update(&hash[i], bench_plain,
BENCH_SIZE);
if (!bench_async_handle(&ret, BENCH_ASYNC_GET_DEV(&hash[i]), 0, &times, &pending)) {
goto exit_sha3_224;
}
}
} /* for i */
} /* for times */
count += times;
times = 0;
do {
bench_async_poll(&pending);
for (i = 0; i < BENCH_MAX_PENDING; i++) {
if (bench_async_check(&ret, BENCH_ASYNC_GET_DEV(&hash[i]), 0, &times, numBlocks, &pending)) {
ret = wc_Sha3_224_Final(&hash[i], digest[i]);
if (!bench_async_handle(&ret, BENCH_ASYNC_GET_DEV(&hash[i]), 0, &times, &pending)) {
goto exit_sha3_224;
}
}
} /* for i */
} while (pending > 0);
} while (bench_stats_sym_check(start));
exit_sha3_224:
bench_stats_sym_finish("SHA3-224", doAsync, count, bench_size, start, ret);
exit:
for (i = 0; i < BENCH_MAX_PENDING; i++) {
wc_Sha3_224_Free(&hash[i]);
}
FREE_ARRAY(digest, BENCH_MAX_PENDING, HEAP_HINT);
}
#endif /* WOLFSSL_NOSHA3_224 */
#ifndef WOLFSSL_NOSHA3_256
void bench_sha3_256(int doAsync)
{
Sha3 hash[BENCH_MAX_PENDING];
double start;
int ret = 0, i, count = 0, times, pending = 0;
DECLARE_ARRAY(digest, byte, BENCH_MAX_PENDING, SHA3_256_DIGEST_SIZE, HEAP_HINT);
/* clear for done cleanup */
XMEMSET(hash, 0, sizeof(hash));
/* init keys */
for (i = 0; i < BENCH_MAX_PENDING; i++) {
ret = wc_InitSha3_256(&hash[i], HEAP_HINT,
doAsync ? devId : INVALID_DEVID);
if (ret != 0) {
printf("InitSha3_256 failed, ret = %d\n", ret);
goto exit;
}
}
bench_stats_start(&count, &start);
do {
for (times = 0; times < numBlocks || pending > 0; ) {
bench_async_poll(&pending);
/* while free pending slots in queue, submit ops */
for (i = 0; i < BENCH_MAX_PENDING; i++) {
if (bench_async_check(&ret, BENCH_ASYNC_GET_DEV(&hash[i]), 0, &times, numBlocks, &pending)) {
ret = wc_Sha3_256_Update(&hash[i], bench_plain,
BENCH_SIZE);
if (!bench_async_handle(&ret, BENCH_ASYNC_GET_DEV(&hash[i]), 0, &times, &pending)) {
goto exit_sha3_256;
}
}
} /* for i */
} /* for times */
count += times;
times = 0;
do {
bench_async_poll(&pending);
for (i = 0; i < BENCH_MAX_PENDING; i++) {
if (bench_async_check(&ret, BENCH_ASYNC_GET_DEV(&hash[i]), 0, &times, numBlocks, &pending)) {
ret = wc_Sha3_256_Final(&hash[i], digest[i]);
if (!bench_async_handle(&ret, BENCH_ASYNC_GET_DEV(&hash[i]), 0, &times, &pending)) {
goto exit_sha3_256;
}
}
} /* for i */
} while (pending > 0);
} while (bench_stats_sym_check(start));
exit_sha3_256:
bench_stats_sym_finish("SHA3-256", doAsync, count, bench_size, start, ret);
exit:
for (i = 0; i < BENCH_MAX_PENDING; i++) {
wc_Sha3_256_Free(&hash[i]);
}
FREE_ARRAY(digest, BENCH_MAX_PENDING, HEAP_HINT);
}
#endif /* WOLFSSL_NOSHA3_256 */
#ifndef WOLFSSL_NOSHA3_384
void bench_sha3_384(int doAsync)
{
Sha3 hash[BENCH_MAX_PENDING];
double start;
int ret = 0, i, count = 0, times, pending = 0;
DECLARE_ARRAY(digest, byte, BENCH_MAX_PENDING, SHA3_384_DIGEST_SIZE, HEAP_HINT);
/* clear for done cleanup */
XMEMSET(hash, 0, sizeof(hash));
/* init keys */
for (i = 0; i < BENCH_MAX_PENDING; i++) {
ret = wc_InitSha3_384(&hash[i], HEAP_HINT,
doAsync ? devId : INVALID_DEVID);
if (ret != 0) {
printf("InitSha3_384 failed, ret = %d\n", ret);
goto exit;
}
}
bench_stats_start(&count, &start);
do {
for (times = 0; times < numBlocks || pending > 0; ) {
bench_async_poll(&pending);
/* while free pending slots in queue, submit ops */
for (i = 0; i < BENCH_MAX_PENDING; i++) {
if (bench_async_check(&ret, BENCH_ASYNC_GET_DEV(&hash[i]), 0, &times, numBlocks, &pending)) {
ret = wc_Sha3_384_Update(&hash[i], bench_plain,
BENCH_SIZE);
if (!bench_async_handle(&ret, BENCH_ASYNC_GET_DEV(&hash[i]), 0, &times, &pending)) {
goto exit_sha3_384;
}
}
} /* for i */
} /* for times */
count += times;
times = 0;
do {
bench_async_poll(&pending);
for (i = 0; i < BENCH_MAX_PENDING; i++) {
if (bench_async_check(&ret, BENCH_ASYNC_GET_DEV(&hash[i]), 0, &times, numBlocks, &pending)) {
ret = wc_Sha3_384_Final(&hash[i], digest[i]);
if (!bench_async_handle(&ret, BENCH_ASYNC_GET_DEV(&hash[i]), 0, &times, &pending)) {
goto exit_sha3_384;
}
}
} /* for i */
} while (pending > 0);
} while (bench_stats_sym_check(start));
exit_sha3_384:
bench_stats_sym_finish("SHA3-384", doAsync, count, bench_size, start, ret);
exit:
for (i = 0; i < BENCH_MAX_PENDING; i++) {
wc_Sha3_384_Free(&hash[i]);
}
FREE_ARRAY(digest, BENCH_MAX_PENDING, HEAP_HINT);
}
#endif /* WOLFSSL_NOSHA3_384 */
#ifndef WOLFSSL_NOSHA3_512
void bench_sha3_512(int doAsync)
{
Sha3 hash[BENCH_MAX_PENDING];
double start;
int ret = 0, i, count = 0, times, pending = 0;
DECLARE_ARRAY(digest, byte, BENCH_MAX_PENDING, SHA3_512_DIGEST_SIZE, HEAP_HINT);
/* clear for done cleanup */
XMEMSET(hash, 0, sizeof(hash));
/* init keys */
for (i = 0; i < BENCH_MAX_PENDING; i++) {
ret = wc_InitSha3_512(&hash[i], HEAP_HINT,
doAsync ? devId : INVALID_DEVID);
if (ret != 0) {
printf("InitSha3_512 failed, ret = %d\n", ret);
goto exit;
}
}
bench_stats_start(&count, &start);
do {
for (times = 0; times < numBlocks || pending > 0; ) {
bench_async_poll(&pending);
/* while free pending slots in queue, submit ops */
for (i = 0; i < BENCH_MAX_PENDING; i++) {
if (bench_async_check(&ret, BENCH_ASYNC_GET_DEV(&hash[i]), 0, &times, numBlocks, &pending)) {
ret = wc_Sha3_512_Update(&hash[i], bench_plain,
BENCH_SIZE);
if (!bench_async_handle(&ret, BENCH_ASYNC_GET_DEV(&hash[i]), 0, &times, &pending)) {
goto exit_sha3_512;
}
}
} /* for i */
} /* for times */
count += times;
times = 0;
do {
bench_async_poll(&pending);
for (i = 0; i < BENCH_MAX_PENDING; i++) {
if (bench_async_check(&ret, BENCH_ASYNC_GET_DEV(&hash[i]), 0, &times, numBlocks, &pending)) {
ret = wc_Sha3_512_Final(&hash[i], digest[i]);
if (!bench_async_handle(&ret, BENCH_ASYNC_GET_DEV(&hash[i]), 0, &times, &pending)) {
