/* * Copyright (C) 2013 Andrea Mazzoleni * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. */ #ifndef __RAID_CPU_H #define __RAID_CPU_H #ifdef CONFIG_X86 static inline void raid_cpuid(uint32_t func_eax, uint32_t sub_ecx, uint32_t *reg) { asm volatile ( #if defined(__i386__) && defined(__PIC__) /* allow compilation in PIC mode saving ebx */ "xchgl %%ebx, %1\n" "cpuid\n" "xchgl %%ebx, %1\n" : "=a" (reg[0]), "=r" (reg[1]), "=c" (reg[2]), "=d" (reg[3]) : "0" (func_eax), "2" (sub_ecx) #else "cpuid\n" : "=a" (reg[0]), "=b" (reg[1]), "=c" (reg[2]), "=d" (reg[3]) : "0" (func_eax), "2" (sub_ecx) #endif ); } static inline void raid_xgetbv(uint32_t* reg) { /* get the value of the Extended Control Register ecx=0 */ asm volatile ( /* uses a direct encoding of the XGETBV instruction as only recent */ /* assemblers support it. */ /* the next line is equivalent at: "xgetbv\n" */ ".byte 0x0f, 0x01, 0xd0\n" : "=a" (reg[0]), "=d" (reg[3]) : "c" (0) ); } #define CPU_VENDOR_MAX 13 static inline void raid_cpu_info(char *vendor, unsigned *family, unsigned *model) { uint32_t reg[4]; unsigned f, ef, m, em; raid_cpuid(0, 0, reg); ((uint32_t*)vendor)[0] = reg[1]; ((uint32_t*)vendor)[1] = reg[3]; ((uint32_t*)vendor)[2] = reg[2]; vendor[12] = 0; raid_cpuid(1, 0, reg); f = (reg[0] >> 8) & 0xF; ef = (reg[0] >> 20) & 0xFF; m = (reg[0] >> 4) & 0xF; em = (reg[0] >> 16) & 0xF; if (strcmp(vendor, "AuthenticAMD") == 0) { if (f < 15) { *family = f; *model = m; } else { *family = f + ef; *model = m + (em << 4); } } else { *family = f + ef; *model = m + (em << 4); } } static inline int raid_cpu_match_sse(uint32_t cpuid_1_ecx, uint32_t cpuid_1_edx) { uint32_t reg[4]; raid_cpuid(1, 0, reg); if ((reg[2] & cpuid_1_ecx) != cpuid_1_ecx) return 0; if ((reg[3] & cpuid_1_edx) != cpuid_1_edx) return 0; return 1; } static inline int raid_cpu_match_avx(uint32_t cpuid_1_ecx, uint32_t cpuid_7_ebx, uint32_t xcr0) { uint32_t reg[4]; raid_cpuid(1, 0, reg); if ((reg[2] & cpuid_1_ecx) != cpuid_1_ecx) return 0; raid_xgetbv(reg); if ((reg[0] & xcr0) != xcr0) return 0; raid_cpuid(7, 0, reg); if ((reg[1] & cpuid_7_ebx) != cpuid_7_ebx) return 0; return 1; } static inline int raid_cpu_has_sse2(void) { /* * Intel® 64 and IA-32 Architectures Software Developer's Manual * 325462-048US September 2013 * * 11.6.2 Checking for SSE/SSE2 Support * Before an application attempts to use the SSE and/or SSE2 extensions, it should check * that they are present on the processor: * 1. Check that the processor supports the CPUID instruction. Bit 21 of the EFLAGS * register can be used to check processor's support the CPUID instruction. * 2. Check that the processor supports the SSE and/or SSE2 extensions (true if * CPUID.01H:EDX.SSE[bit 25] = 1 and/or CPUID.01H:EDX.SSE2[bit 26] = 1). */ return raid_cpu_match_sse( 0, 1 << 26); /* SSE2 */ } static inline int raid_cpu_has_ssse3(void) { /* * Intel® 64 and IA-32 Architectures Software Developer's Manual * 325462-048US September 2013 * * 12.7.2 Checking for SSSE3 Support * Before an application attempts to use the SSSE3 extensions, the application should * follow the steps illustrated in Section 11.6.2, "Checking for SSE/SSE2 Support." * Next, use the additional step provided below: * Check that the processor supports SSSE3 (if CPUID.01H:ECX.SSSE3[bit 9] = 1). */ return raid_cpu_match_sse( 1 << 9, /* SSSE3 */ 1 << 26); /* SSE2 */ } static inline int raid_cpu_has_crc32(void) { /* * Intel® 64 and IA-32 Architectures Software Developer's Manual * 325462-048US September 2013 * * 12.12.3 Checking for SSE4.2 Support * ... * Before an application attempts to use the CRC32 instruction, it must check * that the processor supports SSE4.2 (if CPUID.01H:ECX.SSE4_2[bit 20] = 1). */ return raid_cpu_match_sse( 1 << 20, /* CRC32 */ 0); } static inline int raid_cpu_has_avx2(void) { /* * Intel Architecture Instruction Set Extensions Programming Reference * 319433-022 October 2014 * * 14.3 Detection of AVX instructions * 1) Detect CPUID.1:ECX.OSXSAVE[bit 27] = 1 (XGETBV enabled for application use1) * 2) Issue XGETBV and verify that XCR0[2:1] = `11b' (XMM state and YMM state are enabled by OS). * 3) detect CPUID.1:ECX.AVX[bit 28] = 1 (AVX instructions supported). * (Step 3 can be done in any order relative to 1 and 2) * * 14.7.1 Detection of AVX2 * Hardware support for AVX2 is indicated by CPUID.