wolfssl/wolfcrypt/src/sha.c

650 lines
18 KiB
C

/* sha.c
*
* Copyright (C) 2006-2017 wolfSSL Inc.
*
* This file is part of wolfSSL.
*
* wolfSSL is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* wolfSSL is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1335, USA
*/
#ifdef HAVE_CONFIG_H
#include <config.h>
#endif
#include <wolfssl/wolfcrypt/settings.h>
#if !defined(NO_SHA)
#include <wolfssl/wolfcrypt/sha.h>
#include <wolfssl/wolfcrypt/error-crypt.h>
/* fips wrapper calls, user can call direct */
#ifdef HAVE_FIPS
int wc_InitSha(wc_Sha* sha)
{
if (sha == NULL) {
return BAD_FUNC_ARG;
}
return InitSha_fips(sha);
}
int wc_InitSha_ex(wc_Sha* sha, void* heap, int devId)
{
(void)heap;
(void)devId;
if (sha == NULL) {
return BAD_FUNC_ARG;
}
return InitSha_fips(sha);
}
int wc_ShaUpdate(wc_Sha* sha, const byte* data, word32 len)
{
if (sha == NULL || (data == NULL && len > 0)) {
return BAD_FUNC_ARG;
}
return ShaUpdate_fips(sha, data, len);
}
int wc_ShaFinal(wc_Sha* sha, byte* out)
{
if (sha == NULL || out == NULL) {
return BAD_FUNC_ARG;
}
return ShaFinal_fips(sha,out);
}
void wc_ShaFree(wc_Sha* sha)
{
(void)sha;
/* Not supported in FIPS */
}
#else /* else build without fips */
#if defined(WOLFSSL_TI_HASH)
/* #include <wolfcrypt/src/port/ti/ti-hash.c> included by wc_port.c */
#else
#include <wolfssl/wolfcrypt/logging.h>
#ifdef NO_INLINE
#include <wolfssl/wolfcrypt/misc.h>
#else
#define WOLFSSL_MISC_INCLUDED
#include <wolfcrypt/src/misc.c>
#endif
static INLINE void AddLength(wc_Sha* sha, word32 len);
/* Hardware Acceleration */
#if defined(WOLFSSL_PIC32MZ_HASH)
#include <wolfssl/wolfcrypt/port/pic32/pic32mz-crypt.h>
#elif defined(STM32_HASH)
/*
* STM32F2/F4/F7 hardware SHA1 support through the HASH_* API's from the
* Standard Peripheral Library or CubeMX (See note in README).
*/
/* STM32 register size, bytes */
#ifdef WOLFSSL_STM32_CUBEMX
#define SHA_REG_SIZE WC_SHA_BLOCK_SIZE
#else
#define SHA_REG_SIZE 4
/* STM32 struct notes:
* sha->buffer = first 4 bytes used to hold partial block if needed
* sha->buffLen = num bytes currently stored in sha->buffer
* sha->loLen = num bytes that have been written to STM32 FIFO
*/
#endif
#define SHA_HW_TIMEOUT 0xFF
int wc_InitSha_ex(wc_Sha* sha, void* heap, int devId)
{
if (sha == NULL)
return BAD_FUNC_ARG;
sha->heap = heap;
XMEMSET(sha->buffer, 0, sizeof(sha->buffer));
sha->buffLen = 0;
sha->loLen = 0;
sha->hiLen = 0;
/* initialize HASH peripheral */
#ifdef WOLFSSL_STM32_CUBEMX
HAL_HASH_DeInit(&sha->hashHandle);