goto exit_sha3_512;
}
}
} /* for i */
} while (pending > 0);
} while (bench_stats_sym_check(start));
exit_sha3_512:
bench_stats_sym_finish("SHA3-512", doAsync, count, bench_size, start, ret);
exit:
for (i = 0; i < BENCH_MAX_PENDING; i++) {
wc_Sha3_512_Free(&hash[i]);
}
FREE_ARRAY(digest, BENCH_MAX_PENDING, HEAP_HINT);
}
#endif /* WOLFSSL_NOSHA3_512 */
#endif
#ifdef WOLFSSL_RIPEMD
int bench_ripemd(void)
{
RipeMd hash;
byte digest[RIPEMD_DIGEST_SIZE];
double start;
int i, count, ret;
ret = wc_InitRipeMd(&hash);
if (ret != 0) {
return ret;
}
bench_stats_start(&count, &start);
do {
for (i = 0; i < numBlocks; i++) {
ret = wc_RipeMdUpdate(&hash, bench_plain, BENCH_SIZE);
if (ret != 0) {
return ret;
}
}
ret = wc_RipeMdFinal(&hash, digest);
if (ret != 0) {
return ret;
}
count += i;
} while (bench_stats_sym_check(start));
bench_stats_sym_finish("RIPEMD", 0, count, bench_size, start, ret);
return 0;
}
#endif
#ifdef HAVE_BLAKE2
void bench_blake2(void)
{
Blake2b b2b;
byte digest[64];
double start;
int ret, i, count;
ret = wc_InitBlake2b(&b2b, 64);
if (ret != 0) {
printf("InitBlake2b failed, ret = %d\n", ret);
return;
}
bench_stats_start(&count, &start);
do {
for (i = 0; i < numBlocks; i++) {
ret = wc_Blake2bUpdate(&b2b, bench_plain, BENCH_SIZE);
if (ret != 0) {
printf("Blake2bUpdate failed, ret = %d\n", ret);
return;
}
}
ret = wc_Blake2bFinal(&b2b, digest, 64);
if (ret != 0) {
printf("Blake2bFinal failed, ret = %d\n", ret);
return;
}
count += i;
} while (bench_stats_sym_check(start));
bench_stats_sym_finish("BLAKE2b", 0, count, bench_size, start, ret);
}
#endif
#ifdef WOLFSSL_CMAC
void bench_cmac(void)
{
Cmac cmac;
byte digest[AES_BLOCK_SIZE];
word32 digestSz = sizeof(digest);
double start;
int ret, i, count;
bench_stats_start(&count, &start);
do {
ret = wc_InitCmac(&cmac, bench_key, 16, WC_CMAC_AES, NULL);
if (ret != 0) {
printf("InitCmac failed, ret = %d\n", ret);
return;
}
for (i = 0; i < numBlocks; i++) {
ret = wc_CmacUpdate(&cmac, bench_plain, BENCH_SIZE);
if (ret != 0) {
printf("CmacUpdate failed, ret = %d\n", ret);
return;
}
}
/* Note: final force zero's the Cmac struct */
ret = wc_CmacFinal(&cmac, digest, &digestSz);
if (ret != 0) {
printf("CmacFinal failed, ret = %d\n", ret);
return;
}
count += i;
} while (bench_stats_sym_check(start));
bench_stats_sym_finish("AES-CMAC", 0, count, bench_size, start, ret);
}
#endif /* WOLFSSL_CMAC */
#ifdef HAVE_SCRYPT
void bench_scrypt(void)
{
byte derived[64];
double start;
int ret, i, count;
bench_stats_start(&count, &start);
do {
for (i = 0; i < scryptCnt; i++) {
ret = wc_scrypt(derived, (byte*)"pleaseletmein", 13,
(byte*)"SodiumChloride", 14, 14, 8, 1, sizeof(derived));
if (ret != 0) {
printf("scrypt failed, ret = %d\n", ret);
goto exit;
}
}
count += i;
} while (bench_stats_sym_check(start));
exit:
bench_stats_asym_finish("scrypt", 17, "", 0, count, start, ret);
}
#endif /* HAVE_SCRYPT */
#ifndef NO_HMAC
static void bench_hmac(int doAsync, int type, int digestSz,
byte* key, word32 keySz, const char* label)
{
Hmac hmac[BENCH_MAX_PENDING];
double start;
int ret = 0, i, count = 0, times, pending = 0;
#if defined(BENCH_EMBEDDED)
DECLARE_ARRAY(digest, byte, BENCH_MAX_PENDING, MAX_DIGEST_SIZE, HEAP_HINT);
#else
DECLARE_ARRAY(digest, byte, BENCH_MAX_PENDING, digestSz, HEAP_HINT);
#endif
/* clear for done cleanup */
XMEMSET(hmac, 0, sizeof(hmac));
/* init keys */
for (i = 0; i < BENCH_MAX_PENDING; i++) {
ret = wc_HmacInit(&hmac[i], HEAP_HINT,
doAsync ? devId : INVALID_DEVID);
if (ret != 0) {
printf("wc_HmacInit failed for %s, ret = %d\n", label, ret);
goto exit;
}
ret = wc_HmacSetKey(&hmac[i], type, key, keySz);
if (ret != 0) {
printf("wc_HmacSetKey failed for %s, ret = %d\n", label, ret);
goto exit;
}
}
bench_stats_start(&count, &start);
do {
for (times = 0; times < numBlocks || pending > 0; ) {
bench_async_poll(&pending);
/* while free pending slots in queue, submit ops */
for (i = 0; i < BENCH_MAX_PENDING; i++) {
if (bench_async_check(&ret, BENCH_ASYNC_GET_DEV(&hmac[i]), 0,
&times, numBlocks, &pending)) {
ret = wc_HmacUpdate(&hmac[i], bench_plain, BENCH_SIZE);
if (!bench_async_handle(&ret, BENCH_ASYNC_GET_DEV(&hmac[i]),
0, &times, &pending)) {
goto exit_hmac;
}
}
} /* for i */
} /* for times */
count += times;
times = 0;
do {
bench_async_poll(&pending);
for (i = 0; i < BENCH_MAX_PENDING; i++) {
if (bench_async_check(&ret, BENCH_ASYNC_GET_DEV(&hmac[i]), 0,
&times, numBlocks, &pending)) {
ret = wc_HmacFinal(&hmac[i], digest[i]);
if (!bench_async_handle(&ret, BENCH_ASYNC_GET_DEV(&hmac[i]),
0, &times, &pending)) {
goto exit_hmac;
}
}
} /* for i */
} while (pending > 0);
} while (bench_stats_sym_check(start));
exit_hmac:
bench_stats_sym_finish(label, doAsync, count, bench_size, start, ret);
exit:
#ifdef WOLFSSL_ASYNC_CRYPT
for (i = 0; i < BENCH_MAX_PENDING; i++) {
wc_HmacFree(&hmac[i]);
}
#endif
FREE_ARRAY(digest, BENCH_MAX_PENDING, HEAP_HINT);
}
#ifndef NO_MD5
void bench_hmac_md5(int doAsync)
{
byte key[] = { 0x0b, 0x0b, 0x0b, 0x0b, 0x0b, 0x0b, 0x0b, 0x0b,
0x0b, 0x0b, 0x0b, 0x0b, 0x0b, 0x0b, 0x0b, 0x0b };
bench_hmac(doAsync, WC_MD5, WC_MD5_DIGEST_SIZE, key, sizeof(key),
"HMAC-MD5");
}
#endif /* NO_MD5 */
#ifndef NO_SHA
void bench_hmac_sha(int doAsync)
{
byte key[] = { 0x0b, 0x0b, 0x0b, 0x0b, 0x0b, 0x0b, 0x0b, 0x0b,
0x0b, 0x0b, 0x0b, 0x0b, 0x0b, 0x0b, 0x0b, 0x0b,
0x0b, 0x0b, 0x0b, 0x0b };
bench_hmac(doAsync, WC_SHA, WC_SHA_DIGEST_SIZE, key, sizeof(key),
"HMAC-SHA");
}
#endif /* NO_SHA */
#ifdef WOLFSSL_SHA224
void bench_hmac_sha224(int doAsync)
{
byte key[] = { 0x0b, 0x0b, 0x0b, 0x0b, 0x0b, 0x0b, 0x0b, 0x0b,
