libdigest-sha1-perl/SHA1.xs

623 lines
17 KiB
Plaintext

#ifdef __cplusplus
extern "C" {
#endif
#define PERL_NO_GET_CONTEXT /* we want efficiency */
#include "EXTERN.h"
#include "perl.h"
#include "XSUB.h"
#ifdef __cplusplus
}
#endif
#ifndef PERL_VERSION
# include <patchlevel.h>
# if !(defined(PERL_VERSION) || (SUBVERSION > 0 && defined(PATCHLEVEL)))
# include <could_not_find_Perl_patchlevel.h>
# endif
# define PERL_REVISION 5
# define PERL_VERSION PATCHLEVEL
# define PERL_SUBVERSION SUBVERSION
#endif
#if PERL_VERSION <= 4 && !defined(PL_dowarn)
#define PL_dowarn dowarn
#endif
#ifdef G_WARN_ON
#define DOWARN (PL_dowarn & G_WARN_ON)
#else
#define DOWARN PL_dowarn
#endif
#ifdef SvPVbyte
#if PERL_REVISION == 5 && PERL_VERSION < 7
/* SvPVbyte does not work in perl-5.6.1, borrowed version for 5.7.3 */
#undef SvPVbyte
#define SvPVbyte(sv, lp) \
((SvFLAGS(sv) & (SVf_POK|SVf_UTF8)) == (SVf_POK) \
? ((lp = SvCUR(sv)), SvPVX(sv)) : my_sv_2pvbyte(aTHX_ sv, &lp))
static char *
my_sv_2pvbyte(pTHX_ register SV *sv, STRLEN *lp)
{
sv_utf8_downgrade(sv,0);
return SvPV(sv,*lp);
}
#endif
#else
#define SvPVbyte SvPV
#endif
#ifndef dTHX
#define pTHX_
#define aTHX_
#endif
/* NIST Secure Hash Algorithm */
/* heavily modified by Uwe Hollerbach <uh@alumni.caltech edu> */
/* from Peter C. Gutmann's implementation as found in */
/* Applied Cryptography by Bruce Schneier */
/* Further modifications to include the "UNRAVEL" stuff, below */
/* This code is in the public domain */
/* Useful defines & typedefs */
#if defined(U64TYPE) && (defined(USE_64_BIT_INT) || ((BYTEORDER != 0x1234) && (BYTEORDER != 0x4321)))
typedef U64TYPE ULONGx;
# if BYTEORDER == 0x1234
# undef BYTEORDER
# define BYTEORDER 0x12345678
# elif BYTEORDER == 0x4321
# undef BYTEORDER
# define BYTEORDER 0x87654321
# endif
#else
typedef unsigned long ULONGx; /* 32-or-more-bit quantity */
#endif
#define SHA_BLOCKSIZE 64
#define SHA_DIGESTSIZE 20
typedef struct {
ULONGx digest[5]; /* message digest */
ULONGx count_lo, count_hi; /* 64-bit bit count */
U8 data[SHA_BLOCKSIZE]; /* SHA data buffer */
int local; /* unprocessed amount in data */
} SHA_INFO;
/* UNRAVEL should be fastest & biggest */
/* UNROLL_LOOPS should be just as big, but slightly slower */
/* both undefined should be smallest and slowest */
#define SHA_VERSION 1
#define UNRAVEL
/* #define UNROLL_LOOPS */
/* SHA f()-functions */
#define f1(x,y,z) ((x & y) | (~x & z))
#define f2(x,y,z) (x ^ y ^ z)
#define f3(x,y,z) ((x & y) | (x & z) | (y & z))
#define f4(x,y,z) (x ^ y ^ z)
/* SHA constants */
#define CONST1 0x5a827999L
#define CONST2 0x6ed9eba1L
#define CONST3 0x8f1bbcdcL
#define CONST4 0xca62c1d6L
/* truncate to 32 bits -- should be a null op on 32-bit machines */
#define T32(x) ((x) & 0xffffffffL)
/* 32-bit rotate */
#define R32(x,n) T32(((x << n) | (x >> (32 - n))))
/* the generic case, for when the overall rotation is not unraveled */
#define FG(n) \
T = T32(R32(A,5) + f##n(B,C,D) + E + *WP++ + CONST##n); \
E = D; D = C; C = R32(B,30); B = A; A = T
/* specific cases, for when the overall rotation is unraveled */
#define FA(n) \
T = T32(R32(A,5) + f##n(B,C,D) + E + *WP++ + CONST##n); B = R32(B,30)
#define FB(n) \
E = T32(R32(T,5) + f##n(A,B,C) + D + *WP++ + CONST##n); A = R32(A,30)
#define FC(n) \
D = T32(R32(E,5) + f##n(T,A,B) + C + *WP++ + CONST##n); T = R32(T,30)
#define FD(n) \
C = T32(R32(D,5) + f##n(E,T,A) + B + *WP++ + CONST##n); E = R32(E,30)
#define FE(n) \
B = T32(R32(C,5) + f##n(D,E,T) + A + *WP++ + CONST##n); D = R32(D,30)
#define FT(n) \
A = T32(R32(B,5) + f##n(C,D,E) + T + *WP++ + CONST##n); C = R32(C,30)
static void sha_transform(SHA_INFO *sha_info)
{
int i;
U8 *dp;
ULONGx T, A, B, C, D, E, W[80], *WP;
dp = sha_info->data;
/*
the following makes sure that at least one code block below is
traversed or an error is reported, without the necessity for nested
preprocessor if/else/endif blocks, which are a great pain in the
nether regions of the anatomy...