sha->hashHandle.Init.DataType = HASH_DATATYPE_8B;
if (HAL_HASH_Init(&sha->hashHandle) != HAL_OK) {
return ASYNC_INIT_E;
}
/* reset the hash control register */
/* required because Cube MX is not clearing algo bits */
HASH->CR &= ~HASH_CR_ALGO;
#else
HASH_DeInit();
/* reset the hash control register */
HASH->CR &= ~ (HASH_CR_ALGO | HASH_CR_DATATYPE | HASH_CR_MODE);
/* configure algo used, algo mode, datatype */
HASH->CR |= (HASH_AlgoSelection_SHA1 | HASH_AlgoMode_HASH
| HASH_DataType_8b);
/* reset HASH processor */
HASH->CR |= HASH_CR_INIT;
#endif
return 0;
}
int wc_ShaUpdate(wc_Sha* sha, const byte* data, word32 len)
{
int ret = 0;
byte* local;
if (sha == NULL || (data == NULL && len > 0)) {
return BAD_FUNC_ARG;
}
/* do block size increments */
local = (byte*)sha->buffer;
/* check that internal buffLen is valid */
if (sha->buffLen >= SHA_REG_SIZE)
return BUFFER_E;
while (len) {
word32 add = min(len, SHA_REG_SIZE - sha->buffLen);
XMEMCPY(&local[sha->buffLen], data, add);
sha->buffLen += add;
data += add;
len -= add;
if (sha->buffLen == SHA_REG_SIZE) {
#ifdef WOLFSSL_STM32_CUBEMX
if (HAL_HASH_SHA1_Accumulate(
&sha->hashHandle, local, SHA_REG_SIZE) != HAL_OK) {
ret = ASYNC_OP_E;
}
#else
HASH_DataIn(*(uint32_t*)local);
#endif
AddLength(sha, SHA_REG_SIZE);
sha->buffLen = 0;
}
}
return ret;
}
int wc_ShaFinal(wc_Sha* sha, byte* hash)
{
int ret = 0;
if (sha == NULL || hash == NULL)
return BAD_FUNC_ARG;
#ifdef WOLFSSL_STM32_CUBEMX
if (HAL_HASH_SHA1_Start(&sha->hashHandle,
(byte*)sha->buffer, sha->buffLen,
(byte*)sha->digest, SHA_HW_TIMEOUT) != HAL_OK) {
ret = ASYNC_OP_E;
}
HAL_HASH_DeInit(&sha->hashHandle);
#else
__IO uint16_t nbvalidbitsdata = 0;
/* finish reading any trailing bytes into FIFO */
if (sha->buffLen > 0) {
HASH_DataIn(*(uint32_t*)sha->buffer);
AddLength(sha, sha->buffLen);
}
/* calculate number of valid bits in last word of input data */
nbvalidbitsdata = 8 * (sha->loLen % SHA_REG_SIZE);
/* configure number of valid bits in last word of the data */
HASH_SetLastWordValidBitsNbr(nbvalidbitsdata);
/* start HASH processor */
HASH_StartDigest();
/* wait until Busy flag == RESET */
while (HASH_GetFlagStatus(HASH_FLAG_BUSY) != RESET) {}
/* read message digest */
sha->digest[0] = HASH->HR[0];
sha->digest[1] = HASH->HR[1];
sha->digest[2] = HASH->HR[2];
sha->digest[3] = HASH->HR[3];
sha->digest[4] = HASH->HR[4];
ByteReverseWords(sha->digest, sha->digest, WC_SHA_DIGEST_SIZE);
#endif /* WOLFSSL_STM32_CUBEMX */