0x0b, 0x0b, 0x0b, 0x0b, 0x0b, 0x0b, 0x0b, 0x0b,
0x0b, 0x0b, 0x0b, 0x0b, 0x0b, 0x0b, 0x0b, 0x0b,
0x0b, 0x0b, 0x0b, 0x0b };
bench_hmac(doAsync, WC_SHA224, WC_SHA224_DIGEST_SIZE, key, sizeof(key),
"HMAC-SHA224");
}
#endif /* WOLFSSL_SHA224 */
#ifndef NO_SHA256
void bench_hmac_sha256(int doAsync)
{
byte key[] = { 0x0b, 0x0b, 0x0b, 0x0b, 0x0b, 0x0b, 0x0b, 0x0b,
0x0b, 0x0b, 0x0b, 0x0b, 0x0b, 0x0b, 0x0b, 0x0b,
0x0b, 0x0b, 0x0b, 0x0b, 0x0b, 0x0b, 0x0b, 0x0b,
0x0b, 0x0b, 0x0b, 0x0b, 0x0b, 0x0b, 0x0b, 0x0b };
bench_hmac(doAsync, WC_SHA256, WC_SHA256_DIGEST_SIZE, key, sizeof(key),
"HMAC-SHA256");
}
#endif /* NO_SHA256 */
#ifdef WOLFSSL_SHA384
void bench_hmac_sha384(int doAsync)
{
byte key[] = { 0x0b, 0x0b, 0x0b, 0x0b, 0x0b, 0x0b, 0x0b, 0x0b,
0x0b, 0x0b, 0x0b, 0x0b, 0x0b, 0x0b, 0x0b, 0x0b,
0x0b, 0x0b, 0x0b, 0x0b, 0x0b, 0x0b, 0x0b, 0x0b,
0x0b, 0x0b, 0x0b, 0x0b, 0x0b, 0x0b, 0x0b, 0x0b,
0x0b, 0x0b, 0x0b, 0x0b, 0x0b, 0x0b, 0x0b, 0x0b,
0x0b, 0x0b, 0x0b, 0x0b, 0x0b, 0x0b, 0x0b, 0x0b };
bench_hmac(doAsync, WC_SHA384, WC_SHA384_DIGEST_SIZE, key, sizeof(key),
"HMAC-SHA384");
}
#endif /* WOLFSSL_SHA384 */
#ifdef WOLFSSL_SHA512
void bench_hmac_sha512(int doAsync)
{
byte key[] = { 0x0b, 0x0b, 0x0b, 0x0b, 0x0b, 0x0b, 0x0b, 0x0b,
0x0b, 0x0b, 0x0b, 0x0b, 0x0b, 0x0b, 0x0b, 0x0b,
0x0b, 0x0b, 0x0b, 0x0b, 0x0b, 0x0b, 0x0b, 0x0b,
0x0b, 0x0b, 0x0b, 0x0b, 0x0b, 0x0b, 0x0b, 0x0b,
0x0b, 0x0b, 0x0b, 0x0b, 0x0b, 0x0b, 0x0b, 0x0b,
0x0b, 0x0b, 0x0b, 0x0b, 0x0b, 0x0b, 0x0b, 0x0b,
0x0b, 0x0b, 0x0b, 0x0b, 0x0b, 0x0b, 0x0b, 0x0b,
0x0b, 0x0b, 0x0b, 0x0b, 0x0b, 0x0b, 0x0b, 0x0b };
bench_hmac(doAsync, WC_SHA512, WC_SHA512_DIGEST_SIZE, key, sizeof(key),
"HMAC-SHA512");
}
#endif /* WOLFSSL_SHA512 */
#endif /* NO_HMAC */
#ifndef NO_RSA
#if defined(WOLFSSL_KEY_GEN)
void bench_rsaKeyGen(int doAsync)
{
RsaKey genKey[BENCH_MAX_PENDING];
double start;
int ret = 0, i, count = 0, times, pending = 0;
int k, keySz;
const int keySizes[2] = {1024, 2048};
const long rsa_e_val = WC_RSA_EXPONENT;
/* clear for done cleanup */
XMEMSET(genKey, 0, sizeof(genKey));
for (k = 0; k < (int)(sizeof(keySizes)/sizeof(int)); k++) {
keySz = keySizes[k];
bench_stats_start(&count, &start);
do {
/* while free pending slots in queue, submit ops */
for (times = 0; times < genTimes || pending > 0; ) {
bench_async_poll(&pending);
for (i = 0; i < BENCH_MAX_PENDING; i++) {
if (bench_async_check(&ret, BENCH_ASYNC_GET_DEV(&genKey[i]), 0, &times, genTimes, &pending)) {
wc_FreeRsaKey(&genKey[i]);
ret = wc_InitRsaKey_ex(&genKey[i], HEAP_HINT,
doAsync ? devId : INVALID_DEVID);
if (ret < 0) {
goto exit;
}
ret = wc_MakeRsaKey(&genKey[i], keySz, rsa_e_val, &rng);
if (!bench_async_handle(&ret, BENCH_ASYNC_GET_DEV(&genKey[i]), 0, &times, &pending)) {
goto exit;
}
}
} /* for i */
} /* for times */
count += times;
} while (bench_stats_sym_check(start));
exit:
bench_stats_asym_finish("RSA", keySz, "key gen", doAsync, count, start, ret);
if (ret < 0) {
break;
}
}
/* cleanup */
for (i = 0; i < BENCH_MAX_PENDING; i++) {
wc_FreeRsaKey(&genKey[i]);
}
}
#endif /* WOLFSSL_KEY_GEN */
#if !defined(USE_CERT_BUFFERS_1024) && !defined(USE_CERT_BUFFERS_2048)
#if defined(WOLFSSL_MDK_SHELL)
static char *certRSAname = "certs/rsa2048.der";
/* set by shell command */
static void set_Bench_RSA_File(char * cert) { certRSAname = cert ; }
#elif defined(FREESCALE_MQX)
static char *certRSAname = "a:\\certs\\rsa2048.der";
#else
static const char *certRSAname = "certs/rsa2048.der";
#endif
#endif
#define RSA_BUF_SIZE 256 /* for up to 2048 bit */
void bench_rsa(int doAsync)
{
int ret = 0, i, times, count = 0, pending = 0;
size_t bytes;
word32 idx = 0;
const byte* tmp;
const char* messageStr = "Everyone gets Friday off.";
const int len = (int)XSTRLEN((char*)messageStr);
double start = 0.0f;
RsaKey rsaKey[BENCH_MAX_PENDING];
int rsaKeySz = RSA_BUF_SIZE * 8; /* used in printf */
DECLARE_VAR_INIT(message, byte, len, messageStr, HEAP_HINT);
DECLARE_ARRAY(enc, byte, BENCH_MAX_PENDING, RSA_BUF_SIZE, HEAP_HINT);
DECLARE_ARRAY(out, byte, BENCH_MAX_PENDING, RSA_BUF_SIZE, HEAP_HINT);
#ifdef USE_CERT_BUFFERS_1024
tmp = rsa_key_der_1024;
bytes = (size_t)sizeof_rsa_key_der_1024;
rsaKeySz = 1024;
#elif defined(USE_CERT_BUFFERS_2048)
tmp = rsa_key_der_2048;
bytes = (size_t)sizeof_rsa_key_der_2048;
#else
#error "need a cert buffer size"
#endif /* USE_CERT_BUFFERS */
/* clear for done cleanup */
XMEMSET(rsaKey, 0, sizeof(rsaKey));
/* init keys */
for (i = 0; i < BENCH_MAX_PENDING; i++) {
/* setup an async context for each key */
if ((ret = wc_InitRsaKey_ex(&rsaKey[i], HEAP_HINT,
doAsync ? devId : INVALID_DEVID)) < 0) {
goto exit;
}
#ifdef WC_RSA_BLINDING
ret = wc_RsaSetRNG(&rsaKey[i], &rng);
if (ret != 0)
goto exit;
#endif
/* decode the private key */
idx = 0;
if ((ret = wc_RsaPrivateKeyDecode(tmp, &idx, &rsaKey[i],
(word32)bytes)) != 0) {
printf("wc_RsaPrivateKeyDecode failed! %d\n", ret);
goto exit;
}
}
#ifndef BENCHMARK_RSA_SIGN_VERIFY
/* begin public RSA */
bench_stats_start(&count, &start);
do {
for (times = 0; times < ntimes || pending > 0; ) {
bench_async_poll(&pending);
/* while free pending slots in queue, submit ops */
for (i = 0; i < BENCH_MAX_PENDING; i++) {
if (bench_async_check(&ret, BENCH_ASYNC_GET_DEV(&rsaKey[i]), 1, &times, ntimes, &pending)) {
ret = wc_RsaPublicEncrypt(message, (word32)len, enc[i],
RSA_BUF_SIZE, &rsaKey[i], &rng);
if (!bench_async_handle(&ret, BENCH_ASYNC_GET_DEV(&rsaKey[i]), 1, &times, &pending)) {
goto exit_rsa_pub;
}
}
} /* for i */
} /* for times */
count += times;
} while (bench_stats_sym_check(start));
exit_rsa_pub:
bench_stats_asym_finish("RSA", rsaKeySz, "public", doAsync, count, start, ret);
