openssl1.0/apps/s_cb.c

1665 lines
49 KiB
C

/* apps/s_cb.c - callback functions used by s_client, s_server, and s_time */
/* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
* All rights reserved.
*
* This package is an SSL implementation written
* by Eric Young (eay@cryptsoft.com).
* The implementation was written so as to conform with Netscapes SSL.
*
* This library is free for commercial and non-commercial use as long as
* the following conditions are aheared to. The following conditions
* apply to all code found in this distribution, be it the RC4, RSA,
* lhash, DES, etc., code; not just the SSL code. The SSL documentation
* included with this distribution is covered by the same copyright terms
* except that the holder is Tim Hudson (tjh@cryptsoft.com).
*
* Copyright remains Eric Young's, and as such any Copyright notices in
* the code are not to be removed.
* If this package is used in a product, Eric Young should be given attribution
* as the author of the parts of the library used.
* This can be in the form of a textual message at program startup or
* in documentation (online or textual) provided with the package.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* "This product includes cryptographic software written by
* Eric Young (eay@cryptsoft.com)"
* The word 'cryptographic' can be left out if the rouines from the library
* being used are not cryptographic related :-).
* 4. If you include any Windows specific code (or a derivative thereof) from
* the apps directory (application code) you must include an acknowledgement:
* "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
*
* THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* The licence and distribution terms for any publically available version or
* derivative of this code cannot be changed. i.e. this code cannot simply be
* copied and put under another distribution licence
* [including the GNU Public Licence.]
*/
/* ====================================================================
* Copyright (c) 1998-2006 The OpenSSL Project. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
*
* 3. All advertising materials mentioning features or use of this
* software must display the following acknowledgment:
* "This product includes software developed by the OpenSSL Project
* for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
*
* 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
* endorse or promote products derived from this software without
* prior written permission. For written permission, please contact
* openssl-core@openssl.org.
*
* 5. Products derived from this software may not be called "OpenSSL"
* nor may "OpenSSL" appear in their names without prior written
* permission of the OpenSSL Project.
*
* 6. Redistributions of any form whatsoever must retain the following
* acknowledgment:
* "This product includes software developed by the OpenSSL Project
* for use in the OpenSSL Toolkit (http://www.openssl.org/)"
*
* THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
* EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
* ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
* OF THE POSSIBILITY OF SUCH DAMAGE.
* ====================================================================
*
* This product includes cryptographic software written by Eric Young
* (eay@cryptsoft.com). This product includes software written by Tim
* Hudson (tjh@cryptsoft.com).
*
*/
#include <stdio.h>
#include <stdlib.h>
#include <string.h> /* for memcpy() and strcmp() */
#define USE_SOCKETS
#define NON_MAIN
#include "apps.h"
#undef NON_MAIN
#undef USE_SOCKETS
#include <openssl/err.h>
#include <openssl/rand.h>
#include <openssl/x509.h>
#include <openssl/ssl.h>
#include "s_apps.h"
#define COOKIE_SECRET_LENGTH 16
int verify_depth = 0;
int verify_quiet = 0;
int verify_error = X509_V_OK;
int verify_return_error = 0;
unsigned char cookie_secret[COOKIE_SECRET_LENGTH];
int cookie_initialized = 0;
int MS_CALLBACK verify_callback(int ok, X509_STORE_CTX *ctx)
{
X509 *err_cert;
int err, depth;
err_cert = X509_STORE_CTX_get_current_cert(ctx);
err = X509_STORE_CTX_get_error(ctx);
depth = X509_STORE_CTX_get_error_depth(ctx);
if (!verify_quiet || !ok) {
BIO_printf(bio_err, "depth=%d ", depth);
if (err_cert) {
X509_NAME_print_ex(bio_err,
X509_get_subject_name(err_cert),
0, XN_FLAG_ONELINE);
BIO_puts(bio_err, "\n");
} else
BIO_puts(bio_err, "<no cert>\n");
}
if (!ok) {
BIO_printf(bio_err, "verify error:num=%d:%s\n", err,
X509_verify_cert_error_string(err));
if (verify_depth >= depth) {
if (!verify_return_error)