XMEMCPY(hash, sha->digest, WC_SHA_DIGEST_SIZE);
(void)wc_InitSha_ex(sha, sha->heap, INVALID_DEVID); /* reset state */
return ret;
}
#elif defined(FREESCALE_LTC_SHA)
#include "fsl_ltc.h"
static int InitSha(wc_Sha* sha)
{
LTC_HASH_Init(LTC_BASE, &sha->ctx, kLTC_Sha1, NULL, 0);
return 0;
}
int wc_ShaUpdate(wc_Sha* sha, const byte* data, word32 len)
{
LTC_HASH_Update(&sha->ctx, data, len);
return 0;
}
int wc_ShaFinal(wc_Sha* sha, byte* hash)
{
uint32_t hashlen = WC_SHA_DIGEST_SIZE;
LTC_HASH_Finish(&sha->ctx, hash, &hashlen);
return wc_InitSha(sha); /* reset state */
}
#elif defined(FREESCALE_MMCAU_SHA)
#ifdef FREESCALE_MMCAU_CLASSIC_SHA
#include "cau_api.h"
#else
#include "fsl_mmcau.h"
#endif
#define USE_SHA_SOFTWARE_IMPL /* Only for API's, actual transform is here */
#define XTRANSFORM(S,B) Transform((S),(B))
static int InitSha(wc_Sha* sha)
{
int ret = 0;
ret = wolfSSL_CryptHwMutexLock();
if (ret != 0) {
return ret;
}
#ifdef FREESCALE_MMCAU_CLASSIC_SHA
cau_sha1_initialize_output(sha->digest);
#else
MMCAU_SHA1_InitializeOutput((uint32_t*)sha->digest);
#endif
wolfSSL_CryptHwMutexUnLock();
sha->buffLen = 0;
sha->loLen = 0;
sha->hiLen = 0;
return ret;
}
static int Transform(wc_Sha* sha, byte* data)
{
int ret = wolfSSL_CryptHwMutexLock();
if(ret == 0) {
#ifdef FREESCALE_MMCAU_CLASSIC_SHA
cau_sha1_hash_n(data, 1, sha->digest);
#else
MMCAU_SHA1_HashN(data, 1, (uint32_t*)sha->digest);
#endif
wolfSSL_CryptHwMutexUnLock();
}
return ret;
}
#else
/* Software implementation */
#define USE_SHA_SOFTWARE_IMPL
static int InitSha(wc_Sha* sha)
{
int ret = 0;
sha->digest[0] = 0x67452301L;
sha->digest[1] = 0xEFCDAB89L;
sha->digest[2] = 0x98BADCFEL;
sha->digest[3] = 0x10325476L;
sha->digest[4] = 0xC3D2E1F0L;
sha->buffLen = 0;
sha->loLen = 0;
sha->hiLen = 0;
return ret;
}
#endif /* End Hardware Acceleration */
#if defined(USE_SHA_SOFTWARE_IMPL) || defined(STM32_HASH)
static INLINE void AddLength(wc_Sha* sha, word32 len)
{
word32 tmp = sha->loLen;
if ((sha->loLen += len) < tmp)
sha->hiLen++; /* carry low to high */
}
#endif
/* Software implementation */
#ifdef USE_SHA_SOFTWARE_IMPL
/* Check if custom wc_Sha transform is used */
#ifndef XTRANSFORM
#define XTRANSFORM(S,B) Transform((S),(B))
#define blk0(i) (W[i] = sha->buffer[i])
#define blk1(i) (W[(i)&15] = \
rotlFixed(W[((i)+13)&15]^W[((i)+8)&15]^W[((i)+2)&15]^W[(i)&15],1))
#define f1(x,y,z) ((z)^((x) &((y)^(z))))
#define f2(x,y,z) ((x)^(y)^(z))
#define f3(x,y,z) (((x)&(y))|((z)&((x)|(y))))
#define f4(x,y,z) ((x)^(y)^(z))