if (ret < 0) {
goto exit;
}
/* capture resulting encrypt length */
idx = (word32)(rsaKeySz/8);
/* begin private async RSA */
bench_stats_start(&count, &start);
do {
for (times = 0; times < ntimes || pending > 0; ) {
bench_async_poll(&pending);
/* while free pending slots in queue, submit ops */
for (i = 0; i < BENCH_MAX_PENDING; i++) {
if (bench_async_check(&ret, BENCH_ASYNC_GET_DEV(&rsaKey[i]), 1, &times, ntimes, &pending)) {
ret = wc_RsaPrivateDecrypt(enc[i], idx, out[i],
RSA_BUF_SIZE, &rsaKey[i]);
if (!bench_async_handle(&ret, BENCH_ASYNC_GET_DEV(&rsaKey[i]), 1, &times, &pending)) {
goto exit;
}
}
} /* for i */
} /* for times */
count += times;
} while (bench_stats_sym_check(start));
exit:
bench_stats_asym_finish("RSA", rsaKeySz, "private", doAsync, count, start, ret);
#else
/* begin public RSA */
bench_stats_start(&count, &start);
do {
for (times = 0; times < ntimes || pending > 0; ) {
bench_async_poll(&pending);
/* while free pending slots in queue, submit ops */
for (i = 0; i < BENCH_MAX_PENDING; i++) {
if (bench_async_check(&ret, BENCH_ASYNC_GET_DEV(&rsaKey[i]), 1, &times, ntimes, &pending)) {
ret = wc_RsaSSL_Sign(message, len, enc[i],
RSA_BUF_SIZE, &rsaKey[i], &rng);
if (!bench_async_handle(&ret, BENCH_ASYNC_GET_DEV(&rsaKey[i]), 1, &times, &pending)) {
goto exit_rsa_pub;
}
}
} /* for i */
} /* for times */
count += times;
} while (bench_stats_sym_check(start));
exit_rsa_pub:
bench_stats_asym_finish("RSA", rsaKeySz, "private", doAsync, count, start, ret);
if (ret < 0) {
goto exit;
}
/* capture resulting encrypt length */
idx = rsaKeySz/8;
/* begin private async RSA */
bench_stats_start(&count, &start);
do {
for (times = 0; times < ntimes || pending > 0; ) {
bench_async_poll(&pending);
/* while free pending slots in queue, submit ops */
for (i = 0; i < BENCH_MAX_PENDING; i++) {
if (bench_async_check(&ret, BENCH_ASYNC_GET_DEV(&rsaKey[i]), 1, &times, ntimes, &pending)) {
ret = wc_RsaSSL_Verify(enc[i], idx, out[i],
RSA_BUF_SIZE, &rsaKey[i]);
if (!bench_async_handle(&ret, BENCH_ASYNC_GET_DEV(&rsaKey[i]), 1, &times, &pending)) {
goto exit;
}
}
} /* for i */
} /* for times */
count += times;
} while (bench_stats_sym_check(start));
exit:
bench_stats_asym_finish("RSA", rsaKeySz, "public", doAsync, count, start, ret);
#endif
/* cleanup */
for (i = 0; i < BENCH_MAX_PENDING; i++) {
wc_FreeRsaKey(&rsaKey[i]);
}
FREE_ARRAY(enc, BENCH_MAX_PENDING, HEAP_HINT);
FREE_ARRAY(out, BENCH_MAX_PENDING, HEAP_HINT);
FREE_VAR(message, HEAP_HINT);
}
#endif /* !NO_RSA */
#ifndef NO_DH
#if !defined(USE_CERT_BUFFERS_1024) && !defined(USE_CERT_BUFFERS_2048)
#if defined(WOLFSSL_MDK_SHELL)
static char *certDHname = "certs/dh2048.der";
/* set by shell command */
void set_Bench_DH_File(char * cert) { certDHname = cert ; }
#elif defined(FREESCALE_MQX)
static char *certDHname = "a:\\certs\\dh2048.der";
#elif defined(NO_ASN)
/* do nothing, but don't need a file */
#else
static const char *certDHname = "certs/dh2048.der";
#endif
#endif
#define BENCH_DH_KEY_SIZE 256 /* for 2048 bit */
#define BENCH_DH_PRIV_SIZE (BENCH_DH_KEY_SIZE/8)
void bench_dh(int doAsync)
{
int ret = 0, i;
int count = 0, times, pending = 0;
const byte* tmp = NULL;
double start = 0.0f;
DhKey dhKey[BENCH_MAX_PENDING];
int dhKeySz = 2048; /* used in printf */
#ifndef NO_ASN
size_t bytes;
word32 idx;
#endif
word32 pubSz[BENCH_MAX_PENDING];
word32 privSz[BENCH_MAX_PENDING];
word32 pubSz2;
word32 privSz2;
word32 agreeSz[BENCH_MAX_PENDING];
DECLARE_ARRAY(pub, byte, BENCH_MAX_PENDING, BENCH_DH_KEY_SIZE, HEAP_HINT);
DECLARE_VAR(pub2, byte, BENCH_DH_KEY_SIZE, HEAP_HINT);
DECLARE_ARRAY(agree, byte, BENCH_MAX_PENDING, BENCH_DH_KEY_SIZE, HEAP_HINT);
DECLARE_ARRAY(priv, byte, BENCH_MAX_PENDING, BENCH_DH_PRIV_SIZE, HEAP_HINT);
DECLARE_VAR(priv2, byte, BENCH_DH_PRIV_SIZE, HEAP_HINT);
(void)tmp;
#if defined(NO_ASN)
dhKeySz = 1024;
/* do nothing, but don't use default FILE */
#elif defined(USE_CERT_BUFFERS_1024)
tmp = dh_key_der_1024;
bytes = (size_t)sizeof_dh_key_der_1024;
dhKeySz = 1024;
#elif defined(USE_CERT_BUFFERS_2048)
tmp = dh_key_der_2048;
bytes = (size_t)sizeof_dh_key_der_2048;
#else
#error "need to define a cert buffer size"
#endif /* USE_CERT_BUFFERS */
/* clear for done cleanup */
XMEMSET(dhKey, 0, sizeof(dhKey));
/* init keys */
for (i = 0; i < BENCH_MAX_PENDING; i++) {
/* setup an async context for each key */
ret = wc_InitDhKey_ex(&dhKey[i], HEAP_HINT,
doAsync ? devId : INVALID_DEVID);
if (ret != 0)
goto exit;
/* setup key */
#ifdef NO_ASN
ret = wc_DhSetKey(&dhKey[i], dh_p, sizeof(dh_p), dh_g, sizeof(dh_g));
#else
idx = 0;
ret = wc_DhKeyDecode(tmp, &idx, &dhKey[i], (word32)bytes);
#endif
if (ret != 0) {
printf("DhKeyDecode failed %d, can't benchmark\n", ret);
goto exit;
}
}
/* Key Gen */
bench_stats_start(&count, &start);
do {
/* while free pending slots in queue, submit ops */
for (times = 0; times < genTimes || pending > 0; ) {
bench_async_poll(&pending);
for (i = 0; i < BENCH_MAX_PENDING; i++) {
if (bench_async_check(&ret, BENCH_ASYNC_GET_DEV(&dhKey[i]), 0, &times, genTimes, &pending)) {
privSz[i] = 0;
ret = wc_DhGenerateKeyPair(&dhKey[i], &rng, priv[i], &privSz[i],
pub[i], &pubSz[i]);
if (!bench_async_handle(&ret, BENCH_ASYNC_GET_DEV(&dhKey[i]), 0, &times, &pending)) {
goto exit_dh_gen;
}
}
} /* for i */
} /* for times */
count += times;
} while (bench_stats_sym_check(start));
exit_dh_gen:
bench_stats_asym_finish("DH", dhKeySz, "key gen", doAsync, count, start, ret);
if (ret < 0) {
goto exit;
}
/* Generate key to use as other public */
ret = wc_DhGenerateKeyPair(&dhKey[0], &rng, priv2, &privSz2, pub2, &pubSz2);
#ifdef WOLFSSL_ASYNC_CRYPT