ok = 1;
verify_error = X509_V_OK;
} else {
ok = 0;
verify_error = X509_V_ERR_CERT_CHAIN_TOO_LONG;
}
}
switch (err) {
case X509_V_ERR_UNABLE_TO_GET_ISSUER_CERT:
BIO_puts(bio_err, "issuer= ");
X509_NAME_print_ex(bio_err, X509_get_issuer_name(err_cert),
0, XN_FLAG_ONELINE);
BIO_puts(bio_err, "\n");
break;
case X509_V_ERR_CERT_NOT_YET_VALID:
case X509_V_ERR_ERROR_IN_CERT_NOT_BEFORE_FIELD:
BIO_printf(bio_err, "notBefore=");
ASN1_TIME_print(bio_err, X509_get_notBefore(err_cert));
BIO_printf(bio_err, "\n");
break;
case X509_V_ERR_CERT_HAS_EXPIRED:
case X509_V_ERR_ERROR_IN_CERT_NOT_AFTER_FIELD:
BIO_printf(bio_err, "notAfter=");
ASN1_TIME_print(bio_err, X509_get_notAfter(err_cert));
BIO_printf(bio_err, "\n");
break;
case X509_V_ERR_NO_EXPLICIT_POLICY:
if (!verify_quiet)
policies_print(bio_err, ctx);
break;
}
if (err == X509_V_OK && ok == 2 && !verify_quiet)
policies_print(bio_err, ctx);
if (ok && !verify_quiet)
BIO_printf(bio_err, "verify return:%d\n", ok);
return (ok);
}
int set_cert_stuff(SSL_CTX *ctx, char *cert_file, char *key_file)
{
if (cert_file != NULL) {
/*-
SSL *ssl;
X509 *x509;
*/
if (SSL_CTX_use_certificate_file(ctx, cert_file,
SSL_FILETYPE_PEM) <= 0) {
BIO_printf(bio_err, "unable to get certificate from '%s'\n",
cert_file);
ERR_print_errors(bio_err);
return (0);
}
if (key_file == NULL)
key_file = cert_file;
if (SSL_CTX_use_PrivateKey_file(ctx, key_file, SSL_FILETYPE_PEM) <= 0) {
BIO_printf(bio_err, "unable to get private key from '%s'\n",
key_file);
ERR_print_errors(bio_err);
return (0);
}
/*-
In theory this is no longer needed
ssl=SSL_new(ctx);
x509=SSL_get_certificate(ssl);
if (x509 != NULL) {
EVP_PKEY *pktmp;
pktmp = X509_get_pubkey(x509);
EVP_PKEY_copy_parameters(pktmp,
SSL_get_privatekey(ssl));
EVP_PKEY_free(pktmp);
}
SSL_free(ssl);
*/
/*
* If we are using DSA, we can copy the parameters from the private
* key
*/
/*
* Now we know that a key and cert have been set against the SSL
* context
*/
if (!SSL_CTX_check_private_key(ctx)) {
BIO_printf(bio_err,
"Private key does not match the certificate public key\n");
return (0);
}
}
return (1);
}
int set_cert_key_stuff(SSL_CTX *ctx, X509 *cert, EVP_PKEY *key,
STACK_OF(X509) *chain, int build_chain)
{
int chflags = chain ? SSL_BUILD_CHAIN_FLAG_CHECK : 0;
if (cert == NULL)
return 1;
if (SSL_CTX_use_certificate(ctx, cert) <= 0) {
BIO_printf(bio_err, "error setting certificate\n");
ERR_print_errors(bio_err);
return 0;
}
if (SSL_CTX_use_PrivateKey(ctx, key) <= 0) {
BIO_printf(bio_err, "error setting private key\n");
ERR_print_errors(bio_err);
return 0;
}
/*
* Now we know that a key and cert have been set against the SSL context
*/
if (!SSL_CTX_check_private_key(ctx)) {
BIO_printf(bio_err,
"Private key does not match the certificate public key\n");
return 0;
}
if (chain && !SSL_CTX_set1_chain(ctx, chain)) {
BIO_printf(bio_err, "error setting certificate chain\n");
ERR_print_errors(bio_err);
return 0;
}
if (build_chain && !SSL_CTX_build_cert_chain(ctx, chflags)) {
BIO_printf(bio_err, "error building certificate chain\n");
ERR_print_errors(bio_err);
return 0;
}
return 1;
}
static void ssl_print_client_cert_types(BIO *bio, SSL *s)
{
const unsigned char *p;
int i;
int cert_type_num = SSL_get0_certificate_types(s, &p);
if (!cert_type_num)
return;
BIO_puts(bio, "Client Certificate Types: ");
for (i = 0; i < cert_type_num; i++) {
unsigned char cert_type = p[i];
char *cname;
switch (cert_type) {
case TLS_CT_RSA_SIGN:
cname = "RSA sign";
break;
case TLS_CT_DSS_SIGN:
cname = "DSA sign";
break;
case TLS_CT_RSA_FIXED_DH:
cname = "RSA fixed DH";
break;
case TLS_CT_DSS_FIXED_DH:
cname = "DSS fixed DH";
break;
case TLS_CT_ECDSA_SIGN:
cname = "ECDSA sign";
break;
case TLS_CT_RSA_FIXED_ECDH:
cname = "RSA fixed ECDH";
break;
case TLS_CT_ECDSA_FIXED_ECDH:
cname = "ECDSA fixed ECDH";
break;
case TLS_CT_GOST94_SIGN:
cname = "GOST94 Sign";
break;
case TLS_CT_GOST01_SIGN:
cname = "GOST01 Sign";
break;
default:
cname = NULL;
}
if (i)
BIO_puts(bio, ", ");
if (cname)
BIO_puts(bio, cname);
else
BIO_printf(bio, "UNKNOWN (%d),", cert_type);
}
BIO_puts(bio, "\n");
}
static int do_print_sigalgs(BIO *out, SSL *s, int shared)
{
int i, nsig, client;
client = SSL_is_server(s) ? 0 : 1;
if (shared)
nsig = SSL_get_shared_sigalgs(s, -1, NULL, NULL, NULL, NULL, NULL);
else
nsig = SSL_get_sigalgs(s, -1, NULL, NULL, NULL, NULL, NULL);
if (nsig == 0)
return 1;
if (shared)
BIO_puts(out, "Shared ");
if (client)
BIO_puts(out, "Requested ");
BIO_puts(out, "Signature Algorithms: ");
for (i = 0; i < nsig; i++) {
int hash_nid, sign_nid;