(EAX=07H, ECX=0H):EBX.AVX2[bit 5]=1. * Application Software must identify that hardware supports AVX, after that it must * also detect support for AVX2 by checking CPUID.(EAX=07H, ECX=0H):EBX.AVX2[bit 5]. */ return raid_cpu_match_avx( (1 << 27) | (1 << 28), /* OSXSAVE and AVX */ 1 << 5, /* AVX2 */ 3 << 1); /* OS saves XMM and YMM registers */ } static inline int raid_cpu_has_avx512bw(void) { /* * Intel Architecture Instruction Set Extensions Programming Reference * 319433-022 October 2014 * * 2.2 Detection of 512-bit Instruction Groups of Intel AVX-512 Family * 1) Detect CPUID.1:ECX.OSXSAVE[bit 27] = 1 (XGETBV enabled for application use) * 2) Execute XGETBV and verify that XCR0[7:5] = `111b' (OPMASK state, upper 256-bit of * ZMM0-ZMM15 and ZMM16-ZMM31 state are enabled by OS) and that XCR0[2:1] = `11b' * (XMM state and YMM state are enabled by OS). * 3) Verify both CPUID.0x7.0:EBX.AVX512F[bit 16] = 1, CPUID.0x7.0:EBX.AVX512BW[bit 30] = 1. */ /* note that intentionally we don't check for AVX and AVX2 */ /* because the documentation doesn't require that */ return raid_cpu_match_avx( 1 << 27, /* XSAVE/XGETBV */ (1 << 16) | (1 << 30), /* AVX512F and AVX512BW */ (3 << 1) | (7 << 5)); /* OS saves XMM, YMM and ZMM registers */ } /** * Check if it's an Intel Atom CPU. */ static inline int raid_cpu_is_atom(unsigned family, unsigned model) { if (family != 6) return 0; /* * x86 Architecture CPUID * http://www.sandpile.org/x86/cpuid.htm * * Intel Atom * 1C (28) Atom (45 nm) with 512 KB on-die L2 * 26 (38) Atom (45 nm) with 512 KB on-die L2 * 36 (54) Atom (32 nm) with 512 KB on-die L2 * 27 (39) Atom (32 nm) with 512 KB on-die L2 * 35 (53) Atom (?? nm) with ??? KB on-die L2 * 4A (74) Atom 2C (22 nm) 1 MB L2 + PowerVR (TGR) * 5A (90) Atom 4C (22 nm) 2 MB L2 + PowerVR (ANN) * 37 (55) Atom 4C (22 nm) 2 MB L2 + Intel Gen7 (BYT) * 4C (76) Atom 4C (14 nm) 2 MB L2 + Intel Gen8 (BSW) * 5D (93) Atom 4C (28 nm TSMC) 1 MB L2 + Mali (SoFIA) * 4D (77) Atom 8C (22 nm) 4 MB L2 (AVN) * ?? Atom ?C (14 nm) ? MB L2 (DVN) */ return model == 28 || model == 38 || model == 54 || model == 39 || model == 53 || model == 74 || model == 90 || model == 55 || model == 76 || model == 93 || model == 77; } /** * Check if the processor has a slow MULT implementation. * If yes, it's better to use a hash not based on multiplication. */ static inline int raid_cpu_has_slowmult(void) { char vendor[CPU_VENDOR_MAX]; unsigned family; unsigned model; /* * In some cases Murmur3 based on MUL instruction, * is a LOT slower than Spooky2 based on SHIFTs. */ raid_cpu_info(vendor, &family, &model); if (strcmp(vendor, "GenuineIntel") == 0) { /* * Intel Atom (Model 28) * murmur3:378 MB/s, spooky2:3413 MB/s (x86) * * Intel Atom (Model 77) * murmur3:1311 MB/s, spooky2:4056 MB/s (x64) */ if (raid_cpu_is_atom(family, model)) return 1; } return 0; } /** * Check if the processor has a slow extended set of SSE registers. * If yes, it's better to limit the unroll to the firsrt 8 registers. */ static inline int raid_cpu_has_slowextendedreg(void) { char vendor[CPU_VENDOR_MAX]; unsigned family; unsigned model; /* * In some cases the PAR2 implementation using 16 SSE registers * is a LITTLE slower than the one using only the first 8 registers. * This doesn't happen for PARZ. */ raid_cpu_info(vendor, &family, &model); if (strcmp(vendor, "AuthenticAMD") == 0) { /* * AMD Bulldozer * par2_sse2:4922 MB/s, par2_sse2e:4465 MB/s */ if (family == 21) return 1; } if (strcmp(vendor, "GenuineIntel") == 0) { /* * Intel Atom (Model 77) * par2_sse2:5686 MB/s, par2_sse2e:5250 MB/s * parz_sse2:3100 MB/s, parz_sse2e:3400 MB/s * par3_sse3:1921 MB/s, par3_sse3e:1813 MB/s * par4_sse3:1175 MB/s, par4_sse3e:1113 MB/s * par5_sse3:876 MB/s, par5_sse3e:675 MB/s * par6_sse3:705 MB/s, par6_sse3e:529 MB/s * * Intel Atom (Model 77) "Avoton C2750" * par2_sse2:5661 MB/s, par2_sse2e:5382 MB/s * parz_sse2:3110 MB/s, parz_sse2e:3450 MB/s * par3_sse3:1769 MB/s, par3_sse3e:1856 MB/s * par4_sse3:1221 MB/s, par4_sse3e:1141 MB/s * par5_sse3:910 MB/s, par5_sse3e:675 MB/s * par6_sse3:720 MB/s, par6_sse3e:534 MB/s */ if (raid_cpu_is_atom(family, model)) return 1; } return 0; } #endif #endif