ret = wc_AsyncWait(ret, &dhKey[0].asyncDev, WC_ASYNC_FLAG_NONE);
#endif
/* Key Agree */
bench_stats_start(&count, &start);
do {
for (times = 0; times < agreeTimes || pending > 0; ) {
bench_async_poll(&pending);
/* while free pending slots in queue, submit ops */
for (i = 0; i < BENCH_MAX_PENDING; i++) {
if (bench_async_check(&ret, BENCH_ASYNC_GET_DEV(&dhKey[i]), 0, &times, agreeTimes, &pending)) {
ret = wc_DhAgree(&dhKey[i], agree[i], &agreeSz[i], priv[i], privSz[i],
pub2, pubSz2);
if (!bench_async_handle(&ret, BENCH_ASYNC_GET_DEV(&dhKey[i]), 0, &times, &pending)) {
goto exit;
}
}
} /* for i */
} /* for times */
count += times;
} while (bench_stats_sym_check(start));
exit:
bench_stats_asym_finish("DH", dhKeySz, "key agree", doAsync, count, start, ret);
/* cleanup */
for (i = 0; i < BENCH_MAX_PENDING; i++) {
wc_FreeDhKey(&dhKey[i]);
}
FREE_ARRAY(pub, BENCH_MAX_PENDING, HEAP_HINT);
FREE_VAR(pub2, HEAP_HINT);
FREE_ARRAY(priv, BENCH_MAX_PENDING, HEAP_HINT);
FREE_VAR(priv2, HEAP_HINT);
FREE_ARRAY(agree, BENCH_MAX_PENDING, HEAP_HINT);
}
#endif /* !NO_DH */
#ifdef HAVE_NTRU
byte GetEntropy(ENTROPY_CMD cmd, byte* out);
byte GetEntropy(ENTROPY_CMD cmd, byte* out)
{
if (cmd == INIT)
return 1; /* using local rng */
if (out == NULL)
return 0;
if (cmd == GET_BYTE_OF_ENTROPY)
return (wc_RNG_GenerateBlock(&rng, out, 1) == 0) ? 1 : 0;
if (cmd == GET_NUM_BYTES_PER_BYTE_OF_ENTROPY) {
*out = 1;
return 1;
}
return 0;
}
void bench_ntru(void)
{
int i;
double start;
byte public_key[1027];
word16 public_key_len = sizeof(public_key);
byte private_key[1120];
word16 private_key_len = sizeof(private_key);
word16 ntruBits = 128;
word16 type = 0;
word32 ret;
byte ciphertext[1022];
word16 ciphertext_len;
byte plaintext[16];
word16 plaintext_len;
DRBG_HANDLE drbg;
static byte const aes_key[] = {
0xf3, 0xe9, 0x87, 0xbb, 0x18, 0x08, 0x3c, 0xaa,
0x7b, 0x12, 0x49, 0x88, 0xaf, 0xb3, 0x22, 0xd8
};
static byte const wolfsslStr[] = {
'w', 'o', 'l', 'f', 'S', 'S', 'L', ' ', 'N', 'T', 'R', 'U'
};
for (ntruBits = 128; ntruBits < 257; ntruBits += 64) {
switch (ntruBits) {
case 128:
type = NTRU_EES439EP1;
break;
case 192:
type = NTRU_EES593EP1;
break;
case 256:
type = NTRU_EES743EP1;
break;
}
ret = ntru_crypto_drbg_instantiate(ntruBits, wolfsslStr,
sizeof(wolfsslStr), (ENTROPY_FN) GetEntropy, &drbg);
if(ret != DRBG_OK) {
printf("NTRU drbg instantiate failed\n");
return;
}
/* set key sizes */
ret = ntru_crypto_ntru_encrypt_keygen(drbg, type, &public_key_len,
NULL, &private_key_len, NULL);
if (ret != NTRU_OK) {
ntru_crypto_drbg_uninstantiate(drbg);
printf("NTRU failed to get key lengths\n");
return;
}
ret = ntru_crypto_ntru_encrypt_keygen(drbg, type, &public_key_len,
public_key, &private_key_len,
private_key);
ntru_crypto_drbg_uninstantiate(drbg);
if (ret != NTRU_OK) {
printf("NTRU keygen failed\n");
return;
}
ret = ntru_crypto_drbg_instantiate(ntruBits, NULL, 0,
(ENTROPY_FN)GetEntropy, &drbg);
if (ret != DRBG_OK) {
printf("NTRU error occurred during DRBG instantiation\n");
return;
}
ret = ntru_crypto_ntru_encrypt(drbg, public_key_len, public_key,
sizeof(aes_key), aes_key, &ciphertext_len, NULL);
if (ret != NTRU_OK) {
printf("NTRU error occurred requesting the buffer size needed\n");
return;
}
bench_stats_start(&i, &start);
for (i = 0; i < ntimes; i++) {
ret = ntru_crypto_ntru_encrypt(drbg, public_key_len, public_key,
sizeof(aes_key), aes_key, &ciphertext_len, ciphertext);
if (ret != NTRU_OK) {
printf("NTRU encrypt error\n");
return;
}
}
bench_stats_asym_finish("NTRU", ntruBits, "encryption", 0, i, start, ret);
ret = ntru_crypto_drbg_uninstantiate(drbg);
if (ret != DRBG_OK) {
printf("NTRU error occurred uninstantiating the DRBG\n");
return;
}
ret = ntru_crypto_ntru_decrypt(private_key_len, private_key,
ciphertext_len, ciphertext, &plaintext_len, NULL);
if (ret != NTRU_OK) {
printf("NTRU decrypt error occurred getting the buffer size needed\n");
return;
}
plaintext_len = sizeof(plaintext);
bench_stats_start(&i, &start);
for (i = 0; i < ntimes; i++) {
ret = ntru_crypto_ntru_decrypt(private_key_len, private_key,
ciphertext_len, ciphertext,
&plaintext_len, plaintext);
if (ret != NTRU_OK) {
printf("NTRU error occurred decrypting the key\n");
return;
}
}
bench_stats_asym_finish("NTRU", ntruBits, "decryption", 0, i, start, ret);
}
}
void bench_ntruKeyGen(void)
{
double start;
int i;
byte public_key[1027];
word16 public_key_len = sizeof(public_key);
byte private_key[1120];
word16 private_key_len = sizeof(private_key);
word16 ntruBits = 128;
word16 type = 0;
word32 ret;
DRBG_HANDLE drbg;
static uint8_t const pers_str[] = {
'w', 'o', 'l', 'f', 'S', 'S', 'L', ' ', 't', 'e', 's', 't'
};
for (ntruBits = 128; ntruBits < 257; ntruBits += 64) {
ret = ntru_crypto_drbg_instantiate(ntruBits, pers_str,
sizeof(pers_str), GetEntropy, &drbg);
if (ret != DRBG_OK) {
printf("NTRU drbg instantiate failed\n");
return;
}
switch (ntruBits) {
case 128:
type = NTRU_EES439EP1;
break;
case 192:
type = NTRU_EES593EP1;
break;
case 256:
type = NTRU_EES743EP1;
break;
}
/* set key sizes */
ret = ntru_crypto_ntru_encrypt_keygen(drbg, type, &public_key_len,
NULL, &private_key_len, NULL);
bench_stats_start(&i, &start);
for (i = 0; i < genTimes; i++) {
ret = ntru_crypto_ntru_encrypt_keygen(drbg, type, &public_key_len,
public_key, &private_key_len,
private_key);
}
bench_stats_asym_finish("NTRU", ntruBits, "key gen", 0, i, start, ret);
if (ret != NTRU_OK) {
return;
}
ret = ntru_crypto_drbg_uninstantiate(drbg);
if (ret != NTRU_OK) {
printf("NTRU drbg uninstantiate failed\n");
return;
}
}
}
#endif
#ifdef HAVE_ECC
#ifndef BENCH_ECC_SIZE
#define BENCH_ECC_SIZE 32
#endif