unsigned char rhash, rsign;
const char *sstr = NULL;
if (shared)
SSL_get_shared_sigalgs(s, i, &sign_nid, &hash_nid, NULL,
&rsign, &rhash);
else
SSL_get_sigalgs(s, i, &sign_nid, &hash_nid, NULL, &rsign, &rhash);
if (i)
BIO_puts(out, ":");
if (sign_nid == EVP_PKEY_RSA)
sstr = "RSA";
else if (sign_nid == EVP_PKEY_DSA)
sstr = "DSA";
else if (sign_nid == EVP_PKEY_EC)
sstr = "ECDSA";
if (sstr)
BIO_printf(out, "%s+", sstr);
else
BIO_printf(out, "0x%02X+", (int)rsign);
if (hash_nid != NID_undef)
BIO_printf(out, "%s", OBJ_nid2sn(hash_nid));
else
BIO_printf(out, "0x%02X", (int)rhash);
}
BIO_puts(out, "\n");
return 1;
}
int ssl_print_sigalgs(BIO *out, SSL *s)
{
int mdnid;
if (!SSL_is_server(s))
ssl_print_client_cert_types(out, s);
do_print_sigalgs(out, s, 0);
do_print_sigalgs(out, s, 1);
if (SSL_get_peer_signature_nid(s, &mdnid))
BIO_printf(out, "Peer signing digest: %s\n", OBJ_nid2sn(mdnid));
return 1;
}
#ifndef OPENSSL_NO_EC
int ssl_print_point_formats(BIO *out, SSL *s)
{
int i, nformats;
const char *pformats;
nformats = SSL_get0_ec_point_formats(s, &pformats);
if (nformats <= 0)
return 1;
BIO_puts(out, "Supported Elliptic Curve Point Formats: ");
for (i = 0; i < nformats; i++, pformats++) {
if (i)
BIO_puts(out, ":");
switch (*pformats) {
case TLSEXT_ECPOINTFORMAT_uncompressed:
BIO_puts(out, "uncompressed");
break;
case TLSEXT_ECPOINTFORMAT_ansiX962_compressed_prime:
BIO_puts(out, "ansiX962_compressed_prime");
break;
case TLSEXT_ECPOINTFORMAT_ansiX962_compressed_char2:
BIO_puts(out, "ansiX962_compressed_char2");
break;
default:
BIO_printf(out, "unknown(%d)", (int)*pformats);
break;
}
}
if (nformats <= 0)
BIO_puts(out, "NONE");
BIO_puts(out, "\n");
return 1;
}
int ssl_print_curves(BIO *out, SSL *s, int noshared)
{
int i, ncurves, *curves, nid;
const char *cname;
ncurves = SSL_get1_curves(s, NULL);
if (ncurves <= 0)
return 1;
curves = OPENSSL_malloc(ncurves * sizeof(int));
if (!curves) {
BIO_puts(out, "Malloc error getting supported curves\n");
return 0;
}
SSL_get1_curves(s, curves);
BIO_puts(out, "Supported Elliptic Curves: ");
for (i = 0; i < ncurves; i++) {
if (i)
BIO_puts(out, ":");
nid = curves[i];
/* If unrecognised print out hex version */
if (nid & TLSEXT_nid_unknown)
BIO_printf(out, "0x%04X", nid & 0xFFFF);
else {
/* Use NIST name for curve if it exists */
cname = EC_curve_nid2nist(nid);
if (!cname)
cname = OBJ_nid2sn(nid);
BIO_printf(out, "%s", cname);
}
}
if (ncurves == 0)
BIO_puts(out, "NONE");
OPENSSL_free(curves);
if (noshared) {
BIO_puts(out, "\n");
return 1;
}
BIO_puts(out, "\nShared Elliptic curves: ");
ncurves = SSL_get_shared_curve(s, -1);
for (i = 0; i < ncurves; i++) {
if (i)
BIO_puts(out, ":");
nid = SSL_get_shared_curve(s, i);
cname = EC_curve_nid2nist(nid);
if (!cname)
cname = OBJ_nid2sn(nid);
BIO_printf(out, "%s", cname);
}
if (ncurves == 0)
BIO_puts(out, "NONE");
BIO_puts(out, "\n");
return 1;
}
#endif
int ssl_print_tmp_key(BIO *out, SSL *s)
{
EVP_PKEY *key;
if (!SSL_get_server_tmp_key(s, &key))
return 1;
BIO_puts(out, "Server Temp Key: ");
switch (EVP_PKEY_id(key)) {
case EVP_PKEY_RSA:
BIO_printf(out, "RSA, %d bits\n", EVP_PKEY_bits(key));
break;
case EVP_PKEY_DH:
BIO_printf(out, "DH, %d bits\n", EVP_PKEY_bits(key));
break;
#ifndef OPENSSL_NO_ECDH
case EVP_PKEY_EC:
{
EC_KEY *ec = EVP_PKEY_get1_EC_KEY(key);
int nid;
const char *cname;
nid = EC_GROUP_get_curve_name(EC_KEY_get0_group(ec));
EC_KEY_free(ec);
cname = EC_curve_nid2nist(nid);
if (!cname)
cname = OBJ_nid2sn(nid);
BIO_printf(out, "ECDH, %s, %d bits\n", cname, EVP_PKEY_bits(key));
}
#endif
}
EVP_PKEY_free(key);
return 1;
}
long MS_CALLBACK bio_dump_callback(BIO *bio, int cmd, const char *argp,
int argi, long argl, long ret)
{
BIO *out;
out = (BIO *)BIO_get_callback_arg(bio);
if (out == NULL)
return (ret);
if (cmd == (BIO_CB_READ | BIO_CB_RETURN)) {
BIO_printf(out, "read from %p [%p] (%lu bytes => %ld (0x%lX))\n",
(void *)bio, (void *)argp, (unsigned long)argi, ret, ret);
BIO_dump(out, argp, (int)ret);
return (ret);
} else if (cmd == (BIO_CB_WRITE | BIO_CB_RETURN)) {
BIO_printf(out, "write to %p [%p] (%lu bytes => %ld (0x%lX))\n",
(void *)bio, (void *)argp, (unsigned long)argi, ret, ret);
BIO_dump(out, argp, (int)ret);
}
return (ret);
}
void MS_CALLBACK apps_ssl_info_callback(const SSL *s, int where, int ret)
{
const char *str;
int w;
w = where & ~SSL_ST_MASK;
if (w & SSL_ST_CONNECT)
str = "SSL_connect";
else if (w & SSL_ST_ACCEPT)
str = "SSL_accept";
else
str = "undefined";
if (where & SSL_CB_LOOP) {
BIO_printf(bio_err, "%s:%s\n", str, SSL_state_string_long(s));
} else if (where & SSL_CB_ALERT) {