*/
#undef SWAP_DONE
#if BYTEORDER == 0x1234
#define SWAP_DONE
/* assert(sizeof(ULONGx) == 4); */
for (i = 0; i < 16; ++i) {
T = *((ULONGx *) dp);
dp += 4;
W[i] = ((T << 24) & 0xff000000) | ((T << 8) & 0x00ff0000) |
((T >> 8) & 0x0000ff00) | ((T >> 24) & 0x000000ff);
}
#endif
#if BYTEORDER == 0x4321
#define SWAP_DONE
/* assert(sizeof(ULONGx) == 4); */
for (i = 0; i < 16; ++i) {
T = *((ULONGx *) dp);
dp += 4;
W[i] = T32(T);
}
#endif
#if BYTEORDER == 0x12345678
#define SWAP_DONE
/* assert(sizeof(ULONGx) == 8); */
for (i = 0; i < 16; i += 2) {
T = *((ULONGx *) dp);
dp += 8;
W[i] = ((T << 24) & 0xff000000) | ((T << 8) & 0x00ff0000) |
((T >> 8) & 0x0000ff00) | ((T >> 24) & 0x000000ff);
T >>= 32;
W[i+1] = ((T << 24) & 0xff000000) | ((T << 8) & 0x00ff0000) |
((T >> 8) & 0x0000ff00) | ((T >> 24) & 0x000000ff);
}
#endif
#if BYTEORDER == 0x87654321
#define SWAP_DONE
/* assert(sizeof(ULONGx) == 8); */
for (i = 0; i < 16; i += 2) {
T = *((ULONGx *) dp);
dp += 8;
W[i] = T32(T >> 32);
W[i+1] = T32(T);
}
#endif
#ifndef SWAP_DONE
#error Unknown byte order -- you need to add code here
#endif /* SWAP_DONE */
for (i = 16; i < 80; ++i) {
W[i] = W[i-3] ^ W[i-8] ^ W[i-14] ^ W[i-16];
#if (SHA_VERSION == 1)
W[i] = R32(W[i], 1);
#endif /* SHA_VERSION */
}
A = sha_info->digest[0];
B = sha_info->digest[1];
C = sha_info->digest[2];
D = sha_info->digest[3];
E = sha_info->digest[4];
WP = W;
#ifdef UNRAVEL
FA(1); FB(1); FC(1); FD(1); FE(1); FT(1); FA(1); FB(1); FC(1); FD(1);
FE(1); FT(1); FA(1); FB(1); FC(1); FD(1); FE(1); FT(1); FA(1); FB(1);
FC(2); FD(2); FE(2); FT(2); FA(2); FB(2); FC(2); FD(2); FE(2); FT(2);
FA(2); FB(2); FC(2); FD(2); FE(2); FT(2); FA(2); FB(2); FC(2); FD(2);
FE(3); FT(3); FA(3); FB(3); FC(3); FD(3); FE(3); FT(3); FA(3); FB(3);
FC(3); FD(3); FE(3); FT(3); FA(3); FB(3); FC(3); FD(3); FE(3); FT(3);
FA(4); FB(4); FC(4); FD(4); FE(4); FT(4); FA(4); FB(4); FC(4); FD(4);
FE(4); FT(4); FA(4); FB(4); FC(4); FD(4); FE(4); FT(4); FA(4); FB(4);
sha_info->digest[0] = T32(sha_info->digest[0] + E);
sha_info->digest[1] = T32(sha_info->digest[1] + T);
sha_info->digest[2] = T32(sha_info->digest[2] + A);
sha_info->digest[3] = T32(sha_info->digest[3] + B);
sha_info->digest[4] = T32(sha_info->digest[4] + C);
#else /* !UNRAVEL */
#ifdef UNROLL_LOOPS
FG(1); FG(1); FG(1); FG(1); FG(1); FG(1); FG(1); FG(1); FG(1); FG(1);
FG(1); FG(1); FG(1); FG(1); FG(1); FG(1); FG(1); FG(1); FG(1); FG(1);
FG(2); FG(2); FG(2); FG(2); FG(2); FG(2); FG(2); FG(2); FG(2); FG(2);
FG(2); FG(2); FG(2); FG(2); FG(2); FG(2); FG(2); FG(2); FG(2); FG(2);
FG(3); FG(3); FG(3); FG(3); FG(3); FG(3); FG(3); FG(3); FG(3); FG(3);
FG(3); FG(3); FG(3); FG(3); FG(3); FG(3); FG(3); FG(3); FG(3); FG(3);
FG(4); FG(4); FG(4); FG(4); FG(4); FG(4); FG(4); FG(4); FG(4); FG(4);
FG(4); FG(4); FG(4); FG(4); FG(4); FG(4); FG(4); FG(4); FG(4); FG(4);
#else /* !UNROLL_LOOPS */
for (i = 0; i < 20; ++i) { FG(1); }
for (i = 20; i < 40; ++i) { FG(2); }
for (i = 40; i < 60; ++i) { FG(3); }
for (i = 60; i < 80; ++i) { FG(4); }
#endif /* !UNROLL_LOOPS */
sha_info->digest[0] = T32(sha_info->digest[0] + A);
sha_info->digest[1] = T32(sha_info->digest[1] + B);
sha_info->digest[2] = T32(sha_info->digest[2] + C);