void bench_eccMakeKey(int doAsync)
{
int ret = 0, i, times, count, pending = 0;
const int keySize = BENCH_ECC_SIZE;
ecc_key genKey[BENCH_MAX_PENDING];
double start;
/* clear for done cleanup */
XMEMSET(&genKey, 0, sizeof(genKey));
/* ECC Make Key */
bench_stats_start(&count, &start);
do {
/* while free pending slots in queue, submit ops */
for (times = 0; times < genTimes || pending > 0; ) {
bench_async_poll(&pending);
for (i = 0; i < BENCH_MAX_PENDING; i++) {
if (bench_async_check(&ret, BENCH_ASYNC_GET_DEV(&genKey[i]), 0, &times, genTimes, &pending)) {
wc_ecc_free(&genKey[i]);
ret = wc_ecc_init_ex(&genKey[i], HEAP_HINT, doAsync ? devId : INVALID_DEVID);
if (ret < 0) {
goto exit;
}
ret = wc_ecc_make_key(&rng, keySize, &genKey[i]);
if (!bench_async_handle(&ret, BENCH_ASYNC_GET_DEV(&genKey[i]), 0, &times, &pending)) {
goto exit;
}
}
} /* for i */
} /* for times */
count += times;
} while (bench_stats_sym_check(start));
exit:
bench_stats_asym_finish("ECC", keySize * 8, "key gen", doAsync, count, start, ret);
/* cleanup */
for (i = 0; i < BENCH_MAX_PENDING; i++) {
wc_ecc_free(&genKey[i]);
}
}
void bench_ecc(int doAsync)
{
int ret = 0, i, times, count, pending = 0;
const int keySize = BENCH_ECC_SIZE;
ecc_key genKey[BENCH_MAX_PENDING];
#ifdef HAVE_ECC_DHE
ecc_key genKey2[BENCH_MAX_PENDING];
#endif
#if !defined(NO_ASN) && defined(HAVE_ECC_SIGN)
#ifdef HAVE_ECC_VERIFY
int verify[BENCH_MAX_PENDING];
#endif
#endif
word32 x[BENCH_MAX_PENDING];
double start;
#ifdef HAVE_ECC_DHE
DECLARE_ARRAY(shared, byte, BENCH_MAX_PENDING, BENCH_ECC_SIZE, HEAP_HINT);
#endif
#if !defined(NO_ASN) && defined(HAVE_ECC_SIGN)
DECLARE_ARRAY(sig, byte, BENCH_MAX_PENDING, ECC_MAX_SIG_SIZE, HEAP_HINT);
#endif
DECLARE_ARRAY(digest, byte, BENCH_MAX_PENDING, BENCH_ECC_SIZE, HEAP_HINT);
/* clear for done cleanup */
XMEMSET(&genKey, 0, sizeof(genKey));
#ifdef HAVE_ECC_DHE
XMEMSET(&genKey2, 0, sizeof(genKey2));
#endif
/* init keys */
for (i = 0; i < BENCH_MAX_PENDING; i++) {
/* setup an context for each key */
if ((ret = wc_ecc_init_ex(&genKey[i], HEAP_HINT,
doAsync ? devId : INVALID_DEVID)) < 0) {
goto exit;
}
ret = wc_ecc_make_key(&rng, keySize, &genKey[i]);
#ifdef WOLFSSL_ASYNC_CRYPT
ret = wc_AsyncWait(ret, &genKey[i].asyncDev, WC_ASYNC_FLAG_NONE);
#endif
if (ret < 0) {
goto exit;
}
#ifdef HAVE_ECC_DHE
if ((ret = wc_ecc_init_ex(&genKey2[i], HEAP_HINT, INVALID_DEVID)) < 0) {
goto exit;
}
if ((ret = wc_ecc_make_key(&rng, keySize, &genKey2[i])) > 0) {
goto exit;
}
#endif
}
#ifdef HAVE_ECC_DHE
/* ECC Shared Secret */
bench_stats_start(&count, &start);
do {
for (times = 0; times < agreeTimes || pending > 0; ) {
bench_async_poll(&pending);
/* while free pending slots in queue, submit ops */
for (i = 0; i < BENCH_MAX_PENDING; i++) {
if (bench_async_check(&ret, BENCH_ASYNC_GET_DEV(&genKey[i]), 1, &times, agreeTimes, &pending)) {
x[i] = (word32)keySize;
ret = wc_ecc_shared_secret(&genKey[i], &genKey2[i], shared[i], &x[i]);
if (!bench_async_handle(&ret, BENCH_ASYNC_GET_DEV(&genKey[i]), 1, &times, &pending)) {
goto exit_ecdhe;
}
}
} /* for i */
} /* for times */
count += times;
} while (bench_stats_sym_check(start));
exit_ecdhe:
bench_stats_asym_finish("ECDHE", keySize * 8, "agree", doAsync, count, start, ret);
if (ret < 0) {
goto exit;
}
#endif /* HAVE_ECC_DHE */
#if !defined(NO_ASN) && defined(HAVE_ECC_SIGN)
/* Init digest to sign */
for (i = 0; i < BENCH_MAX_PENDING; i++) {
for (count = 0; count < keySize; count++) {
digest[i][count] = (byte)count;
}
}
/* ECC Sign */
bench_stats_start(&count, &start);
do {
for (times = 0; times < agreeTimes || pending > 0; ) {
bench_async_poll(&pending);
/* while free pending slots in queue, submit ops */
for (i = 0; i < BENCH_MAX_PENDING; i++) {
if (bench_async_check(&ret, BENCH_ASYNC_GET_DEV(&genKey[i]), 1, &times, agreeTimes, &pending)) {
if (genKey[i].state == 0)
x[i] = ECC_MAX_SIG_SIZE;
ret = wc_ecc_sign_hash(digest[i], (word32)keySize, sig[i], &x[i],
&rng, &genKey[i]);
if (!bench_async_handle(&ret, BENCH_ASYNC_GET_DEV(&genKey[i]), 1, &times, &pending)) {
goto exit_ecdsa_sign;
}
}
} /* for i */
} /* for times */
count += times;
} while (bench_stats_sym_check(start));
exit_ecdsa_sign:
bench_stats_asym_finish("ECDSA", keySize * 8, "sign", doAsync, count, start, ret);
if (ret < 0) {
goto exit;
}
#ifdef HAVE_ECC_VERIFY
/* ECC Verify */
bench_stats_start(&count, &start);
do {
for (times = 0; times < agreeTimes || pending > 0; ) {
bench_async_poll(&pending);
/* while free pending slots in queue, submit ops */
for (i = 0; i < BENCH_MAX_PENDING; i++) {
if (bench_async_check(&ret, BENCH_ASYNC_GET_DEV(&genKey[i]), 1, &times, agreeTimes, &pending)) {
if (genKey[i].state == 0)
verify[i] = 0;
ret = wc_ecc_verify_hash(sig[i], x[i], digest[i],
(word32)keySize, &verify[i], &genKey[i]);
if (!bench_async_handle(&ret, BENCH_ASYNC_GET_DEV(&genKey[i]), 1, &times, &pending)) {
goto exit_ecdsa_verify;
}
}
} /* for i */
} /* for times */
count += times;
} while (bench_stats_sym_check(start));
exit_ecdsa_verify:
bench_stats_asym_finish("ECDSA", keySize * 8, "verify", doAsync, count, start, ret);
#endif /* HAVE_ECC_VERIFY */
#endif /* !NO_ASN && HAVE_ECC_SIGN */
exit:
/* cleanup */
for (i = 0; i < BENCH_MAX_PENDING; i++) {
wc_ecc_free(&genKey[i]);
#ifdef HAVE_ECC_DHE
wc_ecc_free(&genKey2[i]);
#endif
}
#ifdef HAVE_ECC_DHE
FREE_ARRAY(shared, BENCH_MAX_PENDING, HEAP_HINT);
#endif
#if !defined(NO_ASN) && defined(HAVE_ECC_SIGN)
FREE_ARRAY(sig, BENCH_MAX_PENDING, HEAP_HINT);
#endif
FREE_ARRAY(digest, BENCH_MAX_PENDING, HEAP_HINT);
}
#ifdef HAVE_ECC_ENCRYPT
void bench_eccEncrypt(void)
{
ecc_key userA, userB;
const int keySize = BENCH_ECC_SIZE;