str = (where & SSL_CB_READ) ? "read" : "write";
BIO_printf(bio_err, "SSL3 alert %s:%s:%s\n",
str,
SSL_alert_type_string_long(ret),
SSL_alert_desc_string_long(ret));
} else if (where & SSL_CB_EXIT) {
if (ret == 0)
BIO_printf(bio_err, "%s:failed in %s\n",
str, SSL_state_string_long(s));
else if (ret < 0) {
BIO_printf(bio_err, "%s:error in %s\n",
str, SSL_state_string_long(s));
}
}
}
void MS_CALLBACK msg_cb(int write_p, int version, int content_type,
const void *buf, size_t len, SSL *ssl, void *arg)
{
BIO *bio = arg;
const char *str_write_p, *str_version, *str_content_type =
"", *str_details1 = "", *str_details2 = "";
str_write_p = write_p ? ">>>" : "<<<";
switch (version) {
case SSL2_VERSION:
str_version = "SSL 2.0";
break;
case SSL3_VERSION:
str_version = "SSL 3.0 ";
break;
case TLS1_VERSION:
str_version = "TLS 1.0 ";
break;
case TLS1_1_VERSION:
str_version = "TLS 1.1 ";
break;
case TLS1_2_VERSION:
str_version = "TLS 1.2 ";
break;
case DTLS1_VERSION:
str_version = "DTLS 1.0 ";
break;
case DTLS1_BAD_VER:
str_version = "DTLS 1.0 (bad) ";
break;
default:
str_version = "???";
}
if (version == SSL2_VERSION) {
str_details1 = "???";
if (len > 0) {
switch (((const unsigned char *)buf)[0]) {
case 0:
str_details1 = ", ERROR:";
str_details2 = " ???";
if (len >= 3) {
unsigned err =
(((const unsigned char *)buf)[1] << 8) +
((const unsigned char *)buf)[2];
switch (err) {
case 0x0001:
str_details2 = " NO-CIPHER-ERROR";
break;
case 0x0002:
str_details2 = " NO-CERTIFICATE-ERROR";
break;
case 0x0004:
str_details2 = " BAD-CERTIFICATE-ERROR";
break;
case 0x0006:
str_details2 = " UNSUPPORTED-CERTIFICATE-TYPE-ERROR";
break;
}
}
break;
case 1:
str_details1 = ", CLIENT-HELLO";
break;
case 2:
str_details1 = ", CLIENT-MASTER-KEY";
break;
case 3:
str_details1 = ", CLIENT-FINISHED";
break;
case 4:
str_details1 = ", SERVER-HELLO";
break;
case 5:
str_details1 = ", SERVER-VERIFY";
break;
case 6:
str_details1 = ", SERVER-FINISHED";
break;
case 7:
str_details1 = ", REQUEST-CERTIFICATE";
break;
case 8:
str_details1 = ", CLIENT-CERTIFICATE";
break;
}
}
}
if (version == SSL3_VERSION ||
version == TLS1_VERSION ||
version == TLS1_1_VERSION ||
version == TLS1_2_VERSION ||
version == DTLS1_VERSION || version == DTLS1_BAD_VER) {
switch (content_type) {
case 20:
str_content_type = "ChangeCipherSpec";
break;
case 21:
str_content_type = "Alert";
break;
case 22:
str_content_type = "Handshake";
break;
}
if (content_type == 21) { /* Alert */
str_details1 = ", ???";
if (len == 2) {
switch (((const unsigned char *)buf)[0]) {
case 1:
str_details1 = ", warning";
break;
case 2:
str_details1 = ", fatal";
break;
}
str_details2 = " ???";
switch (((const unsigned char *)buf)[1]) {
case 0:
str_details2 = " close_notify";
break;
case 10:
str_details2 = " unexpected_message";
break;
case 20:
str_details2 = " bad_record_mac";
break;
case 21:
str_details2 = " decryption_failed";
break;
case 22:
str_details2 = " record_overflow";
break;
case 30:
str_details2 = " decompression_failure";
break;
case 40:
str_details2 = " handshake_failure";
break;
case 42:
str_details2 = " bad_certificate";
break;
case 43:
str_details2 = " unsupported_certificate";
break;
case 44:
str_details2 = " certificate_revoked";
break;
case 45:
str_details2 = " certificate_expired";
break;
case 46:
str_details2 = " certificate_unknown";
break;
case 47:
str_details2 = " illegal_parameter";
break;
case 48:
str_details2 = " unknown_ca";
break;
case 49:
str_details2 = " access_denied";
break;
case 50:
str_details2 = " decode_error";
break;
case 51:
str_details2 = " decrypt_error";
break;
case 60:
str_details2 = " export_restriction";
break;
case 70:
str_details2 = " protocol_version";
break;
case 71:
str_details2 = " insufficient_security";
break;
case 80:
str_details2 = " internal_error";
break;
case 90:
str_details2 = " user_canceled";
break;
case 100:
str_details2 = " no_renegotiation";
break;
case 110:
str_details2 = " unsupported_extension";
break;
case 111:
str_details2 = " certificate_unobtainable";
break;
case 112:
str_details2 = " unrecognized_name";
break;
case 113:
str_details2 = " bad_certificate_status_response";
break;
case 114:
str_details2 = " bad_certificate_hash_value";
break;
case 115:
str_details2 = " unknown_psk_identity";
break;
}
}
}
if (content_type == 22) { /* Handshake */
str_details1 = "???";
if (len > 0) {
switch (((const unsigned char *)buf)[0]) {
case 0:
str_details1 = ", HelloRequest";
break;
case 1:
str_details1 = ", ClientHello";
break;
case 2:
str_details1 = ", ServerHello";
break;
case 3:
str_details1 = ", HelloVerifyRequest";