/* (R0+R1), R2, R3, R4 are the different operations used in SHA1 */
#define R0(v,w,x,y,z,i) (z)+= f1((w),(x),(y)) + blk0((i)) + 0x5A827999+ \
rotlFixed((v),5); (w) = rotlFixed((w),30);
#define R1(v,w,x,y,z,i) (z)+= f1((w),(x),(y)) + blk1((i)) + 0x5A827999+ \
rotlFixed((v),5); (w) = rotlFixed((w),30);
#define R2(v,w,x,y,z,i) (z)+= f2((w),(x),(y)) + blk1((i)) + 0x6ED9EBA1+ \
rotlFixed((v),5); (w) = rotlFixed((w),30);
#define R3(v,w,x,y,z,i) (z)+= f3((w),(x),(y)) + blk1((i)) + 0x8F1BBCDC+ \
rotlFixed((v),5); (w) = rotlFixed((w),30);
#define R4(v,w,x,y,z,i) (z)+= f4((w),(x),(y)) + blk1((i)) + 0xCA62C1D6+ \
rotlFixed((v),5); (w) = rotlFixed((w),30);
static void Transform(wc_Sha* sha, byte* data)
{
word32 W[WC_SHA_BLOCK_SIZE / sizeof(word32)];
/* Copy context->state[] to working vars */
word32 a = sha->digest[0];
word32 b = sha->digest[1];
word32 c = sha->digest[2];
word32 d = sha->digest[3];
word32 e = sha->digest[4];
#ifdef USE_SLOW_SHA
word32 t, i;
for (i = 0; i < 16; i++) {
R0(a, b, c, d, e, i);
t = e; e = d; d = c; c = b; b = a; a = t;
}
for (; i < 20; i++) {
R1(a, b, c, d, e, i);
t = e; e = d; d = c; c = b; b = a; a = t;
}
for (; i < 40; i++) {
R2(a, b, c, d, e, i);
t = e; e = d; d = c; c = b; b = a; a = t;
}
for (; i < 60; i++) {
R3(a, b, c, d, e, i);
t = e; e = d; d = c; c = b; b = a; a = t;
}
for (; i < 80; i++) {
R4(a, b, c, d, e, i);
t = e; e = d; d = c; c = b; b = a; a = t;
}
#else
/* nearly 1 K bigger in code size but 25% faster */
/* 4 rounds of 20 operations each. Loop unrolled. */
R0(a,b,c,d,e, 0); R0(e,a,b,c,d, 1); R0(d,e,a,b,c, 2); R0(c,d,e,a,b, 3);
R0(b,c,d,e,a, 4); R0(a,b,c,d,e, 5); R0(e,a,b,c,d, 6); R0(d,e,a,b,c, 7);
R0(c,d,e,a,b, 8); R0(b,c,d,e,a, 9); R0(a,b,c,d,e,10); R0(e,a,b,c,d,11);
R0(d,e,a,b,c,12); R0(c,d,e,a,b,13); R0(b,c,d,e,a,14); R0(a,b,c,d,e,15);
R1(e,a,b,c,d,16); R1(d,e,a,b,c,17); R1(c,d,e,a,b,18); R1(b,c,d,e,a,19);
R2(a,b,c,d,e,20); R2(e,a,b,c,d,21); R2(d,e,a,b,c,22); R2(c,d,e,a,b,23);
R2(b,c,d,e,a,24); R2(a,b,c,d,e,25); R2(e,a,b,c,d,26); R2(d,e,a,b,c,27);
R2(c,d,e,a,b,28); R2(b,c,d,e,a,29); R2(a,b,c,d,e,30); R2(e,a,b,c,d,31);
R2(d,e,a,b,c,32); R2(c,d,e,a,b,33); R2(b,c,d,e,a,34); R2(a,b,c,d,e,35);
R2(e,a,b,c,d,36); R2(d,e,a,b,c,37); R2(c,d,e,a,b,38); R2(b,c,d,e,a,39);
R3(a,b,c,d,e,40); R3(e,a,b,c,d,41); R3(d,e,a,b,c,42); R3(c,d,e,a,b,43);
R3(b,c,d,e,a,44); R3(a,b,c,d,e,45); R3(e,a,b,c,d,46); R3(d,e,a,b,c,47);
R3(c,d,e,a,b,48); R3(b,c,d,e,a,49); R3(a,b,c,d,e,50); R3(e,a,b,c,d,51);
