snapraid/raid/check.c

186 lines
4.8 KiB
C

/*
* Copyright (C) 2015 Andrea Mazzoleni
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*/
#include "internal.h"
#include "combo.h"
#include "gf.h"
/**
* Validate the provided failed blocks.
*
* This function checks if the specified failed blocks satisfy the redundancy
* information using the data from the known valid parity blocks.
*
* It's similar at raid_check(), just with a different format for arguments.
*
* The number of failed blocks @nr must be strictly less than the number of
* parities @nv, because you need one more parity to validate the recovering.
*
* No data or parity blocks are modified.
*
* @nr Number of failed data blocks.
* @id[] Vector of @nr indexes of the failed data blocks.
* The indexes start from 0. They must be in order.
* @nv Number of valid parity blocks.
* @ip[] Vector of @nv indexes of the valid parity blocks.
* The indexes start from 0. They must be in order.
* @nd Number of data blocks.
* @size Size of the blocks pointed by @v. It must be a multiplier of 64.
* @v Vector of pointers to the blocks of data and parity.
* It has (@nd + @ip[@nv - 1] + 1) elements. The starting elements are the
* blocks for data, following with the parity blocks.
* Each block has @size bytes.
* @return 0 if the check is satisfied. -1 otherwise.
*/
static int raid_validate(int nr, int *id, int nv, int *ip, int nd, size_t size, void **vv)
{
uint8_t **v = (uint8_t **)vv;
const uint8_t *T[RAID_PARITY_MAX][RAID_PARITY_MAX];
uint8_t G[RAID_PARITY_MAX * RAID_PARITY_MAX];
uint8_t V[RAID_PARITY_MAX * RAID_PARITY_MAX];
size_t i;
int j, k, l;
BUG_ON(nr >= nv);
/* setup the coefficients matrix */
for (j = 0; j < nr; ++j)
for (k = 0; k < nr; ++k)
G[j * nr + k] = A(ip[j], id[k]);
/* invert it to solve the system of linear equations */
raid_invert(G, V, nr);
/* get multiplication tables */
for (j = 0; j < nr; ++j)
for (k = 0; k < nr; ++k)
T[j][k] = table(V[j * nr + k]);
/* check all positions */
for (i = 0; i < size; ++i) {
uint8_t p[RAID_PARITY_MAX];
/* get parity */
for (j = 0; j < nv; ++j)
p[j] = v[nd + ip[j]][i];
/* compute delta parity, skipping broken disks */
for (j = 0, k = 0; j < nd; ++j) {
uint8_t b;
/* skip broken disks */
if (k < nr && id[k] == j) {
++k;
continue;
}
b = v[j][i];
for (l = 0; l < nv; ++l)
p[l] ^= gfmul[b][gfgen[ip[l]][j]];
}
/* reconstruct data */
for (j = 0; j < nr; ++j) {
uint8_t b = 0;
int idj = id[j];
/* recompute the data */
for (k = 0; k < nr; ++k)
b ^= T[j][k][p[k]];
/* add the parity contribution of the reconstructed data */
for (l = nr; l < nv; ++l)
p[l] ^= gfmul[b][gfgen[ip[l]][idj]];
}
/* check that the final parity is 0 */
for (l = nr; l < nv; ++l)
if (p[l] != 0)
return -1;
}
return 0;
}
int raid_check(int nr, int *ir, int nd, int np, size_t size, void **v)
{
/* valid parity index */
int ip[RAID_PARITY_MAX];
int vp;
int rd;
int i, j;
/* enforce limit on size */
BUG_ON(size % 64 != 0);
/* enforce limit on number of failures */
BUG_ON(nr >= np); /* >= because we check with extra parity */
BUG_ON(np > RAID_PARITY_MAX);
/* enforce order in index vector */
BUG_ON(nr >= 2 && ir[0] >= ir[1]);
BUG_ON(nr >= 3 && ir[1] >= ir[2]);
BUG_ON(nr >= 4 && ir[2] >= ir[3]);
BUG_ON(nr >= 5 && ir[3] >= ir[4]);
BUG_ON(nr >= 6 && ir[4] >= ir[5]);
/* enforce limit on index vector */
BUG_ON(nr > 0 && ir[nr-1] >= nd + np);
/* count failed data disk */
rd = 0;
while (rd < nr && ir[rd] < nd)
++rd;
/* put valid parities into ip[] */
vp = 0;
for (i = rd, j = 0; j < np; ++j) {
/* if parity is failed */
if (i < nr && ir[i] == nd + j) {
/* skip broken parity */
++i;
} else {
/* store valid parity */
ip[vp] = j;
++vp;
}
}
return raid_validate(rd, ir, vp, ip, nd, size, v);
}
int raid_scan(int *ir, int nd, int np, size_t size, void **v)
{
int r;
/* check the special case of no failure */
if (np != 0 && raid_check(0, 0, nd, np, size, v) == 0)
return 0;
/* for each number of possible failures */
for (r = 1; r < np; ++r) {
/* try all combinations of r failures on n disks */
combination_first(r, nd + np, ir);
do {
/* verify if the combination is a valid one */
if (raid_check(r, ir, nd, np, size, v) == 0)
return r;
} while (combination_next(r, nd + np, ir));
}
/* no solution found */
return -1;
}