break;
case 11:
str_details1 = ", Certificate";
break;
case 12:
str_details1 = ", ServerKeyExchange";
break;
case 13:
str_details1 = ", CertificateRequest";
break;
case 14:
str_details1 = ", ServerHelloDone";
break;
case 15:
str_details1 = ", CertificateVerify";
break;
case 16:
str_details1 = ", ClientKeyExchange";
break;
case 20:
str_details1 = ", Finished";
break;
}
}
}
#ifndef OPENSSL_NO_HEARTBEATS
if (content_type == 24) { /* Heartbeat */
str_details1 = ", Heartbeat";
if (len > 0) {
switch (((const unsigned char *)buf)[0]) {
case 1:
str_details1 = ", HeartbeatRequest";
break;
case 2:
str_details1 = ", HeartbeatResponse";
break;
}
}
}
#endif
}
BIO_printf(bio, "%s %s%s [length %04lx]%s%s\n", str_write_p, str_version,
str_content_type, (unsigned long)len, str_details1,
str_details2);
if (len > 0) {
size_t num, i;
BIO_printf(bio, " ");
num = len;
#if 0
if (num > 16)
num = 16;
#endif
for (i = 0; i < num; i++) {
if (i % 16 == 0 && i > 0)
BIO_printf(bio, "\n ");
BIO_printf(bio, " %02x", ((const unsigned char *)buf)[i]);
}
if (i < len)
BIO_printf(bio, " ...");
BIO_printf(bio, "\n");
}
(void)BIO_flush(bio);
}
void MS_CALLBACK tlsext_cb(SSL *s, int client_server, int type,
unsigned char *data, int len, void *arg)
{
BIO *bio = arg;
char *extname;
switch (type) {
case TLSEXT_TYPE_server_name:
extname = "server name";
break;
case TLSEXT_TYPE_max_fragment_length:
extname = "max fragment length";
break;
case TLSEXT_TYPE_client_certificate_url:
extname = "client certificate URL";
break;
case TLSEXT_TYPE_trusted_ca_keys:
extname = "trusted CA keys";
break;
case TLSEXT_TYPE_truncated_hmac:
extname = "truncated HMAC";
break;
case TLSEXT_TYPE_status_request:
extname = "status request";
break;
case TLSEXT_TYPE_user_mapping:
extname = "user mapping";
break;
case TLSEXT_TYPE_client_authz:
extname = "client authz";
break;
case TLSEXT_TYPE_server_authz:
extname = "server authz";
break;
case TLSEXT_TYPE_cert_type:
extname = "cert type";
break;
case TLSEXT_TYPE_elliptic_curves:
extname = "elliptic curves";
break;
case TLSEXT_TYPE_ec_point_formats:
extname = "EC point formats";
break;
case TLSEXT_TYPE_srp:
extname = "SRP";
break;
case TLSEXT_TYPE_signature_algorithms:
extname = "signature algorithms";
break;
case TLSEXT_TYPE_use_srtp:
extname = "use SRTP";
break;
case TLSEXT_TYPE_heartbeat:
extname = "heartbeat";
break;
case TLSEXT_TYPE_session_ticket:
extname = "session ticket";
break;
case TLSEXT_TYPE_renegotiate:
extname = "renegotiation info";
break;
#ifdef TLSEXT_TYPE_opaque_prf_input
case TLSEXT_TYPE_opaque_prf_input:
extname = "opaque PRF input";
break;
#endif
#ifdef TLSEXT_TYPE_next_proto_neg
case TLSEXT_TYPE_next_proto_neg:
extname = "next protocol";
break;
#endif
#ifdef TLSEXT_TYPE_application_layer_protocol_negotiation
case TLSEXT_TYPE_application_layer_protocol_negotiation:
extname = "application layer protocol negotiation";
break;
#endif
case TLSEXT_TYPE_padding:
extname = "TLS padding";
break;
default:
extname = "unknown";
break;
}
BIO_printf(bio, "TLS %s extension \"%s\" (id=%d), len=%d\n",
client_server ? "server" : "client", extname, type, len);
BIO_dump(bio, (char *)data, len);
(void)BIO_flush(bio);
}
int MS_CALLBACK generate_cookie_callback(SSL *ssl, unsigned char *cookie,
unsigned int *cookie_len)
{
unsigned char *buffer, result[EVP_MAX_MD_SIZE];
unsigned int length, resultlength;
union {
struct sockaddr sa;
struct sockaddr_in s4;
#if OPENSSL_USE_IPV6
struct sockaddr_in6 s6;
#endif
} peer;
/* Initialize a random secret */
if (!cookie_initialized) {
if (RAND_bytes(cookie_secret, COOKIE_SECRET_LENGTH) <= 0) {
BIO_printf(bio_err, "error setting random cookie secret\n");
return 0;
}
cookie_initialized = 1;
}
/* Read peer information */
(void)BIO_dgram_get_peer(SSL_get_rbio(ssl), &peer);
/* Create buffer with peer's address and port */
length = 0;
switch (peer.sa.sa_family) {
case AF_INET:
length += sizeof(struct in_addr);
length += sizeof(peer.s4.sin_port);
break;
#if OPENSSL_USE_IPV6
case AF_INET6:
length += sizeof(struct in6_addr);
length += sizeof(peer.s6.sin6_port);
break;
#endif
default:
OPENSSL_assert(0);
break;
}
buffer = OPENSSL_malloc(length);
if (buffer == NULL) {
BIO_printf(bio_err, "out of memory\n");
return 0;
}
switch (peer.sa.sa_family) {
case AF_INET:
memcpy(buffer, &peer.s4.sin_port, sizeof(peer.s4.sin_port));
memcpy(buffer + sizeof(peer.s4.sin_port),
&peer.s4.sin_addr, sizeof(struct in_addr));
break;
#if OPENSSL_USE_IPV6
case AF_INET6:
memcpy(buffer, &peer.s6.sin6_port, sizeof(peer.s6.sin6_port));
memcpy(buffer + sizeof(peer.s6.sin6_port),
