/* * Copyright (C) 2015 Andrea Mazzoleni * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. */ #include "internal.h" #include "combo.h" #include "gf.h" /** * Validate the provided failed blocks. * * This function checks if the specified failed blocks satisfy the redundancy * information using the data from the known valid parity blocks. * * It's similar at raid_check(), just with a different format for arguments. * * The number of failed blocks @nr must be strictly less than the number of * parities @nv, because you need one more parity to validate the recovering. * * No data or parity blocks are modified. * * @nr Number of failed data blocks. * @id[] Vector of @nr indexes of the failed data blocks. * The indexes start from 0. They must be in order. * @nv Number of valid parity blocks. * @ip[] Vector of @nv indexes of the valid parity blocks. * The indexes start from 0. They must be in order. * @nd Number of data blocks. * @size Size of the blocks pointed by @v. It must be a multiplier of 64. * @v Vector of pointers to the blocks of data and parity. * It has (@nd + @ip[@nv - 1] + 1) elements. The starting elements are the * blocks for data, following with the parity blocks. * Each block has @size bytes. * @return 0 if the check is satisfied. -1 otherwise. */ static int raid_validate(int nr, int *id, int nv, int *ip, int nd, size_t size, void **vv) { uint8_t **v = (uint8_t **)vv; const uint8_t *T[RAID_PARITY_MAX][RAID_PARITY_MAX]; uint8_t G[RAID_PARITY_MAX * RAID_PARITY_MAX]; uint8_t V[RAID_PARITY_MAX * RAID_PARITY_MAX]; size_t i; int j, k, l; BUG_ON(nr >= nv); /* setup the coefficients matrix */ for (j = 0; j < nr; ++j) for (k = 0; k < nr; ++k) G[j * nr + k] = A(ip[j], id[k]); /* invert it to solve the system of linear equations */ raid_invert(G, V, nr); /* get multiplication tables */ for (j = 0; j < nr; ++j) for (k = 0; k < nr; ++k) T[j][k] = table(V[j * nr + k]); /* check all positions */ for (i = 0; i < size; ++i) { uint8_t p[RAID_PARITY_MAX]; /* get parity */ for (j = 0; j < nv; ++j) p[j] = v[nd + ip[j]][i]; /* compute delta parity, skipping broken disks */ for (j = 0, k = 0; j < nd; ++j) { uint8_t b; /* skip broken disks */ if (k < nr && id[k] == j) { ++k; continue; } b = v[j][i]; for (l = 0; l < nv; ++l) p[l] ^= gfmul[b][gfgen[ip[l]][j]]; } /* reconstruct data */ for (j = 0; j < nr; ++j) { uint8_t b = 0; int idj = id[j]; /* recompute the data */ for (k = 0; k < nr; ++k) b ^= T[j][k][p[k]]; /* add the parity contribution of the reconstructed data */ for (l = nr; l < nv; ++l) p[l] ^= gfmul[b][gfgen[ip[l]][idj]]; } /* check that the final parity is 0 */ for (l = nr; l < nv; ++l) if (p[l] != 0) return -1; } return 0; } int raid_check(int nr, int *ir, int nd, int np, size_t size, void **v) { /* valid parity index */ int ip[RAID_PARITY_MAX]; int vp; int rd; int i, j; /* enforce limit on size */ BUG_ON(size % 64 != 0); /* enforce limit on number of failures */ BUG_ON(nr >= np); /* >= because we check with extra parity */ BUG_ON(np > RAID_PARITY_MAX); /* enforce order in index vector */ BUG_ON(nr >= 2 && ir[0] >= ir[1]); BUG_ON(nr >= 3 && ir[1] >= ir[2]); BUG_ON(nr >= 4 && ir[2] >= ir[3]); BUG_ON(nr >= 5 && ir[3] >= ir[4]); BUG_ON(nr >= 6 && ir[4] >= ir[5]); /* enforce limit on index vector */ BUG_ON(nr > 0 && ir[nr-1] >= nd + np); /* count failed data disk */ rd = 0; while (rd < nr && ir[rd] < nd) ++rd; /* put valid parities into ip[] */ vp = 0; for (i = rd, j = 0; j < np; ++j) { /* if parity is failed */ if (i < nr && ir[i] == nd + j) { /* skip broken parity */ ++i; } else { /* store valid parity */ ip[vp] = j; ++vp; } } return raid_validate(rd, ir, vp, ip, nd, size, v); } int raid_scan(int *ir, int nd, int np, size_t size, void **v) { int r; /* check the special case of no failure */ if (np != 0 && raid_check(0, 0, nd, np, size, v) == 0) return 0; /* for each number of possible failures */ for (r = 1; r < np; ++r) { /* try all combinations of r failures on n disks */ combination_first(r, nd + np, ir); do { /* verify if the combination is a valid one */ if (raid_check(r, ir, nd, np, size, v) == 0) return r; } while (combination_next(r, nd + np, ir)); } /* no solution found */ return -1; }