R3(d,e,a,b,c,52); R3(c,d,e,a,b,53); R3(b,c,d,e,a,54); R3(a,b,c,d,e,55);
R3(e,a,b,c,d,56); R3(d,e,a,b,c,57); R3(c,d,e,a,b,58); R3(b,c,d,e,a,59);
R4(a,b,c,d,e,60); R4(e,a,b,c,d,61); R4(d,e,a,b,c,62); R4(c,d,e,a,b,63);
R4(b,c,d,e,a,64); R4(a,b,c,d,e,65); R4(e,a,b,c,d,66); R4(d,e,a,b,c,67);
R4(c,d,e,a,b,68); R4(b,c,d,e,a,69); R4(a,b,c,d,e,70); R4(e,a,b,c,d,71);
R4(d,e,a,b,c,72); R4(c,d,e,a,b,73); R4(b,c,d,e,a,74); R4(a,b,c,d,e,75);
R4(e,a,b,c,d,76); R4(d,e,a,b,c,77); R4(c,d,e,a,b,78); R4(b,c,d,e,a,79);
#endif
/* Add the working vars back into digest state[] */
sha->digest[0] += a;
sha->digest[1] += b;
sha->digest[2] += c;
sha->digest[3] += d;
sha->digest[4] += e;
(void)data; /* Not used */
}
#endif /* !USE_CUSTOM_SHA_TRANSFORM */
int wc_InitSha_ex(wc_Sha* sha, void* heap, int devId)
{
int ret = 0;
if (sha == NULL)
return BAD_FUNC_ARG;
sha->heap = heap;
ret = InitSha(sha);
if (ret != 0)
return ret;
#if defined(WOLFSSL_ASYNC_CRYPT) && defined(WC_ASYNC_ENABLE_SHA)
ret = wolfAsync_DevCtxInit(&sha->asyncDev, WOLFSSL_ASYNC_MARKER_SHA,
sha->heap, devId);
#else
(void)devId;
#endif /* WOLFSSL_ASYNC_CRYPT */
return ret;
}
int wc_ShaUpdate(wc_Sha* sha, const byte* data, word32 len)
{
byte* local;
if (sha == NULL ||(data == NULL && len > 0)) {
return BAD_FUNC_ARG;
}
/* do block size increments */
local = (byte*)sha->buffer;
#if defined(WOLFSSL_ASYNC_CRYPT) && defined(WC_ASYNC_ENABLE_SHA)
if (sha->asyncDev.marker == WOLFSSL_ASYNC_MARKER_SHA) {
#if defined(HAVE_INTEL_QA)
return IntelQaSymSha(&sha->asyncDev, NULL, data, len);
#endif
}
#endif /* WOLFSSL_ASYNC_CRYPT */
/* check that internal buffLen is valid */
if (sha->buffLen >= WC_SHA_BLOCK_SIZE)
return BUFFER_E;
while (len) {
word32 add = min(len, WC_SHA_BLOCK_SIZE - sha->buffLen);
XMEMCPY(&local[sha->buffLen], data, add);
sha->buffLen += add;
data += add;
len -= add;
if (sha->buffLen == WC_SHA_BLOCK_SIZE) {
#if defined(LITTLE_ENDIAN_ORDER) && !defined(FREESCALE_MMCAU_SHA)
ByteReverseWords(sha->buffer, sha->buffer, WC_SHA_BLOCK_SIZE);
#endif
XTRANSFORM(sha, local);
AddLength(sha, WC_SHA_BLOCK_SIZE);
sha->buffLen = 0;
}
}
return 0;
}
int wc_ShaFinal(wc_Sha* sha, byte* hash)
{
byte* local;
if (sha == NULL || hash == NULL) {
return BAD_FUNC_ARG;
}
local = (byte*)sha->buffer;
#if defined(WOLFSSL_ASYNC_CRYPT) && defined(WC_ASYNC_ENABLE_SHA)
if (sha->asyncDev.marker == WOLFSSL_ASYNC_MARKER_SHA) {
#if defined(HAVE_INTEL_QA)
return IntelQaSymSha(&sha->asyncDev, hash, NULL, WC_SHA_DIGEST_SIZE);
#endif
}
#endif /* WOLFSSL_ASYNC_CRYPT */