&peer.s6.sin6_addr, sizeof(struct in6_addr));
break;
#endif
default:
OPENSSL_assert(0);
break;
}
/* Calculate HMAC of buffer using the secret */
HMAC(EVP_sha1(), cookie_secret, COOKIE_SECRET_LENGTH,
buffer, length, result, &resultlength);
OPENSSL_free(buffer);
memcpy(cookie, result, resultlength);
*cookie_len = resultlength;
return 1;
}
int MS_CALLBACK verify_cookie_callback(SSL *ssl, unsigned char *cookie,
unsigned int cookie_len)
{
unsigned char *buffer, result[EVP_MAX_MD_SIZE];
unsigned int length, resultlength;
union {
struct sockaddr sa;
struct sockaddr_in s4;
#if OPENSSL_USE_IPV6
struct sockaddr_in6 s6;
#endif
} peer;
/* If secret isn't initialized yet, the cookie can't be valid */
if (!cookie_initialized)
return 0;
/* Read peer information */
(void)BIO_dgram_get_peer(SSL_get_rbio(ssl), &peer);
/* Create buffer with peer's address and port */
length = 0;
switch (peer.sa.sa_family) {
case AF_INET:
length += sizeof(struct in_addr);
length += sizeof(peer.s4.sin_port);
break;
#if OPENSSL_USE_IPV6
case AF_INET6:
length += sizeof(struct in6_addr);
length += sizeof(peer.s6.sin6_port);
break;
#endif
default:
OPENSSL_assert(0);
break;
}
buffer = OPENSSL_malloc(length);
if (buffer == NULL) {
BIO_printf(bio_err, "out of memory\n");
return 0;
}
switch (peer.sa.sa_family) {
case AF_INET:
memcpy(buffer, &peer.s4.sin_port, sizeof(peer.s4.sin_port));
memcpy(buffer + sizeof(peer.s4.sin_port),
&peer.s4.sin_addr, sizeof(struct in_addr));
break;
#if OPENSSL_USE_IPV6
case AF_INET6:
memcpy(buffer, &peer.s6.sin6_port, sizeof(peer.s6.sin6_port));
memcpy(buffer + sizeof(peer.s6.sin6_port),
&peer.s6.sin6_addr, sizeof(struct in6_addr));
break;
#endif
default:
OPENSSL_assert(0);
break;
}
/* Calculate HMAC of buffer using the secret */
HMAC(EVP_sha1(), cookie_secret, COOKIE_SECRET_LENGTH,
buffer, length, result, &resultlength);
OPENSSL_free(buffer);
if (cookie_len == resultlength
&& memcmp(result, cookie, resultlength) == 0)
return 1;
return 0;
}
/*
* Example of extended certificate handling. Where the standard support of
* one certificate per algorithm is not sufficient an application can decide
* which certificate(s) to use at runtime based on whatever criteria it deems
* appropriate.
*/
/* Linked list of certificates, keys and chains */
struct ssl_excert_st {
int certform;
const char *certfile;
int keyform;
const char *keyfile;
const char *chainfile;
X509 *cert;
EVP_PKEY *key;
STACK_OF(X509) *chain;
int build_chain;
struct ssl_excert_st *next, *prev;
};
struct chain_flags {
int flag;
const char *name;
};
struct chain_flags chain_flags_list[] = {
{CERT_PKEY_VALID, "Overall Validity"},
{CERT_PKEY_SIGN, "Sign with EE key"},
{CERT_PKEY_EE_SIGNATURE, "EE signature"},
{CERT_PKEY_CA_SIGNATURE, "CA signature"},
{CERT_PKEY_EE_PARAM, "EE key parameters"},
{CERT_PKEY_CA_PARAM, "CA key parameters"},
{CERT_PKEY_EXPLICIT_SIGN, "Explicity sign with EE key"},
{CERT_PKEY_ISSUER_NAME, "Issuer Name"},
{CERT_PKEY_CERT_TYPE, "Certificate Type"},
{0, NULL}
};
static void print_chain_flags(BIO *out, SSL *s, int flags)
{
struct chain_flags *ctmp = chain_flags_list;
while (ctmp->name) {
BIO_printf(out, "\t%s: %s\n", ctmp->name,
flags & ctmp->flag ? "OK" : "NOT OK");
ctmp++;
}
BIO_printf(out, "\tSuite B: ");
if (SSL_set_cert_flags(s, 0) & SSL_CERT_FLAG_SUITEB_128_LOS)
BIO_puts(out, flags & CERT_PKEY_SUITEB ? "OK\n" : "NOT OK\n");
else
BIO_printf(out, "not tested\n");
}
/*
* Very basic selection callback: just use any certificate chain reported as
* valid. More sophisticated could prioritise according to local policy.
*/
static int set_cert_cb(SSL *ssl, void *arg)
{
int i, rv;
SSL_EXCERT *exc = arg;
#ifdef CERT_CB_TEST_RETRY
static int retry_cnt;
if (retry_cnt < 5) {
retry_cnt++;
fprintf(stderr, "Certificate callback retry test: count %d\n",
retry_cnt);
return -1;
}
#endif
SSL_certs_clear(ssl);
if (!exc)
return 1;
/*
* Go to end of list and traverse backwards since we prepend newer
* entries this retains the original order.
*/
while (exc->next)
exc = exc->next;
i = 0;
while (exc) {
i++;
rv = SSL_check_chain(ssl, exc->cert, exc->key, exc->chain);
BIO_printf(bio_err, "Checking cert chain %d:\nSubject: ", i);
X509_NAME_print_ex(bio_err, X509_get_subject_name(exc->cert), 0,
XN_FLAG_ONELINE);
BIO_puts(bio_err, "\n");
print_chain_flags(bio_err, ssl, rv);
if (rv & CERT_PKEY_VALID) {
SSL_use_certificate(ssl, exc->cert);
SSL_use_PrivateKey(ssl, exc->key);
/*
* NB: we wouldn't normally do this as it is not efficient
* building chains on each connection better to cache the chain
* in advance.