sha_info->digest[3] = T32(sha_info->digest[3] + D);
sha_info->digest[4] = T32(sha_info->digest[4] + E);
#endif /* !UNRAVEL */
}
/* initialize the SHA digest */
static void sha_init(SHA_INFO *sha_info)
{
sha_info->digest[0] = 0x67452301L;
sha_info->digest[1] = 0xefcdab89L;
sha_info->digest[2] = 0x98badcfeL;
sha_info->digest[3] = 0x10325476L;
sha_info->digest[4] = 0xc3d2e1f0L;
sha_info->count_lo = 0L;
sha_info->count_hi = 0L;
sha_info->local = 0;
}
/* update the SHA digest */
static void sha_update(SHA_INFO *sha_info, U8 *buffer, int count)
{
int i;
ULONGx clo;
clo = T32(sha_info->count_lo + ((ULONGx) count << 3));
if (clo < sha_info->count_lo) {
++sha_info->count_hi;
}
sha_info->count_lo = clo;
sha_info->count_hi += (ULONGx) count >> 29;
if (sha_info->local) {
i = SHA_BLOCKSIZE - sha_info->local;
if (i > count) {
i = count;
}
memcpy(((U8 *) sha_info->data) + sha_info->local, buffer, i);
count -= i;
buffer += i;
sha_info->local += i;
if (sha_info->local == SHA_BLOCKSIZE) {
sha_transform(sha_info);
} else {
return;
}
}
while (count >= SHA_BLOCKSIZE) {
memcpy(sha_info->data, buffer, SHA_BLOCKSIZE);
buffer += SHA_BLOCKSIZE;
count -= SHA_BLOCKSIZE;
sha_transform(sha_info);
}
memcpy(sha_info->data, buffer, count);
sha_info->local = count;
}
static void sha_transform_and_copy(unsigned char digest[20], SHA_INFO *sha_info)
{
sha_transform(sha_info);
digest[ 0] = (unsigned char) ((sha_info->digest[0] >> 24) & 0xff);
digest[ 1] = (unsigned char) ((sha_info->digest[0] >> 16) & 0xff);
digest[ 2] = (unsigned char) ((sha_info->digest[0] >> 8) & 0xff);
digest[ 3] = (unsigned char) ((sha_info->digest[0] ) & 0xff);
digest[ 4] = (unsigned char) ((sha_info->digest[1] >> 24) & 0xff);
digest[ 5] = (unsigned char) ((sha_info->digest[1] >> 16) & 0xff);
digest[ 6] = (unsigned char) ((sha_info->digest[1] >> 8) & 0xff);
digest[ 7] = (unsigned char) ((sha_info->digest[1] ) & 0xff);
digest[ 8] = (unsigned char) ((sha_info->digest[2] >> 24) & 0xff);
digest[ 9] = (unsigned char) ((sha_info->digest[2] >> 16) & 0xff);
digest[10] = (unsigned char) ((sha_info->digest[2] >> 8) & 0xff);
digest[11] = (unsigned char) ((sha_info->digest[2] ) & 0xff);
digest[12] = (unsigned char) ((sha_info->digest[3] >> 24) & 0xff);
digest[13] = (unsigned char) ((sha_info->digest[3] >> 16) & 0xff);
digest[14] = (unsigned char) ((sha_info->digest[3] >> 8) & 0xff);
digest[15] = (unsigned char) ((sha_info->digest[3] ) & 0xff);
digest[16] = (unsigned char) ((sha_info->digest[4] >> 24) & 0xff);
digest[17] = (unsigned char) ((sha_info->digest[4] >> 16) & 0xff);
digest[18] = (unsigned char) ((sha_info->digest[4] >> 8) & 0xff);
digest[19] = (unsigned char) ((sha_info->digest[4] ) & 0xff);
}
/* finish computing the SHA digest */
static void sha_final(unsigned char digest[20], SHA_INFO *sha_info)
{
int count;
ULONGx lo_bit_count, hi_bit_count;
lo_bit_count = sha_info->count_lo;
hi_bit_count = sha_info->count_hi;
count = (int) ((lo_bit_count >> 3) & 0x3f);
((U8 *) sha_info->data)[count++] = 0x80;
if (count > SHA_BLOCKSIZE - 8) {
memset(((U8 *) sha_info->data) + count, 0, SHA_BLOCKSIZE - count);
sha_transform(sha_info);
memset((U8 *) sha_info->data, 0, SHA_BLOCKSIZE - 8);