byte msg[48];
byte out[80];
word32 outSz = sizeof(out);
word32 bench_plainSz = BENCH_SIZE;
int ret, i, count;
double start;
ret = wc_ecc_init_ex(&userA, HEAP_HINT, devId);
if (ret != 0) {
printf("wc_ecc_encrypt make key A failed: %d\n", ret);
return;
}
wc_ecc_init_ex(&userB, HEAP_HINT, devId);
if (ret != 0) {
printf("wc_ecc_encrypt make key B failed: %d\n", ret);
wc_ecc_free(&userA);
return;
}
ret = wc_ecc_make_key(&rng, keySize, &userA);
#ifdef WOLFSSL_ASYNC_CRYPT
ret = wc_AsyncWait(ret, &userA.asyncDev, WC_ASYNC_FLAG_NONE);
#endif
if (ret != 0)
goto exit;
ret = wc_ecc_make_key(&rng, keySize, &userB);
#ifdef WOLFSSL_ASYNC_CRYPT
ret = wc_AsyncWait(ret, &userB.asyncDev, WC_ASYNC_FLAG_NONE);
#endif
if (ret != 0)
goto exit;
for (i = 0; i < (int)sizeof(msg); i++)
msg[i] = i;
bench_stats_start(&count, &start);
do {
for (i = 0; i < ntimes; i++) {
/* encrypt msg to B */
ret = wc_ecc_encrypt(&userA, &userB, msg, sizeof(msg), out, &outSz, NULL);
if (ret != 0) {
printf("wc_ecc_encrypt failed! %d\n", ret);
goto exit_enc;
}
}
count += i;
} while (bench_stats_sym_check(start));
exit_enc:
bench_stats_asym_finish("ECC", keySize * 8, "encrypt", 0, count, start, ret);
bench_stats_start(&count, &start);
do {
for (i = 0; i < ntimes; i++) {
/* decrypt msg from A */
ret = wc_ecc_decrypt(&userB, &userA, out, outSz, bench_plain, &bench_plainSz, NULL);
if (ret != 0) {
printf("wc_ecc_decrypt failed! %d\n", ret);
goto exit_dec;
}
}
count += i;
} while (bench_stats_sym_check(start));
exit_dec:
bench_stats_asym_finish("ECC", keySize * 8, "decrypt", 0, count, start, ret);
exit:
/* cleanup */
wc_ecc_free(&userB);
wc_ecc_free(&userA);
}
#endif
#endif /* HAVE_ECC */
#ifdef HAVE_CURVE25519
void bench_curve25519KeyGen(void)
{
curve25519_key genKey;
double start;
int ret = 0, i, count;
/* Key Gen */
bench_stats_start(&count, &start);
do {
for (i = 0; i < genTimes; i++) {
ret = wc_curve25519_make_key(&rng, 32, &genKey);
wc_curve25519_free(&genKey);
if (ret != 0) {
printf("wc_curve25519_make_key failed: %d\n", ret);
break;
}
}
count += i;
} while (bench_stats_sym_check(start));
bench_stats_asym_finish("CURVE", 25519, "key gen", 0, count, start, ret);
}
#ifdef HAVE_CURVE25519_SHARED_SECRET
void bench_curve25519KeyAgree(void)
{
curve25519_key genKey, genKey2;
double start;
int ret, i, count;
byte shared[32];
word32 x = 0;
wc_curve25519_init(&genKey);
wc_curve25519_init(&genKey2);
ret = wc_curve25519_make_key(&rng, 32, &genKey);
if (ret != 0) {
printf("curve25519_make_key failed\n");
return;
}
ret = wc_curve25519_make_key(&rng, 32, &genKey2);
if (ret != 0) {
printf("curve25519_make_key failed: %d\n", ret);
wc_curve25519_free(&genKey);
return;
}
/* Shared secret */
bench_stats_start(&count, &start);
do {
for (i = 0; i < agreeTimes; i++) {
x = sizeof(shared);
ret = wc_curve25519_shared_secret(&genKey, &genKey2, shared, &x);
if (ret != 0) {
printf("curve25519_shared_secret failed: %d\n", ret);
goto exit;
}
}
count += i;
} while (bench_stats_sym_check(start));
exit:
bench_stats_asym_finish("CURVE", 25519, "key agree", 0, count, start, ret);
wc_curve25519_free(&genKey2);
wc_curve25519_free(&genKey);
}
#endif /* HAVE_CURVE25519_SHARED_SECRET */
#endif /* HAVE_CURVE25519 */
#ifdef HAVE_ED25519
void bench_ed25519KeyGen(void)
{
ed25519_key genKey;
double start;
int i, count;
/* Key Gen */
bench_stats_start(&count, &start);
do {
for (i = 0; i < genTimes; i++) {
wc_ed25519_init(&genKey);
wc_ed25519_make_key(&rng, 32, &genKey);
wc_ed25519_free(&genKey);
}
count += i;
} while (bench_stats_sym_check(start));
bench_stats_asym_finish("ED", 25519, "key gen", 0, count, start, 0);
}
void bench_ed25519KeySign(void)
{
int ret;
ed25519_key genKey;
#ifdef HAVE_ED25519_SIGN
double start;
int i, count;
byte sig[ED25519_SIG_SIZE];
byte msg[512];
word32 x = 0;
#endif
wc_ed25519_init(&genKey);
ret = wc_ed25519_make_key(&rng, ED25519_KEY_SIZE, &genKey);
if (ret != 0) {
printf("ed25519_make_key failed\n");
return;
}
#ifdef HAVE_ED25519_SIGN
/* make dummy msg */
for (i = 0; i < (int)sizeof(msg); i++)
msg[i] = (byte)i;
bench_stats_start(&count, &start);
do {
for (i = 0; i < agreeTimes; i++) {
x = sizeof(sig);
ret = wc_ed25519_sign_msg(msg, sizeof(msg), sig, &x, &genKey);
if (ret != 0) {
printf("ed25519_sign_msg failed\n");
goto exit_ed_sign;
}
}
count += i;
} while (bench_stats_sym_check(start));
exit_ed_sign:
bench_stats_asym_finish("ED", 25519, "sign", 0, count, start, ret);
#ifdef HAVE_ED25519_VERIFY
bench_stats_start(&count, &start);
do {
for (i = 0; i < agreeTimes; i++) {
int verify = 0;
ret = wc_ed25519_verify_msg(sig, x, msg, sizeof(msg), &verify,
&genKey);
if (ret != 0 || verify != 1) {
printf("ed25519_verify_msg failed\n");
goto exit_ed_verify;
}
}
count += i;
} while (bench_stats_sym_check(start));
exit_ed_verify:
bench_stats_asym_finish("ED", 25519, "verify", 0, count, start, ret);
#endif /* HAVE_ED25519_VERIFY */
#endif /* HAVE_ED25519_SIGN */
wc_ed25519_free(&genKey);
}
#endif /* HAVE_ED25519 */
#ifndef HAVE_STACK_SIZE
#if defined(_WIN32) && !defined(INTIME_RTOS)
#define WIN32_LEAN_AND_MEAN
#include <windows.h>
double current_time(int reset)
{
static int init = 0;
static LARGE_INTEGER freq;
LARGE_INTEGER count;
(void)reset;
if (!init) {
QueryPerformanceFrequency(&freq);
init = 1;
}
QueryPerformanceCounter(&count);
return (double)count.QuadPart / freq.QuadPart;
}
#elif defined MICROCHIP_PIC32
#if defined(WOLFSSL_MICROCHIP_PIC32MZ)
#define CLOCK 80000000.0
#else
#define CLOCK 40000000.0
#endif
extern void WriteCoreTimer(word32 t);
extern word32 ReadCoreTimer(void);
double current_time(int reset)
{
unsigned int ns;
if (reset) {