*/
if (exc->build_chain) {
if (!SSL_build_cert_chain(ssl, 0))
return 0;
} else if (exc->chain)
SSL_set1_chain(ssl, exc->chain);
}
exc = exc->prev;
}
return 1;
}
void ssl_ctx_set_excert(SSL_CTX *ctx, SSL_EXCERT *exc)
{
SSL_CTX_set_cert_cb(ctx, set_cert_cb, exc);
}
static int ssl_excert_prepend(SSL_EXCERT **pexc)
{
SSL_EXCERT *exc;
exc = OPENSSL_malloc(sizeof(SSL_EXCERT));
if (!exc)
return 0;
exc->certfile = NULL;
exc->keyfile = NULL;
exc->chainfile = NULL;
exc->cert = NULL;
exc->key = NULL;
exc->chain = NULL;
exc->prev = NULL;
exc->build_chain = 0;
exc->next = *pexc;
*pexc = exc;
if (exc->next) {
exc->certform = exc->next->certform;
exc->keyform = exc->next->keyform;
exc->next->prev = exc;
} else {
exc->certform = FORMAT_PEM;
exc->keyform = FORMAT_PEM;
}
return 1;
}
void ssl_excert_free(SSL_EXCERT *exc)
{
SSL_EXCERT *curr;
while (exc) {
if (exc->cert)
X509_free(exc->cert);
if (exc->key)
EVP_PKEY_free(exc->key);
if (exc->chain)
sk_X509_pop_free(exc->chain, X509_free);
curr = exc;
exc = exc->next;
OPENSSL_free(curr);
}
}
int load_excert(SSL_EXCERT **pexc, BIO *err)
{
SSL_EXCERT *exc = *pexc;
if (!exc)
return 1;
/* If nothing in list, free and set to NULL */
if (!exc->certfile && !exc->next) {
ssl_excert_free(exc);
*pexc = NULL;
return 1;
}
for (; exc; exc = exc->next) {
if (!exc->certfile) {
BIO_printf(err, "Missing filename\n");
return 0;
}
exc->cert = load_cert(err, exc->certfile, exc->certform,
NULL, NULL, "Server Certificate");
if (!exc->cert)
return 0;
if (exc->keyfile) {
exc->key = load_key(err, exc->keyfile, exc->keyform,
0, NULL, NULL, "Server Key");
} else {
exc->key = load_key(err, exc->certfile, exc->certform,
0, NULL, NULL, "Server Key");
}
if (!exc->key)
return 0;
if (exc->chainfile) {
exc->chain = load_certs(err,
exc->chainfile, FORMAT_PEM,
NULL, NULL, "Server Chain");
if (!exc->chain)
return 0;
}
}
return 1;
}
int args_excert(char ***pargs, int *pargc,
int *badarg, BIO *err, SSL_EXCERT **pexc)
{
char *arg = **pargs, *argn = (*pargs)[1];
SSL_EXCERT *exc = *pexc;
int narg = 2;
if (!exc) {
if (ssl_excert_prepend(&exc))
*pexc = exc;
else {
BIO_printf(err, "Error initialising xcert\n");
*badarg = 1;
goto err;
}
}
if (strcmp(arg, "-xcert") == 0) {
if (!argn) {
*badarg = 1;
return 1;
}
if (exc->certfile && !ssl_excert_prepend(&exc)) {
BIO_printf(err, "Error adding xcert\n");
*badarg = 1;
goto err;
}
exc->certfile = argn;
} else if (strcmp(arg, "-xkey") == 0) {
if (!argn) {
*badarg = 1;
return 1;
}
if (exc->keyfile) {
BIO_printf(err, "Key already specified\n");
*badarg = 1;
return 1;
}
exc->keyfile = argn;
} else if (strcmp(arg, "-xchain") == 0) {
if (!argn) {
*badarg = 1;
return 1;
}
if (exc->chainfile) {
BIO_printf(err, "Chain already specified\n");
*badarg = 1;
return 1;
}
exc->chainfile = argn;
} else if (strcmp(arg, "-xchain_build") == 0) {
narg = 1;
exc->build_chain = 1;
} else if (strcmp(arg, "-xcertform") == 0) {
if (!argn) {
*badarg = 1;
goto err;
}
exc->certform = str2fmt(argn);
} else if (strcmp(arg, "-xkeyform") == 0) {
if (!argn) {
*badarg = 1;
goto err;
}
exc->keyform = str2fmt(argn);
} else
return 0;
(*pargs) += narg;
if (pargc)
*pargc -= narg;
*pexc = exc;
return 1;
err:
ERR_print_errors(err);
ssl_excert_free(exc);
*pexc = NULL;
return 1;
}
static void print_raw_cipherlist(BIO *bio, SSL *s)
{
const unsigned char *rlist;
static const unsigned char scsv_id[] = { 0, 0, 0xFF };
size_t i, rlistlen, num;
if (!SSL_is_server(s))
return;
num = SSL_get0_raw_cipherlist(s, NULL);
rlistlen = SSL_get0_raw_cipherlist(s, &rlist);
BIO_puts(bio, "Client cipher list: ");
for (i = 0; i < rlistlen; i += num, rlist += num) {
const SSL_CIPHER *c = SSL_CIPHER_find(s, rlist);
if (i)
BIO_puts(bio, ":");
if (c)
BIO_puts(bio, SSL_CIPHER_get_name(c));
else if (!memcmp(rlist, scsv_id - num + 3, num))
BIO_puts(bio, "SCSV");
else {
size_t j;
BIO_puts(bio, "0x");
for (j = 0; j < num; j++)
BIO_printf(bio, "%02X", rlist[j]);
}
}
BIO_puts(bio, "\n");
}
void print_ssl_summary(BIO *bio, SSL *s)
{
const SSL_CIPHER *c;
X509 *peer;
/*
* const char *pnam = SSL_is_server(s) ? "client" : "server";
*/
BIO_printf(bio, "Protocol version: %s\n", SSL_get_version(s));
print_raw_cipherlist(bio, s);
c = SSL_get_current_cipher(s);
BIO_printf(bio, "Ciphersuite: %s\n", SSL_CIPHER_get_name(c));
do_print_sigalgs(bio, s, 0);