} else {
memset(((U8 *) sha_info->data) + count, 0,
SHA_BLOCKSIZE - 8 - count);
}
sha_info->data[56] = (U8)((hi_bit_count >> 24) & 0xff);
sha_info->data[57] = (U8)((hi_bit_count >> 16) & 0xff);
sha_info->data[58] = (U8)((hi_bit_count >> 8) & 0xff);
sha_info->data[59] = (U8)((hi_bit_count >> 0) & 0xff);
sha_info->data[60] = (U8)((lo_bit_count >> 24) & 0xff);
sha_info->data[61] = (U8)((lo_bit_count >> 16) & 0xff);
sha_info->data[62] = (U8)((lo_bit_count >> 8) & 0xff);
sha_info->data[63] = (U8)((lo_bit_count >> 0) & 0xff);
sha_transform_and_copy(digest, sha_info);
}
/*----------------------------------------------------------------*/
#ifndef INT2PTR
#define INT2PTR(any,d) (any)(d)
#endif
static SHA_INFO* get_sha_info(pTHX_ SV* sv)
{
if (sv_derived_from(sv, "Digest::SHA1"))
return INT2PTR(SHA_INFO*, SvIV(SvRV(sv)));
croak("Not a reference to a Digest::SHA1 object");
return (SHA_INFO*)0; /* some compilers insist on a return value */
}
static char* hex_20(const unsigned char* from, char* to)
{
static const char *hexdigits = "0123456789abcdef";
const unsigned char *end = from + 20;
char *d = to;
while (from < end) {
*d++ = hexdigits[(*from >> 4)];
*d++ = hexdigits[(*from & 0x0F)];
from++;
}
*d = '\0';
return to;
}
static char* base64_20(const unsigned char* from, char* to)
{
static const char* base64 =
"ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/";
const unsigned char *end = from + 20;
unsigned char c1, c2, c3;
char *d = to;
while (1) {
c1 = *from++;
c2 = *from++;
*d++ = base64[c1>>2];
*d++ = base64[((c1 & 0x3) << 4) | ((c2 & 0xF0) >> 4)];
if (from == end) {
*d++ = base64[(c2 & 0xF) << 2];
break;
}
c3 = *from++;
*d++ = base64[((c2 & 0xF) << 2) | ((c3 & 0xC0) >>6)];
*d++ = base64[c3 & 0x3F];
}
*d = '\0';
return to;
}
/* Formats */
#define F_BIN 0
#define F_HEX 1
#define F_B64 2
static SV* make_mortal_sv(pTHX_ const unsigned char *src, int type)
{
STRLEN len;
char result[41];
char *ret;
switch (type) {
case F_BIN:
ret = (char*)src;
len = 20;
break;
case F_HEX:
ret = hex_20(src, result);
len = 40;
break;
case F_B64:
ret = base64_20(src, result);
len = 27;
break;
default:
croak("Bad convertion type (%d)", type);
break;
}
return sv_2mortal(newSVpv(ret,len));
}
/********************************************************************/
typedef PerlIO* InputStream;
MODULE = Digest::SHA1 PACKAGE = Digest::SHA1
PROTOTYPES: DISABLE
void
new(xclass)
SV* xclass
PREINIT:
SHA_INFO* context;
PPCODE:
if (!SvROK(xclass)) {
STRLEN my_na;
char *sclass = SvPV(xclass, my_na);
New(55, context, 1, SHA_INFO);
ST(0) = sv_newmortal();
sv_setref_pv(ST(0), sclass, (void*)context);
SvREADONLY_on(SvRV(ST(0)));
} else {
context = get_sha_info(aTHX_ xclass);
}
sha_init(context);
XSRETURN(1);
void
clone(self)
SV* self
PREINIT:
SHA_INFO* cont = get_sha_info(aTHX_ self);
const char *myname = sv_reftype(SvRV(self),TRUE);
SHA_INFO* context;
PPCODE:
New(55, context, 1, SHA_INFO);
ST(0) = sv_newmortal();
sv_setref_pv(ST(0), myname , (void*)context);
SvREADONLY_on(SvRV(ST(0)));
memcpy(context,cont,sizeof(SHA_INFO));
XSRETURN(1);
void
DESTROY(context)
SHA_INFO* context
CODE:
Safefree(context);
void
add(self, ...)