WriteCoreTimer(0);
}
/* get timer in ns */
ns = ReadCoreTimer();
/* return seconds as a double */
return ( ns / CLOCK * 2.0);
}
#elif defined(WOLFSSL_IAR_ARM_TIME) || defined (WOLFSSL_MDK_ARM) || \
defined(WOLFSSL_USER_CURRTIME) || defined(WOLFSSL_CURRTIME_REMAP)
/* declared above at line 239 */
/* extern double current_time(int reset); */
#elif defined FREERTOS
double current_time(int reset)
{
portTickType tickCount;
(void) reset;
/* tick count == ms, if configTICK_RATE_HZ is set to 1000 */
tickCount = xTaskGetTickCount();
return (double)tickCount / 1000;
}
#elif defined (WOLFSSL_TIRTOS)
extern double current_time(int reset);
#elif defined(FREESCALE_MQX)
double current_time(int reset)
{
TIME_STRUCT tv;
_time_get(&tv);
return (double)tv.SECONDS + (double)tv.MILLISECONDS / 1000;
}
#elif defined(FREESCALE_KSDK_BM)
double current_time(int reset)
{
return (double)OSA_TimeGetMsec() / 1000;
}
#elif defined(WOLFSSL_EMBOS)
#include "RTOS.h"
double current_time(int reset)
{
double time_now;
double current_s = OS_GetTime() / 1000.0;
double current_us = OS_GetTime_us() / 1000000.0;
time_now = (double)( current_s + current_us);
(void) reset;
return time_now;
}
#elif defined(WOLFSSL_SGX)
double current_time(int reset);
#else
#include <sys/time.h>
double current_time(int reset)
{
struct timeval tv;
(void)reset;
gettimeofday(&tv, 0);
return (double)tv.tv_sec + (double)tv.tv_usec / 1000000;
}
#endif /* _WIN32 */
#endif /* !HAVE_STACK_SIZE */
#if defined(HAVE_GET_CYCLES)
static INLINE word64 get_intel_cycles(void)
{
unsigned int lo_c, hi_c;
__asm__ __volatile__ (
"cpuid\n\t"
"rdtsc"
: "=a"(lo_c), "=d"(hi_c) /* out */
: "a"(0) /* in */
: "%ebx", "%ecx"); /* clobber */
return ((word64)lo_c) | (((word64)hi_c) << 32);
}
#endif /* HAVE_GET_CYCLES */
void benchmark_configure(int block_size)
{
/* must be greater than 0 */
if (block_size > 0) {
bench_size = (word32)block_size;
}
}
#ifndef NO_MAIN_DRIVER
#ifndef WOLFSSL_BENCHMARK_ALL
/* Display the algorithm string and keep to 80 characters per line.
*
* str Algorithm string to print.
* line Length of line used so far.
*/
static void print_alg(const char* str, int* line)
{
int optLen;
optLen = (int)XSTRLEN(str) + 1;
if (optLen + *line > 80) {
printf("\n ");
*line = 13;
}
*line += optLen;
printf(" %s", str);
}
#endif
/* Display the usage options of the benchmark program. */
static void Usage(void)
{
#ifndef WOLFSSL_BENCHMARK_ALL
int i;
int line;
#endif
printf("benchmark\n");
printf("-? Help, print this usage\n");
printf("-base10 Display bytes as power of 10 (eg 1 kB = 1000 Bytes)\n");
#ifndef WOLFSSL_BENCHMARK_ALL
printf("-<alg> Algorithm to benchmark. Available algorithms "
"include:\n");
printf(" ");
line = 13;
for (i=0; bench_cipher_opt[i].str != NULL; i++)
print_alg(bench_cipher_opt[i].str + 1, &line);
printf("\n ");
line = 13;
for (i=0; bench_digest_opt[i].str != NULL; i++)
print_alg(bench_digest_opt[i].str + 1, &line);
printf("\n ");
line = 13;
for (i=0; bench_mac_opt[i].str != NULL; i++)
print_alg(bench_mac_opt[i].str + 1, &line);
printf("\n ");
line = 13;
for (i=0; bench_asym_opt[i].str != NULL; i++)
print_alg(bench_asym_opt[i].str + 1, &line);
printf("\n ");
line = 13;
for (i=0; bench_other_opt[i].str != NULL; i++)
print_alg(bench_other_opt[i].str + 1, &line);
printf("\n");
#endif
printf("<num> Size of block in bytes\n");
}
/* Match the command line argument with the string.
*
* arg Command line argument.
* str String to check for.
* return 1 if the command line argument matches the string, 0 otherwise.
*/
static int string_matches(const char* arg, const char* str)
{
int len = (int)XSTRLEN(str) + 1;
return XSTRNCMP(arg, str, len) == 0;
}
int main(int argc, char** argv)
{
int ret = 0;
int optMatched;
#ifndef WOLFSSL_BENCHMARK_ALL
int i;
#endif
while (argc > 1) {
if (string_matches(argv[1], "-?")) {
Usage();
return 0;
}
else if (string_matches(argv[1], "-base10"))
base2 = 0;
else if (argv[1][0] == '-') {
optMatched = 0;
#ifndef WOLFSSL_BENCHMARK_ALL
/* Check known algorithm choosing command line options. */
/* Known cipher algorithms */
for (i=0; !optMatched && bench_cipher_opt[i].str != NULL; i++) {
if (string_matches(argv[1], bench_cipher_opt[i].str)) {
bench_cipher_algs |= bench_cipher_opt[i].val;
bench_all = 0;
optMatched = 1;
}
}
/* Known digest algorithms */
for (i=0; !optMatched && bench_digest_opt[i].str != NULL; i++) {
if (string_matches(argv[1], bench_digest_opt[i].str)) {
bench_digest_algs |= bench_digest_opt[i].val;
bench_all = 0;
optMatched = 1;
}
}
/* Known MAC algorithms */
for (i=0; !optMatched && bench_mac_opt[i].str != NULL; i++) {
if (string_matches(argv[1], bench_mac_opt[i].str)) {
bench_mac_algs |= bench_mac_opt[i].val;
bench_all = 0;
optMatched = 1;
}
}
/* Known asymmetric algorithms */
for (i=0; !optMatched && bench_asym_opt[i].str != NULL; i++) {
if (string_matches(argv[1], bench_asym_opt[i].str)) {
bench_asym_algs |= bench_asym_opt[i].val;
bench_all = 0;
optMatched = 1;
}
}
/* Other known cryptographic algorithms */
for (i=0; !optMatched && bench_other_opt[i].str != NULL; i++) {
if (string_matches(argv[1], bench_other_opt[i].str)) {
bench_other_algs |= bench_other_opt[i].val;
bench_all = 0;
optMatched = 1;
}
}
#endif
if (!optMatched) {
printf("Option not recognized: %s\n", argv[1]);
Usage();
return 1;
}
}
else {
/* parse for block size */
benchmark_configure(atoi(argv[1]));
}
argc--;
argv++;
}
#ifdef HAVE_STACK_SIZE
ret = StackSizeCheck(NULL, benchmark_test);
#else
ret = benchmark_test(NULL);
#endif
return ret;
}
#endif /* !NO_MAIN_DRIVER */
#else
#ifndef NO_MAIN_DRIVER
int main() { return 0; }
#endif
#endif /* !NO_CRYPT_BENCHMARK */