peer = SSL_get_peer_certificate(s);
if (peer) {
int nid;
BIO_puts(bio, "Peer certificate: ");
X509_NAME_print_ex(bio, X509_get_subject_name(peer),
0, XN_FLAG_ONELINE);
BIO_puts(bio, "\n");
if (SSL_get_peer_signature_nid(s, &nid))
BIO_printf(bio, "Hash used: %s\n", OBJ_nid2sn(nid));
} else
BIO_puts(bio, "No peer certificate\n");
if (peer)
X509_free(peer);
#ifndef OPENSSL_NO_EC
ssl_print_point_formats(bio, s);
if (SSL_is_server(s))
ssl_print_curves(bio, s, 1);
else
ssl_print_tmp_key(bio, s);
#else
if (!SSL_is_server(s))
ssl_print_tmp_key(bio, s);
#endif
}
int args_ssl(char ***pargs, int *pargc, SSL_CONF_CTX *cctx,
int *badarg, BIO *err, STACK_OF(OPENSSL_STRING) **pstr,
int *no_prot_opt)
{
char *arg = **pargs, *argn = (*pargs)[1];
int rv;
if (strcmp(arg, "-no_ssl2") == 0 || strcmp(arg, "-no_ssl3") == 0
|| strcmp(arg, "-no_tls1") == 0 || strcmp(arg, "-no_tls1_1") == 0
|| strcmp(arg, "-no_tls1_2") == 0) {
*no_prot_opt = 1;
}
/* Attempt to run SSL configuration command */
rv = SSL_CONF_cmd_argv(cctx, pargc, pargs);
/* If parameter not recognised just return */
if (rv == 0)
return 0;
/* see if missing argument error */
if (rv == -3) {
BIO_printf(err, "%s needs an argument\n", arg);
*badarg = 1;
goto end;
}
/* Check for some other error */
if (rv < 0) {
BIO_printf(err, "Error with command: \"%s %s\"\n",
arg, argn ? argn : "");
*badarg = 1;
goto end;
}
/* Store command and argument */
/* If only one argument processed store value as NULL */
if (rv == 1)
argn = NULL;
if (!*pstr)
*pstr = sk_OPENSSL_STRING_new_null();
if (!*pstr || !sk_OPENSSL_STRING_push(*pstr, arg) ||
!sk_OPENSSL_STRING_push(*pstr, argn)) {
BIO_puts(err, "Memory allocation failure\n");
goto end;
}
end:
if (*badarg)
ERR_print_errors(err);
return 1;
}
int args_ssl_call(SSL_CTX *ctx, BIO *err, SSL_CONF_CTX *cctx,
STACK_OF(OPENSSL_STRING) *str, int no_ecdhe, int no_jpake)
{
int i;
SSL_CONF_CTX_set_ssl_ctx(cctx, ctx);
for (i = 0; i < sk_OPENSSL_STRING_num(str); i += 2) {
const char *param = sk_OPENSSL_STRING_value(str, i);
const char *value = sk_OPENSSL_STRING_value(str, i + 1);
/*
* If no_ecdhe or named curve already specified don't need a default.
*/
if (!no_ecdhe && !strcmp(param, "-named_curve"))
no_ecdhe = 1;
#ifndef OPENSSL_NO_JPAKE
if (!no_jpake && !strcmp(param, "-cipher")) {
BIO_puts(err, "JPAKE sets cipher to PSK\n");
return 0;
}
#endif
if (SSL_CONF_cmd(cctx, param, value) <= 0) {
BIO_printf(err, "Error with command: \"%s %s\"\n",
param, value ? value : "");
ERR_print_errors(err);
return 0;
}
}
/*
* This is a special case to keep existing s_server functionality: if we
* don't have any curve specified *and* we haven't disabled ECDHE then
* use P-256.
*/
if (!no_ecdhe) {
if (SSL_CONF_cmd(cctx, "-named_curve", "P-256") <= 0) {
BIO_puts(err, "Error setting EC curve\n");
ERR_print_errors(err);
return 0;
}
}
#ifndef OPENSSL_NO_JPAKE
if (!no_jpake) {
if (SSL_CONF_cmd(cctx, "-cipher", "PSK") <= 0) {
BIO_puts(err, "Error setting cipher to PSK\n");
ERR_print_errors(err);
return 0;
}
}
#endif
if (!SSL_CONF_CTX_finish(cctx)) {
BIO_puts(err, "Error finishing context\n");
ERR_print_errors(err);
return 0;
}
return 1;
}
static int add_crls_store(X509_STORE *st, STACK_OF(X509_CRL) *crls)
{
X509_CRL *crl;
int i;
for (i = 0; i < sk_X509_CRL_num(crls); i++) {
crl = sk_X509_CRL_value(crls, i);
X509_STORE_add_crl(st, crl);
}
return 1;
}
int ssl_ctx_add_crls(SSL_CTX *ctx, STACK_OF(X509_CRL) *crls, int crl_download)
{
X509_STORE *st;
st = SSL_CTX_get_cert_store(ctx);
add_crls_store(st, crls);
if (crl_download)
store_setup_crl_download(st);
return 1;
}
int ssl_load_stores(SSL_CTX *ctx,
const char *vfyCApath, const char *vfyCAfile,
const char *chCApath, const char *chCAfile,
STACK_OF(X509_CRL) *crls, int crl_download)
{
X509_STORE *vfy = NULL, *ch = NULL;
int rv = 0;
if (vfyCApath || vfyCAfile) {
vfy = X509_STORE_new();
if (!X509_STORE_load_locations(vfy, vfyCAfile, vfyCApath))
goto err;
add_crls_store(vfy, crls);
SSL_CTX_set1_verify_cert_store(ctx, vfy);
if (crl_download)
store_setup_crl_download(vfy);
}
if (chCApath || chCAfile) {
ch = X509_STORE_new();
if (!X509_STORE_load_locations(ch, chCAfile, chCApath))
goto err;
SSL_CTX_set1_chain_cert_store(ctx, ch);
}
rv = 1;
err:
if (vfy)
X509_STORE_free(vfy);
if (ch)
X509_STORE_free(ch);
return rv;
}