SV* self
PREINIT:
SHA_INFO* context = get_sha_info(aTHX_ self);
int i;
unsigned char *data;
STRLEN len;
PPCODE:
for (i = 1; i < items; i++) {
data = (unsigned char *)(SvPVbyte(ST(i), len));
sha_update(context, data, len);
}
XSRETURN(1); /* self */
void
addfile(self, fh)
SV* self
InputStream fh
PREINIT:
SHA_INFO* context = get_sha_info(aTHX_ self);
unsigned char buffer[4096];
int n;
CODE:
if (fh) {
/* Process blocks until EOF or error */
while ( (n = PerlIO_read(fh, buffer, sizeof(buffer))) > 0) {
sha_update(context, buffer, n);
}
if (PerlIO_error(fh)) {
croak("Reading from filehandle failed");
}
}
else {
croak("No filehandle passed");
}
XSRETURN(1); /* self */
void
digest(context)
SHA_INFO* context
ALIAS:
Digest::SHA1::digest = F_BIN
Digest::SHA1::hexdigest = F_HEX
Digest::SHA1::b64digest = F_B64
PREINIT:
unsigned char digeststr[20];
PPCODE:
sha_final(digeststr, context);
sha_init(context); /* In case it is reused */
ST(0) = make_mortal_sv(aTHX_ digeststr, ix);
XSRETURN(1);
void
sha1(...)
ALIAS:
Digest::SHA1::sha1 = F_BIN
Digest::SHA1::sha1_hex = F_HEX
Digest::SHA1::sha1_base64 = F_B64
PREINIT:
SHA_INFO ctx;
int i;
unsigned char *data;
STRLEN len;
unsigned char digeststr[20];
PPCODE:
sha_init(&ctx);
if (DOWARN) {
const char *msg = 0;
if (items == 1) {
if (SvROK(ST(0))) {
SV* sv = SvRV(ST(0));
if (SvOBJECT(sv) && strEQ(HvNAME(SvSTASH(sv)), "Digest::SHA1"))
msg = "probably called as method";
else
msg = "called with reference argument";
}
}
else if (items > 1) {
data = (unsigned char *)SvPVbyte(ST(0), len);
if (len == 12 && memEQ("Digest::SHA1", data, 12)) {
msg = "probably called as class method";
}
}
if (msg) {
const char *f = (ix == F_BIN) ? "sha1" :
(ix == F_HEX) ? "sha1_hex" : "sha1_base64";
warn("&Digest::SHA1::%s function %s", f, msg);
}
}
for (i = 0; i < items; i++) {
data = (unsigned char *)(SvPVbyte(ST(i), len));
sha_update(&ctx, data, len);
}
sha_final(digeststr, &ctx);
ST(0) = make_mortal_sv(aTHX_ digeststr, ix);
XSRETURN(1);
void
sha1_transform(data)
SV* data
PREINIT:
SHA_INFO ctx;
unsigned char *data_pv;
unsigned char test[64];
STRLEN len;
unsigned char digeststr[20];
PPCODE:
sha_init(&ctx);
memset (test, 0, 64);
data_pv = (unsigned char *)(SvPVbyte(data, len));
memcpy (test, data_pv, len);
memcpy ((&ctx)->data, test, 64);
sha_transform_and_copy(digeststr, &ctx);
ST(0) = sv_2mortal(newSVpv((char*)digeststr, 20));
XSRETURN(1);