AddLength(sha, sha->buffLen); /* before adding pads */
local[sha->buffLen++] = 0x80; /* add 1 */
/* pad with zeros */
if (sha->buffLen > WC_SHA_PAD_SIZE) {
XMEMSET(&local[sha->buffLen], 0, WC_SHA_BLOCK_SIZE - sha->buffLen);
sha->buffLen += WC_SHA_BLOCK_SIZE - sha->buffLen;
#if defined(LITTLE_ENDIAN_ORDER) && !defined(FREESCALE_MMCAU_SHA)
ByteReverseWords(sha->buffer, sha->buffer, WC_SHA_BLOCK_SIZE);
#endif
XTRANSFORM(sha, local);
sha->buffLen = 0;
}
XMEMSET(&local[sha->buffLen], 0, WC_SHA_PAD_SIZE - sha->buffLen);
#if defined(LITTLE_ENDIAN_ORDER) && !defined(FREESCALE_MMCAU_SHA)
ByteReverseWords(sha->buffer, sha->buffer, WC_SHA_BLOCK_SIZE);
#endif
/* store lengths */
/* put lengths in bits */
sha->hiLen = (sha->loLen >> (8*sizeof(sha->loLen) - 3)) + (sha->hiLen << 3);
sha->loLen = sha->loLen << 3;
/* ! length ordering dependent on digest endian type ! */
XMEMCPY(&local[WC_SHA_PAD_SIZE], &sha->hiLen, sizeof(word32));
XMEMCPY(&local[WC_SHA_PAD_SIZE + sizeof(word32)], &sha->loLen, sizeof(word32));
#if defined(FREESCALE_MMCAU_SHA)
/* Kinetis requires only these bytes reversed */
ByteReverseWords(&sha->buffer[WC_SHA_PAD_SIZE/sizeof(word32)],
&sha->buffer[WC_SHA_PAD_SIZE/sizeof(word32)],
2 * sizeof(word32));
#endif
XTRANSFORM(sha, local);
#ifdef LITTLE_ENDIAN_ORDER
ByteReverseWords(sha->digest, sha->digest, WC_SHA_DIGEST_SIZE);
#endif
XMEMCPY(hash, sha->digest, WC_SHA_DIGEST_SIZE);
return InitSha(sha); /* reset state */
}
#endif /* USE_SHA_SOFTWARE_IMPL */
int wc_InitSha(wc_Sha* sha)
{
return wc_InitSha_ex(sha, NULL, INVALID_DEVID);
}
void wc_ShaFree(wc_Sha* sha)
{
if (sha == NULL)
return;
#if defined(WOLFSSL_ASYNC_CRYPT) && defined(WC_ASYNC_ENABLE_SHA)
wolfAsync_DevCtxFree(&sha->asyncDev, WOLFSSL_ASYNC_MARKER_SHA);
#endif /* WOLFSSL_ASYNC_CRYPT */
}
#endif /* !WOLFSSL_TI_HASH */
#endif /* HAVE_FIPS */
#ifndef WOLFSSL_TI_HASH
int wc_ShaGetHash(wc_Sha* sha, byte* hash)
{
int ret;
wc_Sha tmpSha;
if (sha == NULL || hash == NULL)
return BAD_FUNC_ARG;
ret = wc_ShaCopy(sha, &tmpSha);
if (ret == 0) {
ret = wc_ShaFinal(&tmpSha, hash);
}
return ret;
}
int wc_ShaCopy(wc_Sha* src, wc_Sha* dst)
{
int ret = 0;
if (src == NULL || dst == NULL)
return BAD_FUNC_ARG;
XMEMCPY(dst, src, sizeof(wc_Sha));
#ifdef WOLFSSL_ASYNC_CRYPT
ret = wolfAsync_DevCopy(&src->asyncDev, &dst->asyncDev);
#endif
#ifdef WOLFSSL_PIC32MZ_HASH
ret = wc_Pic32HashCopy(&src->cache, &dst->cache);
#endif
return ret;
}
#endif /* !WOLFSSL_TI_HASH */
#endif /* !NO_SHA */